Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Co-expressed peJK genes of lobster (Jasus edwardsii)

Ermin Schadich A B C , Drusilla Mason A and Frank Sin A
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.

B Centre for Chemical Biology, University Sains Malaysia, No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Malaysia.

C Corresponding author. Email: ermins@gmail.com

Australian Journal of Zoology 60(1) 10-17 https://doi.org/10.1071/ZO11105
Submitted: 22 December 2011  Accepted: 24 April 2012   Published: 27 June 2012

Abstract

Previous studies have shown that the two novel genes of southern rock lobster (Jasus edwardsii) named peJK2 and peJK3 are implicated in eyestalk hormonal regulation of the lobster moult cycle. Northern blot, in situ hybridisation studies and sequence analyses showed that their putative products might be transmembrane proteins associated with cell signal transduction of hormonal signals in the eyestalk during the intermoult phase of the moult cycle. The aim of this study was to analyse coexpression of peJK genes in different J. edwardsii tissues. Using reverse transcriptase–polymerase chain reaction (RT-PCR), the expression of peJK genes was analysed in seven different tissues (eyestalk, brain, epidermis, hepatopancreas, gill, muscle and heart) of an intermoult lobster. During RT-PCR analysis, a novel sequence was isolated, and was named peJK4. It shares 88% and 86% sequence identity with peJK2 and peJK3 respectively. The peJK2 and peJK4 genes are expressed in all tested tissues. Sequence analyses of the predicted peJK2 and peJK4 proteins revealed two common signal transduction motifs, transmembrane helices and protein kinase C. These results showed that the peJK genes of J. edwardsii are a complex group of genes and possibly involved in different signal transduction pathways.

Additional keywords: EST, expression, hormonal regulation, moult, signal transduction.


References

Altshul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.

Attwood, T. K., Beck, M. E., Bleasby, A. J., Degtyarenko, K., Michie, A. D., and Parry-Smith, D. J. (1997). Novel development with the PRINTS protein fingerprint database. Nucleic Acids Research 25, 212–217.
Novel development with the PRINTS protein fingerprint database.CrossRef | 1:CAS:528:DyaK2sXpvFGrsA%3D%3D&md5=460a25b7e58c3a1961ae4889a7c141b3CAS |

Brinbaumer, L., and Brown, A. M. (1990). G proteins and mechanism of action of hormones, neurotransmitters and autocrine and paracrine regulatory factors. The American Review of Respiratory Disease 141, 106–141.

Brown, R. E. (1994). Receptor for peptides, hormones, neuropeptides and neurotransmitters. In ‘An Introduction to Neuroendocrinology’. (Ed. R. Brown.) pp. 191–220. (Cambridge University Press: Cambridge.)

Carlson, K. E., Woolkalis, M. J., Newhouse, M. G., and Manning, D. R. (1986). Fractionation of the β subunit common to guanine nucleotide-binding regulatory proteins with cytoskekeleton. Molecular Pharmacology 30, 463–468.
| 1:CAS:528:DyaL2sXksF2mtg%3D%3D&md5=e12322f82c1072392fcd780f252a96d6CAS |

Chang, E. S., and Mykles, D. L. (2011). Regulation of crustacean molting: a review and our perspectives. General and Comparative Endocrinology 172, 323–330.
Regulation of crustacean molting: a review and our perspectives.CrossRef | 1:CAS:528:DC%2BC3MXntFKgt7w%3D&md5=c8609dd74a90e5cc261bfbec98caa51fCAS |

Chang, E. S., Bruce, M. J., and Tamone, S. L. (1993). Regulation of crustacean moulting: a multi-hormonal system. American Zoologist 33, 324–329.
| 1:CAS:528:DyaK2cXhvVOntrk%3D&md5=bfacd3dce74affc72c29e917ac463454CAS |

Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinum thyocyanate–phenol–chloroform extraction. Analytical Biochemistry 162, 156–159.
Single-step method of RNA isolation by acid guanidinum thyocyanate–phenol–chloroform extraction.CrossRef | 1:CAS:528:DyaL2sXitFSns7Y%3D&md5=c705bdfc36b1d59a7493c0e87b1e298aCAS |

Collins, S., Caron, M. G., and Lefkowitz, R. J. (1992). From ligand binding to the gene expression: new insights into the regulation of the G-protein-coupled receptors. Trends in Biochemical Sciences 17, 37–39.
From ligand binding to the gene expression: new insights into the regulation of the G-protein-coupled receptors.CrossRef | 1:CAS:528:DyaK38XhtVWhsLY%3D&md5=b694a85f3b9344e3ce97897c040b084eCAS |

