Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Paternally inherited genetic markers reveal new insights into genetic structuring within Macropus fuliginosus and hybridisation with sympatric Macropus giganteus

Linda E. Neaves A B F , Kyall R. Zenger B C , Robert I. T. Prince D and Mark D. B. Eldridge B E
+ Author Affiliations
- Author Affiliations

A Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK.

B Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

C School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.

D Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

E Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.

F Corresponding author. Email: lneaves@gmail.com

Australian Journal of Zoology 61(1) 58-68 https://doi.org/10.1071/ZO12087
Submitted: 3 September 2012  Accepted: 27 January 2013   Published: 8 March 2013

Abstract

There are several aspects of biology in which the contribution of males and females is unequal. In these instances the examination of Y chromosome markers may be used to elucidate male-specific attributes. Here, male dispersal patterns and genetic structuring were examined using four Y-microsatellite loci in 186 male western grey kangaroos, Macropus fuliginosus, from throughout the species’ trans-continental distribution. In addition, 52 male grey kangaroos were examined to investigate hybridisation between M. fuliginosus and the eastern grey kangaroo, Macropus giganteus, in their region of sympatry in eastern Australia. Detected Y chromosome diversity was low, resulting from low effective male population size due to skewed sex ratios and a polygynous mating system. As expected, male dispersal was high across the range. However, the Lake Torrens–Flinders Ranges region appears to have significantly restricted male movement between eastern and central/western Australia. There was little evidence to suggest that other barriers (Nullarbor Plain and Swan River Valley) previously identified by nuclear and mitochondrial DNA marker studies restrict male movement. Hence, the admixture events previously identified may be associated with high male dispersal. Within the region of sympatry between M. fuliginosus and M. giganteus in eastern Australia, four M. giganteus individuals were found to possess M. fuliginosus Y-haplotypes. These results confirm the occurrence of hybridisation between male M. fuliginosus and female M. giganteus. Additionally, the introgression of M. fuliginosus Y-haplotypes into M. giganteus populations indicates that at least some male hybrids are fertile, despite evidence to the contrary from captive studies. This study has provided insights into the male contribution to population history, structure and hybridisation in M. fuliginosus, which were not predicted by comparisons between biparentally and maternally inherited markers. This highlights the importance of direct examination of the Y chromosome to provide novel insights into male-mediated processes, especially where the contribution of the sexes may differ.


References

Arnold, G. W., Steven, D. E., Grassia, A., and Weeldenburg, J. (1992). Home-range size and fidelity of western grey kangaroos (Macropus fuliginosus) living in remnants of wandoo woodland and adjacent farmland. Wildlife Research 19, 137–143.
Home-range size and fidelity of western grey kangaroos (Macropus fuliginosus) living in remnants of wandoo woodland and adjacent farmland.Crossref | GoogleScholarGoogle Scholar |

Bandelt, H. J., Forster, P., and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 37–48.
Median-joining networks for inferring intraspecific phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVGltA%3D%3D&md5=49dde019e83b9fbc85920bdd41c6dc39CAS |

Cairns, S. C., Grigg, G. C., Beard, L. A., Pople, A. R., and Alexander, P. (2000). Western grey kangaroos, Macropus fuliginosus, in the South Australian pastoral zone: populations at the edge of their range. Wildlife Research 27, 309–318.
Western grey kangaroos, Macropus fuliginosus, in the South Australian pastoral zone: populations at the edge of their range.Crossref | GoogleScholarGoogle Scholar |

Carling, M. D., and Zuckerberg, B. (2011). Spatio-temporal changes in the genetic structure of the Passerina bunting hybrid zone. Molecular Ecology 20, 1166–1175.
Spatio-temporal changes in the genetic structure of the Passerina bunting hybrid zone.Crossref | GoogleScholarGoogle Scholar |

Clark, P., and Poole, W. E. (1973). The distribution of red cell lactic dehydrogenase types in grey kangaroos. Australian Journal of Biological Sciences 26, 1153–1159.
| 1:CAS:528:DyaE2cXisFeitw%3D%3D&md5=c0e48a0960aaf7abc35603914a2af0ffCAS |

Clegg, S. M., Hale, P., and Moritz, C. (1998). Molecular population genetics of the red kangaroo (Macropus rufus): mtDNA variation. Molecular Ecology 7, 679–686.
Molecular population genetics of the red kangaroo (Macropus rufus): mtDNA variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlemu70%3D&md5=cc378f06698c6aa16fba835f3a8bb640CAS |

Coulson, G. (2008). Western grey kangaroo, Macropus fuliginosus. In ‘The Mammals of Australia’. 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 333–334. (Reed New Holland: Sydney.)

