Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Worker heterozygosity and immune response in feral and managed honeybees (Apis mellifera)

E. C. Lowe A , L. W. Simmons A and B. Baer A B C

A Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley, WA 6009, Australia.

B ARC Centre of Excellence in Plant Energy Biology, Bayliss Building, The University of Western Australia, Crawley, WA 6009, Australia.

C Corresponding author. Email: boris.baer@uwa.edu.au

Australian Journal of Zoology 59(2) 73-78 http://dx.doi.org/10.1071/ZO11041
Submitted: 21 June 2011  Accepted: 5 September 2011   Published: 7 October 2011

Abstract

Genetic diversity in workers influences colony immunity in several species of eusocial insects. Much less work has been conducted to test for comparable effects of worker heterozygosity, a measure of genetic diversity within an individual. Here we present a field study using the honeybee (Apis mellifera) and sampled foraging workers throughout Western Australia. Samples were taken from feral and managed colonies, aiming to maximise the variation in worker and colony heterozygosity. We quantified worker heterozygosity using microsatellites, and tested the idea that individual worker heterozygosity predicts immune response, measured as the enzymatic activity of an antimicrobial peptide phenoloxidase (PO) and encapsulation response. We found substantial variation in worker heterozygosity, but no significant effects of heterozygosity on PO activity or encapsulation response, either on the individual or colony level. Heterozygosity was found to be higher in workers of feral colonies compared with managed colonies. Colonies kept in husbandry, as compared with colonies from the field, had significantly higher levels of PO activity and encapsulation response, providing evidence for substantial environmental effects on individual and colony immunity.

Additional keywords: encapsulation response, genetic diversity, immunity, phenoloxidase activity.


References

Armitage, S., Boomsma, J. J., and Baer, B. (2010). Diploid male production in a leaf-cutting ant. Ecological Entomology 35, 175–182.
Diploid male production in a leaf-cutting ant.CrossRef | open url image1

Baer, B., and Schmid-Hempel, P. (1999). Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397, 151–154.
Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee.CrossRef | 1:CAS:528:DyaK1MXntVyhtQ%3D%3D&md5=ab4bee8ad239a6fc4822217e4599ec2aCAS | open url image1

Baer, B., and Schmid-Hempel, P. (2001). Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55, 1639–1643.
| 1:STN:280:DC%2BD3Mrjtlartw%3D%3D&md5=f6deaee2b259ad6f060a54252ac83172CAS | open url image1

Baer, B., and Schmid-Hempel, P. (2005). Sperm influences female hibernation success, survival and fitness in the bumblebee Bombus terrestris. Proceedings. Biological Sciences 272, 319–323.
Sperm influences female hibernation success, survival and fitness in the bumblebee Bombus terrestris.CrossRef | open url image1

Baer, B., Krug, A., Boomsma, J. J., and Hughes, W. O. H. (2005). Examination of the immune responses of males and workers of the leaf-cutting ant Acromyrmex echinatior and the effect of infection. Insectes Sociaux 52, 298–303.
Examination of the immune responses of males and workers of the leaf-cutting ant Acromyrmex echinatior and the effect of infection.CrossRef | open url image1

Baer, B., Armitage, S. A. O., and Boomsma, J. J. (2006). Sperm storage induces an immunity cost in ants. Nature 441, 872–875.
Sperm storage induces an immunity cost in ants.CrossRef | 1:CAS:528:DC%2BD28XlvVGlsbk%3D&md5=cd488b7c9b545b4ae02924a9e68a8119CAS | open url image1

Bensch, S., Andrén, H., Hansson, B., Pedersen, H. C., Sand, H., Sejberg, D., Wabakken, P., Åkesson, M., and Liberg, O. (2006). Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS ONE 1, e72.
Selection for heterozygosity gives hope to a wild population of inbred wolves.CrossRef | open url image1

Bonneaud, C., Mazuc, J. R. M., Gonzalez, G., Haussy, C., Chastel, O., Faivre, B., and Sorci, G. (2003). Assessing the cost of mounting an immune response. American Naturalist 161, 367–379.
Assessing the cost of mounting an immune response.CrossRef | open url image1

Boomsma, J. J., and Ratnieks, F. L. W. (1996). Paternity in eusocial Hymenoptera. Philosophical Transactions of the Royal Society B 351, 947–975.
Paternity in eusocial Hymenoptera.CrossRef | open url image1

Boomsma, J. J., Baer, B., and Heinze, J. (2005). The evolution of male traits in social insects. Annual Review of Entomology 50, 395–420.
The evolution of male traits in social insects.CrossRef | 1:CAS:528:DC%2BD2MXhtFOqtLk%3D&md5=4f79b3ca0623ab2ebef4e737682f7b49CAS | open url image1