Corey, E. A., Bobkov, Y., Pezier, A., and Ache, B. W. (2010). Phosphoinositide 3-kinase mediated signaling in lobster olfactory receptor neurons. Journal of Neurochemistry 113, 341–350.
Phosphoinositide 3-kinase mediated signaling in lobster olfactory receptor neurons.CrossRef | 1:CAS:528:DC%2BC3cXksVChtb4%3D&md5=c2c7d8912cac67437a3c8a82e17385f0CAS |

Gilman, A. G. (1987). G proteins: transducers of receptor generated signals. Annual Review of Biochemistry 56, 615–649.
G proteins: transducers of receptor generated signals.CrossRef | 1:CAS:528:DyaL2sXkvFajsL4%3D&md5=a7660b9be71fc153108e000799c5f1f2CAS |

Harzsch, S., Dircksen, H., and Beltz, B. S. (2009). Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system? Cell and Tissue Research 335, 417–429.
Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system?CrossRef | 1:CAS:528:DC%2BD1MXpvVyqtQ%3D%3D&md5=0311366d934ce945b29b54a407cfe10cCAS |

Hofmann, K., Bucher, P., Falquet, L., and Baircoch, A. (1999). The PROSITE database, its status in 1999. Nucleic Acids Research 27, 215–219.
The PROSITE database, its status in 1999.CrossRef | 1:CAS:528:DyaK1MXpsVKitg%3D%3D&md5=53a4219a05a153e64b9ba02056d05d6bCAS |

Isima, T. P., Bidden, T. J., and Shine, L. (1995). Cell surface receptors and the G protein couple receptor superfamily. In ‘G Protein Coupled Receptors’. (Eds P. Isimaa, T. J. Bidden, and J. Shine.) pp. 1–63. (Austin/Springer Verlag: Heidelberg.)

Jakobsson, P. J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., and Persson, B. (1999). Common structural features of MAPEG – a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Science 8, 689–692.
Common structural features of MAPEG – a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism.CrossRef | 1:CAS:528:DyaK1MXhvVOitr4%3D&md5=10f2280d0c61ee849b1bb7fc105bd283CAS |

Jalink, K., and Moolenaar, W. H. (2010). G protein-coupled receptors: the inside story. BioEssays 32, 13–16.
G protein-coupled receptors: the inside story.CrossRef | 1:CAS:528:DC%2BC3cXhvFSksbw%3D&md5=b233850e1b6ce4a696b497ccfe3c7358CAS |

Keller, R. (1992). Crustaceans neuropeptides: structure, functions and comparative aspects. Experentia 48, 439–446.
Crustaceans neuropeptides: structure, functions and comparative aspects.CrossRef | 1:CAS:528:DyaK38XksVCrtLc%3D&md5=64dfb83a3238cc6bd0bf910fee1f108cCAS |

Khoo, J. G. (1996). Isolation and characterisation of the putative MIH gene sequence from the lobster Jasus edwardsii. Ph.D. Thesis. University of Canterbury, Christchurch.

Khoo, J. G., and Sin, F. (2001). Molecular cloning and characterisation of a novel membrane receptor from the lobster Jasus edwardsii. The Journal of Experimental Biology 204, 3369–3377.
| 1:CAS:528:DC%2BD3MXotlCqs7g%3D&md5=54f33fcb2606636660313a99b17b6453CAS |

Krogh, A., Larssson, B., von Heine, G., and Sonnhamer, E. L. I. (2001). Predicting trans membrane protein toplogy with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305, 567–580.
Predicting trans membrane protein toplogy with a hidden Markov model: application to complete genomes.CrossRef | 1:CAS:528:DC%2BD3MXisFCguw%3D%3D&md5=f53cf852da32c4546f391b9aa3bff950CAS |

Kuballa, A. V., Holton, T. A., Paterson, B., and Elizur, A. (2011). Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus. BMC Genomics 12, 147.
Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus.CrossRef | 1:CAS:528:DC%2BC3MXjvVClu78%3D&md5=979ddd343dff333f6a04327ee9cc3de2CAS |

Lachaise, F., Le Roux, A., Hubert, M., and Lafont, R. (1993). The molting gland of crustaceans: localisation, activity and endocrine control. Journal of Crustacean Biology 13, 198–234.
The molting gland of crustaceans: localisation, activity and endocrine control.CrossRef |