Coulson, G., and Coulson, R. (2001). A natural grey kangaroo hybrid? Australian Zoologist 31, 599–602.

Degnan, S. M., and Moritz, C. (1992). Phylogeography of mitochondrial DNA in two species of white-eyes in Australia. The Auk 109, 800–811.
Phylogeography of mitochondrial DNA in two species of white-eyes in Australia.Crossref | GoogleScholarGoogle Scholar |

Ellegren, H. (2009). The different levels of genetic diversity in sex chromosomes and autosomes. Trends in Genetics 25, 278–284.
The different levels of genetic diversity in sex chromosomes and autosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1GktLs%3D&md5=69f25334f51d8335bc979f756d4de69bCAS |

Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=8e2bd1420e2c34c76b27459f90acd3dfCAS |

Fairbairn, J., Shine, R., Moritz, C., and Frommer, M. (1998). Phylogenetic relationships between oviparous and viviparous populations of an australian lizard (Lerista bougainvillii, Scincidae). Molecular Phylogenetics and Evolution 10, 95–103.
Phylogenetic relationships between oviparous and viviparous populations of an australian lizard (Lerista bougainvillii, Scincidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlOmtLs%3D&md5=1bc4315786086606b7ef3be11e18807fCAS |

Firestone, K. B., Elphinstone, M. S., Sherwin, W. B., and Houlden, B. A. (1999). Phylogeographical population structure of tiger quolls Dasyurus maculatus (Dasyuridae: Marsupialia), an endangered carnivorous marsupial. Molecular Ecology 8, 1613–1625.
Phylogeographical population structure of tiger quolls Dasyurus maculatus (Dasyuridae: Marsupialia), an endangered carnivorous marsupial.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FltFansA%3D%3D&md5=f2f6daab204efe33360e5eeb1733062bCAS |

Frankham, R. (2012). How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination. Heredity 108, 167–178.
How closely does genetic diversity in finite populations conform to predictions of neutral theory? Large deficits in regions of low recombination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFWksLY%3D&md5=368c31b907d11ae0eae0b521a89c9eceCAS |

Goodman, S. J., Barton, N. H., Swanson, G., Abernethy, K., and Pemberton, J. M. (1999). Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (Genus Cervus) in Argyll Scotland. Genetics 152, 355–371.
| 1:STN:280:DyaK1M3kt1Grug%3D%3D&md5=8fda3f43b15595d9ed36b6a6b67693a4CAS |

Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28, 1140–1162.
Mating systems, philopatry and dispersal in birds and mammals.Crossref | GoogleScholarGoogle Scholar |

Hoarau, G., Piquet, A. M.-T., van der Veer, H. W., Rijnsdorp, A. D., Stam, W. T., and Olsen, J. L. (2004). Population structure of plaice (Pleuronectres platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data. Journal of Sea Research 51, 183–190.
Population structure of plaice (Pleuronectres platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1Wku7Y%3D&md5=f1531481150ed23022596031ac7be497CAS |

Hurles, M. E., and Jobling, M. A. (2001). Haploid chromosomes in molecular ecology: lessons from the human Y. Molecular Ecology 10, 1599–1613.
Haploid chromosomes in molecular ecology: lessons from the human Y.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVynsro%3D&md5=77847dc4c6231141095ff1a19c9ee755CAS |

Hurles, M. E., Irven, I., Nicholson, J., Taylor, P. G., Santos, F. R., Loughlin, J, Jobling, M. A., and Sykes, B. C. (1998). European Y-chromosomal lineages in Polynesians: a contrast to the population structure revealed by mtDNA. American Journal of Human Genetics 63, 1793–1806.
European Y-chromosomal lineages in Polynesians: a contrast to the population structure revealed by mtDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1Sisg%3D%3D&md5=298289e1daa51c46858772454112defbCAS |

Jarne, P., and Lagoda, P. J. L. (1996). Microsatellites, from molecules to populations and back. Trends in Ecology & Evolution 11, 424–429.
Microsatellites, from molecules to populations and back.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFGhtA%3D%3D&md5=240249c937011a0d7c21b91701bbfb7fCAS |

Johnson, C. N. (1989). Dispersal and philopatry in the macropodoids. In ‘Kangaroos, Wallabies and Rat-Kangaroos’. (Eds G. C. Grigg, P. J. Jarman and I. Hume.) pp. 593–601. (Surrey Beatty: Sydney.)