Borrell, Y. J., Pineda, H., McCarthy, I., Vazquez, E., Sanchez, J. A., and Lizana, G. B. (2004). Correlations between fitness and heterozygosity at allozyme and microsatellite loci in the Atlantic salmon, Salmo salar L. Heredity 92, 585–593.
Correlations between fitness and heterozygosity at allozyme and microsatellite loci in the Atlantic salmon, Salmo salar L.CrossRef | 1:CAS:528:DC%2BD2cXkt1Ggtrc%3D&md5=af58b24eb34fd1f1dc6faa0221fb9e9cCAS | open url image1

Britten, H. B. (1996). Meta-analyses of the association between multilocus heterozygosity and fitness. Evolution 50, 2158–2164.
Meta-analyses of the association between multilocus heterozygosity and fitness.CrossRef | open url image1

Brown, J. L. (1997). A theory of mate choice based on heterozygosity. Behavioral Ecology 8, 60–65.
A theory of mate choice based on heterozygosity.CrossRef | open url image1

Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J., and Sheldon, B. C. (2009). A quantitative review of heterozygosity fitness correlations in animal populations. Molecular Ecology 18, 2746–2765.
A quantitative review of heterozygosity fitness correlations in animal populations.CrossRef | 1:CAS:528:DC%2BD1MXpvFeiurg%3D&md5=6b7425802d7e618be245ad3fb24d3244CAS | open url image1

Chapman, N. C., Lim, J., and Oldroyd, B. P. (2008). Population genetics of commercial and feral honey bees in Western Australia. Journal of Economic Entomology 101, 272–277.
Population genetics of commercial and feral honey bees in Western Australia.CrossRef | 1:CAS:528:DC%2BD1cXltlOisro%3D&md5=fbd91aa6a2a47b79d0ef78b82595a295CAS | open url image1

Crozier, R. H., and Fjerdingstad, E. J. (2001). Polyandy in social hymenoptera: disunity in diversity. Annales Zoologici Fennici 38, 267–285. open url image1

DeWoody, Y. D., and DeWoody, J. A. (2004). On the estimation of genome-wide heterozygosity using molecular markers. The Journal of Heredity 96, 85–88.
On the estimation of genome-wide heterozygosity using molecular markers.CrossRef | open url image1

Doums, C., and Schmid-Hempel, P. (2000). Immunocompetence in workers of a social insect, Bombus terrestris L., in relation to foraging activity and parasitic infection. Canadian Journal of Zoology 78, 1060–1066. open url image1

Estoup, A., Garnery, L., Solignac, M., and Cornuet, J. M. (1995). Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics 140, 679–695.
| 1:CAS:528:DyaK28Xht1CgsL8%3D&md5=4a50f74bdec648006a7277674e567f2aCAS | open url image1

Evans, J. D., and Pettis, J. S. (2005). Colony-level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution 59, 2270–2274.
| 1:CAS:528:DC%2BD2MXht1ClsrbN&md5=efc7f75410d47701f26cc5433b901b2cCAS | open url image1

Fewell, J. H., and Gadau, J. (2009). ‘Organization of Insect Societies: From Genome to Social Complexity.’ (Harvard University Press: Cambridge, MA.)

Fossøy, F., Johnsen, A., and Lifjeld, J. T. (2009). Cell-mediated immunity and multi-locus heterozygosity in bluethroat nestlings. Journal of Evolutionary Biology 22, 1954–1960.
Cell-mediated immunity and multi-locus heterozygosity in bluethroat nestlings.CrossRef | open url image1

Franck, P., Garnery, L., Loiseau, A., Oldroyd, B. P., Hepburn, H. R., Solignac, M., and Cornuet, J. M. (2001). Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86, 420–430.
Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data.CrossRef | 1:CAS:528:DC%2BD3MXmsVyjsLo%3D&md5=53b077171b6117092c856b0ac37b9171CAS | open url image1

Gerloff, C. U., Ottmer, B. K., and Schmid-Hempel, P. (2003). Effects of inbreeding on immune response and body size in a social insect, Bombus terrestris. Functional Ecology 17, 582–589.
Effects of inbreeding on immune response and body size in a social insect, Bombus terrestris.CrossRef | open url image1

Hamilton, W. D. (1964). The genetical evolution of social behaviour. Journal of Theoretical Biology 7, 1–16.
The genetical evolution of social behaviour.CrossRef | 1:STN:280:DyaF2s7jtVehsA%3D%3D&md5=d80171da5c52dfa1fef0aaa6ec1cec9dCAS | open url image1

Hansson, B., and Westerberg, L. (2002). On the correlation between heterozygosity and fitness in natural populations. Molecular Ecology 11, 2467–2474.
On the correlation between heterozygosity and fitness in natural populations.CrossRef | open url image1

Hawley, D. M., Sydenstricker, K. V., Kollias, G. V., and Dhondt, A. A. (2005). Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches. Biology Letters 1, 326–329.
Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches.CrossRef | open url image1