Lee, S. G., and Mykles, D. L. (2006). Proteomics and signal transduction in the crustacean molting gland. Integrative and Comparative Biology 46, 965–977.
Proteomics and signal transduction in the crustacean molting gland.CrossRef | 1:CAS:528:DC%2BD28Xhtlent7rN&md5=7ddbb5d817ddb181830509e852865cb8CAS |

Ma, M., Chen, R., Sousa, G. L., Bors, E. K., Kwiatkowski, M. A., Goiney, C. C., Goy, M. F., Christie, A. E., and Li, L. (2008). Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. General and Comparative Endocrinology 156, 395–409.
Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus.CrossRef | 1:CAS:528:DC%2BD1cXjtlektLo%3D&md5=dab0efc6d7bf04602382677dc9fa9becCAS |

Mattson, M. P., and Spaziani, E. (1987). Demonstration of protein kinase C activity in crustacean Y-organ, and partial definition of its role in regulation of ecdysteroidogenesis. Molecular and Cellular Endocrinology 49, 159–172.
Demonstration of protein kinase C activity in crustacean Y-organ, and partial definition of its role in regulation of ecdysteroidogenesis.CrossRef | 1:CAS:528:DyaL2sXpvFOmsg%3D%3D&md5=1c26e6a3e0ceb2600fa38722d48d47bbCAS |

Nakatsuji, T., Lee, C. Y., and Watson, R. D. (2009). Crustacean molt-inhibiting hormone: structure, function, and cellular mode of action. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 152, 139–148.
Crustacean molt-inhibiting hormone: structure, function, and cellular mode of action.CrossRef |

Quackenbush, L. S. (1986). Crustacean endocrinology. Canadian Journal of Fisheries and Aquatic Sciences 43, 2271–2281.
Crustacean endocrinology.CrossRef | 1:CAS:528:DyaL2sXjtVahtw%3D%3D&md5=269748971fd67e37d20477dcb74068c8CAS |

Sadic, E. (2002). A molecular anlysis of peJK Genes in the lobster (Jasus edwardsii). M.Sc. Thesis. University of Canterbury, Christchurch.

Sambrook, J., Fritch, E. F., and Maniatis, T. (1989). ‘Molecular Cloning: A Laboratory Manual.’ 2nd edn. (Cold Spring Harbor Laboratory Press: New York.)

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74, 5463–5467.
DNA sequencing with chain-terminating inhibitors.CrossRef | 1:CAS:528:DyaE1cXhtlaru7Y%3D&md5=1003f0a5f15c0d589778e9fa84ded9b6CAS |

Scharrer, E. (1958). General and phylogenetic interpretation of neuroendocrine interrelations. In ‘Comparative Endocrinology’. (Ed. A. Gorbman.) pp. 233–249. (Wiley: New York.)

Skinner, D. M. (1985). Molting and regeneration. In ‘Biology of Crustacea’. (Eds D. E. Bliss and L. H. Mantel.) pp. 43–146. (Academic Press: New York.)

von Heijne, G. (1992). Membrane protein structure prediction, hydrophobicity analysis and positive inside rule. Journal of Molecular Biology 225, 487–494.
Membrane protein structure prediction, hydrophobicity analysis and positive inside rule.CrossRef | 1:CAS:528:DyaK38Xks1Kjs7o%3D&md5=49f64ee5cd5c613d0617664412262ba0CAS |

Waddy, S. L., Aiken, D. E., and De Kleijn, D. P. V. (1995). Control of growth and reproduction. In ‘Biology of Lobster Homarus Americanus’. (Ed. J. R. Factor.) pp. 216–266. (Academic Press Inc.: New York.)

Webster, S. G., and Keller, R. (1988) Physiology and biochemistry of crustacean neurohormonal peptides. In ‘Neurohormones in Invertebrates’. (Eds M. C. Thorndyke and G. J. Goldsworthy.) pp. 173–196. (Cambridge University Press: Great Britain.)

Zhang, D., Terschak, J. A., Harley, M. A., Lin, A., and Hardege, J. D. (2011). Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones. PLoS ONE 6, e17720.
Simultaneously hermaphroditic shrimp use lipophilic cuticular hydrocarbons as contact sex pheromones.CrossRef | 1:CAS:528:DC%2BC3MXlt12htrg%3D&md5=43af2f600c496a7eedecc720ed2b8b26CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (52 KB) Export Citation