Kayser, M., Brauer, S., Weiss, G., Schiefenhövel, W., Underhill, P., Shen, P., Oefner, P., Tommaseo-Ponzetta, M., and Stoneking, M. (2003). Reduced Y-chromosome, but not mitochondrial DNA, diversity in human populations from west New Guinea. American Journal of Human Genetics 72, 281–302.
Reduced Y-chromosome, but not mitochondrial DNA, diversity in human populations from west New Guinea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht12rtrk%3D&md5=5ee95b67ef431a505d34d16bc147ec77CAS |

Kilpatrick, C. W. (2002). Noncryogenic preservation of mammalian tissues for dna extraction: an assessment of storage methods. Biochemical Genetics 40, 53–62.
Noncryogenic preservation of mammalian tissues for dna extraction: an assessment of storage methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1aqur4%3D&md5=f7be7a5c686a430b76c3c866a350a0dcCAS |

Kirsch, J. A. W., and Poole, W. E. (1972). Taxonomy and distribution of the grey kangaroos, Macropus giganteus Shaw and Macropus fuliginosus (Desmarest), and their subspecies (Marsupialia: Macropodidae). Australian Journal of Zoology 20, 315–339.
Taxonomy and distribution of the grey kangaroos, Macropus giganteus Shaw and Macropus fuliginosus (Desmarest), and their subspecies (Marsupialia: Macropodidae).Crossref | GoogleScholarGoogle Scholar |

Lawson Handley, L. J., and Perrin, N. (2006). Y chromosome microsatellite isolation from BAC clones in the greater white-toothed shrew (Crocidura russula). Molecular Ecology Notes 6, 276–279.
Y chromosome microsatellite isolation from BAC clones in the greater white-toothed shrew (Crocidura russula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFaksb4%3D&md5=daa7e9ecb4a9c1bf71cd8130bec6b53fCAS |

Lawson Handley, L. J., Hammond, R. L., Emaresi, G., Reber, A., and Perrin, N. (2006). Low Y chromosome variation in Saudi-Arabian hamadryas baboons (Papio hamadryas hamadryas). Heredity 96, 298–303.
Low Y chromosome variation in Saudi-Arabian hamadryas baboons (Papio hamadryas hamadryas).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFSmtbg%3D&md5=23fb396d851026776b27f6821ba47543CAS |

Lu, X., Shapiro, J. A., Ting, C.-T., Li, Y., Li, C., Xu, J., Huang, H., Cheng, Y.-J., Greenberg, A. J., Li, S.-H., Wu, M.-L., Shen, Y., and Wu, C.-I. (2010). Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility. Genome Research 20, 1097–1102.
Genome-wide misexpression of X-linked versus autosomal genes associated with hybrid male sterility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVahsrjN&md5=0bcd62e56a114f10288a34176d84bc60CAS |

MacDonald, A. J., Sankovic, N. A., Sarre, S. D., Fitzsimmons, N. N., Wakefield, M. J., Marshall Graves, J. A., and Zenger, K. R. (2006). Y chromosome microsatellite markers identified from the tammar wallaby (Macropus eugenii) and their amplification in three other macropod species. Molecular Ecology Notes 6, 1202–1204.
Y chromosome microsatellite markers identified from the tammar wallaby (Macropus eugenii) and their amplification in three other macropod species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVSgtw%3D%3D&md5=f8bc3dcce536b26d06dea651cb29525dCAS |

MacDonald, A. J., Sarre, S. D., and Fitzsimmons, N. N. (2010). Sex chromosome microsatellites: new tools for macropod population ecology. In ‘Macropods: The Biology of Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Coulson and M. D. B. Eldridge.) pp. 53–64. (CSIRO Publishing: Melbourne.)

McDevitt, A. D., Yannic, G., Rambau, R. V., Hayden, T. J., and Searle, J. B. (2010). Postglacial recolonization of continental Europe by the pygmy shrew (Sorex minutus) inferred from mitochondrial and Y chromosomal DNA sequences. In ‘Relict Species’. (Eds J. C. Habel and T. Assmann.) pp. 217–236. (Spinger: London.)