Hillyer, J. F., and Christensen, B. M. (2005). Mosquito phenoloxidase and defensin colocalize in melanization innate immune responses. The Journal of Histochemistry and Cytochemistry 53, 689–698.
Mosquito phenoloxidase and defensin colocalize in melanization innate immune responses.CrossRef | 1:CAS:528:DC%2BD2MXkvF2lu7Y%3D&md5=2582e3393e278a16676921d9c95fa22bCAS | open url image1

Hughes, W. O. H., Oldroyd, B. P., Beekman, M., and Ratnieks, F. L. W. (2008). Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216.
Ancestral monogamy shows kin selection is key to the evolution of eusociality.CrossRef | 1:CAS:528:DC%2BD1cXmt1Oisrs%3D&md5=1bbfd2002cbe177ebf2d084fb74e8aa1CAS | open url image1

Jaffé, R., Moritz, R. F. A., and Kraus, F. B. (2009). Gene flow is maintained by polyandry and male dispersal in the army ant Eciton burchellii. Population Ecology 51, 227–236.
Gene flow is maintained by polyandry and male dispersal in the army ant Eciton burchellii.CrossRef | open url image1

Keller, L., and Reeve, H. K. (1994). Genetic variability, queen number, and polyandry in social hymenoptera. Evolution 48, 694–704.
Genetic variability, queen number, and polyandry in social hymenoptera.CrossRef | open url image1

Lambrechts, L., Vulule, J. M., and Koella, J. C. (2004). Genetic correlation between melanization and antibacterial immune responses in a natural population of the malaria vector Anopheles gambiae. Evolution 58, 2377–2381. open url image1

Liu, H., Jiravanichpaisal, P., Cerenius, L., Lee, B. L., Sorderhall, I., and Soderhall, K. (2007). Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus. The Journal of Biological Chemistry 282, 33593–33598.
Phenoloxidase is an important component of the defense against Aeromonas hydrophila infection in a crustacean, Pacifastacus leniusculus.CrossRef | 1:CAS:528:DC%2BD2sXht1Oqsr%2FL&md5=71f1eb418daa65e6fe16017c7446d4eeCAS | open url image1

Lochmiller, R. L., and Deerenberg, C. (2000). Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 87–98.
Trade-offs in evolutionary immunology: just what is the cost of immunity?CrossRef | open url image1

Mattila, H. R., and Seeley, T. D. (2007). Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317, 362–364.
Genetic diversity in honey bee colonies enhances productivity and fitness.CrossRef | 1:CAS:528:DC%2BD2sXnslGrs74%3D&md5=889524d9df4847ef86abce4707daeb1cCAS | open url image1

Meznar, E. R., Gadau, J., Koeniger, N., and Rueppell, O. (2010). Comparative linkage mapping suggests a high recombination rate in all honeybees. The Journal of Heredity 101, 118–126.
Comparative linkage mapping suggests a high recombination rate in all honeybees.CrossRef | open url image1

Oldroyd, B. P., and Fewell, J. H. (2007). Genetic diversity promotes homeostasis in insect colonies. Trends in Ecology & Evolution 22, 408–413.
Genetic diversity promotes homeostasis in insect colonies.CrossRef | open url image1

Oldroyd, B. P., and Thompson, G. J. (2006). Behavioural genetics of the honey bee, Apis mellifera. Advances in Insect Physiology 33, 1–49.
Behavioural genetics of the honey bee, Apis mellifera.CrossRef | open url image1

Pogson, G. H., and Fevolden, S. E. (1998). DNA heterozygosity and growth rate in the Atlantic cod Gadus morhua (L). Evolution 52, 915–920.
DNA heterozygosity and growth rate in the Atlantic cod Gadus morhua (L).CrossRef | open url image1

Ratcliffe, N. A., Leonard, C., and Rowley, A. F. (1984). Prophenoloxidase activation: nonself recognition and cell cooperation in insect immunity. Science 226, 557–559.
Prophenoloxidase activation: nonself recognition and cell cooperation in insect immunity.CrossRef | 1:CAS:528:DyaL2cXmt1ynsrc%3D&md5=bb500bb0ca7d1c407f81f3b40633f961CAS | open url image1

Rousset, F. (2008). Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8, 103–106.
Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux.CrossRef | open url image1

Rowe, G., Beebee, T. J. C., and Burke, T. (1999). Microsatellite heterozygosity, fitness and demography in natterjack toads Bufo calamita. Animal Conservation 2, 85–92.
Microsatellite heterozygosity, fitness and demography in natterjack toads Bufo calamita.CrossRef | open url image1

Schmid, M. R., Brockmann, A., Pirk, C. W. W., Stanley, D. W., and Tautz, J. (2008). Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase immunity. Journal of Insect Physiology 54, 439–444.
Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase immunity.CrossRef | 1:CAS:528:DC%2BD1cXhsVSnurc%3D&md5=b56c1521af8684abd629199b92b4e29eCAS | open url image1

Schmid-Hempel, P. (1998). ‘Parasites in Social Insects.’ Monographs in Behavior and Ecology. (Princeton University Press, Princeton, NJ.)

Seddon, N., Amos, W., Mulder, R. A., and Tobias, J. A. (2004). Male heterozygosity predicts territory size, song structure and reproductive success in a cooperatively breeding bird. Proceedings of the Royal Society of London. Series B. Biological Sciences 271, 1823–1829.
Male heterozygosity predicts territory size, song structure and reproductive success in a cooperatively breeding bird.CrossRef | open url image1

Sherman, P. W., Seeley, T. D., and Hudson, K. R. (1988). Parasites, pathogens, and polyandry in social Hymenoptera. American Naturalist 131, 602–610.
Parasites, pathogens, and polyandry in social Hymenoptera.CrossRef | open url image1

Simmons, L. W., Zuk, M., and Rotenberry, J. T. (2005). Immune function reflected in calling song characteristics in a natural population of the cricket Teleogryllus commodus. Animal Behaviour 69, 1235–1241.
Immune function reflected in calling song characteristics in a natural population of the cricket Teleogryllus commodus.CrossRef | open url image1

Simmons, L. W., Beveridge, M., Wedell, N., and Tregenza, T. (2006). Post-copulatory inbreeding avoidance by female crickets only revealed by molecular markers. Molecular Ecology 15, 3817–3824.
Post-copulatory inbreeding avoidance by female crickets only revealed by molecular markers.CrossRef | 1:CAS:528:DC%2BD28Xht1OisLrM&md5=47b350de484556ede88b6925f5ef1ca8CAS | open url image1

Sirvio, A., Gadau, J., Rueppell, O., Lamatsch, D., Boomsma, J. J., Pamilo, P., and Page, R. E. (2006). High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior. Journal of Evolutionary Biology 19, 1475–1485.
High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior.CrossRef | 1:STN:280:DC%2BD28vosl2gtg%3D%3D&md5=3f79ac85bdd836ad114602cff10c2cf7CAS | open url image1

Solignac, M., Vautrin, D., Loiseau, A., Mougel, F., Baudry, E., Estoup, A., Garnery, L., Michael, H., and Cornuet, J. M. (2003). Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Molecular Ecology Notes 3, 307–311.
Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome.CrossRef | 1:CAS:528:DC%2BD3sXlt12htLs%3D&md5=723ebf39ba1df08d54bd6ec5970a38aaCAS | open url image1

Strassmann, J. (2001). The rarity of multiple mating by females in the social Hymenoptera. Insectes Sociaux 48, 1–13.
The rarity of multiple mating by females in the social Hymenoptera.CrossRef | open url image1

Tarpy, D. R. (2003). Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proceedings. Biological Sciences 270, 99–103.
Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth.CrossRef | open url image1

Tarpy, D. R., and Page, R. E. (2001). The curious promiscuity of queen honey bees (Apis mellifera): evolutionary and behavioural mechanisms. Annales Zoologici Fennici 38, 255–265. open url image1

Trivers, R. L., and Hare, H. (1976). Haplodiploidy and the evolution of the social insects. Science 191, 249–263.
Haplodiploidy and the evolution of the social insects.CrossRef | 1:STN:280:DyaE287gsVGrsA%3D%3D&md5=2442b04521cb51325d76fb50a96d2903CAS | open url image1

Van Dongen, S., Backeljau, T., Matthysen, E., and Dhondt, A. A. (2007). Fitness–heterozygosity associations differ between male and female winter moths Operophtera brumata L. Belgian Journal of Zoology 137, 41–46. open url image1

Wiernasz, D. C., Hines, J., Parker, D. G., and Cole, B. J. (2008). Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis. Molecular Ecology 17, 1137–1144.
Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis.CrossRef | open url image1

Wilfert, L., Gadau, J., and Schmid-Hempel, P. (2007). Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98, 189–197.
Variation in genomic recombination rates among animal taxa and the case of social insects.CrossRef | 1:CAS:528:DC%2BD2sXjsV2ju7s%3D&md5=be6d5f2d27eb0a84b2e7899f087590d7CAS | open url image1

Wilson-Rich, N., Dres, S. T., and Starks, P. T. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of Insect Physiology 54, 1392–1399.
The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera).CrossRef | 1:CAS:528:DC%2BD1cXhtFylsLzL&md5=d590bb39730baeaa1371d4e498a503b6CAS | open url image1

Woyke, J. (1963). What happens to diploid drone larvae in a honeybee colony? Journal of Apicultural Research 2, 73–75. open url image1



Export Citation