Mead, R. J., Moulden, D. L., and Twigg, L. E. (1985). Significance of sulfhydryl compounds in the manifestation of fluoroacetate toxicity to the rat, brush-tailed possum, woylie and western grey kangaroo. Australian Journal of Biological Sciences 38, 139–150.
| 1:CAS:528:DyaL2MXlsFGnu78%3D&md5=c29d548cf1eca57bba663270ecebc257CAS |

Melo-Ferreira, J., Boursot, P., Randi, E., Kryukov, A., Suchentrunk, F., Ferrand, N., and Alves, P. C. (2007). The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Molecular Ecology 16, 605–618.
The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s%2FlsVWktw%3D%3D&md5=f1914fc499bcc692a6ff6574a1926b65CAS |

Miller, E. J., Eldridge, M. D. B., Morris, K. D., Zenger, K. R., and Herbert, C. A. (2011). Genetic consequences of isolation: island tammar wallaby (Macropus eugenii) populations and the conservation of threatened species. Conservation Genetics 12, 1619–1631.
Genetic consequences of isolation: island tammar wallaby (Macropus eugenii) populations and the conservation of threatened species.Crossref | GoogleScholarGoogle Scholar |

Moritz, C., Heideman, A., Geffen, E., and McRae, P. (1997). Genetic population structure of the greater bilby Macrotis lagotis, a marsupial in decline. Molecular Ecology 6, 925–936.
Genetic population structure of the greater bilby Macrotis lagotis, a marsupial in decline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVGlu7Y%3D&md5=338326ac07c93f6751e66157bf381bb7CAS |

Neaves, L. E., Zenger, K. R., Prince, R. I. T., Eldridge, M. D. B., and Cooper, D. W. (2009). Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus. Molecular Ecology 18, 3363–3378.
Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKmsr%2FN&md5=d047bd132d2c2e3f2c4f19207c637c3aCAS |

Neaves, L. E., Zenger, K. R., Cooper, D. W., and Eldridge, M. D. B. (2010). Molecular detection of hybridization between sympatric kangaroo species in south-eastern Australia. Heredity 104, 502–512.
Molecular detection of hybridization between sympatric kangaroo species in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3nsFSitA%3D%3D&md5=3a0fc307abdd05ac5ba782a9eb074237CAS |

Neaves, L. E., Zenger, K. R., Prince, R. I. T., and Eldridge, M. D. B. (2012). Impact of Pleistocene aridity oscillations on the population history of a widespread, vagile Australian mammal, Macropus fuliginosus. Journal of Biogeography 39, 1545–1563.
Impact of Pleistocene aridity oscillations on the population history of a widespread, vagile Australian mammal, Macropus fuliginosus.Crossref | GoogleScholarGoogle Scholar |

Norbury, G. L., Coulson, G. M., and Walters, B. L. (1988). Aspects of the demography of the western grey kangaroo, Macropus fuliginosus melanops, in semiarid northwest Victoria. Wildlife Research 15, 257–266.
Aspects of the demography of the western grey kangaroo, Macropus fuliginosus melanops, in semiarid northwest Victoria.Crossref | GoogleScholarGoogle Scholar |

Oliver, A. J., King, D. R., and Mead, R. J. (1979). Fluoroacetate tolerance, a genetic marker in some Australian mammals. Australian Journal of Zoology 27, 363–372.
Fluoroacetate tolerance, a genetic marker in some Australian mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlsFygtg%3D%3D&md5=90a2cbe22ab27ffb9e0b4f7922c1aa28CAS |

Petit, E., Balloux, F., and Excoffier, L. (2002). Mammalian population genetics: why not Y? Trends in Ecology & Evolution 17, 28–33.
Mammalian population genetics: why not Y?Crossref | GoogleScholarGoogle Scholar |

Poole, W. E. (1976). Breeding biology and current status of the grey kangaroo, Macropus fuliginosus fuliginosus of Kangaroo Island, South Australia. Australian Journal of Zoology 24, 169–187.
Breeding biology and current status of the grey kangaroo, Macropus fuliginosus fuliginosus of Kangaroo Island, South Australia.Crossref | GoogleScholarGoogle Scholar |

Poole, W. E., and Catling, P. C. (1974). Reproduction in the two species of grey kangaroos, Macropus giganteus Shaw and M. fuliginosus (Desmarest). I. Sexual maturity and oestrus. Australian Journal of Zoology 22, 277–302.
Reproduction in the two species of grey kangaroos, Macropus giganteus Shaw and M. fuliginosus (Desmarest). I. Sexual maturity and oestrus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M%2Fptl2jtQ%3D%3D&md5=3e523c62e779b856f277831d7bd734ceCAS |

Poole, W. E., Carpenter, S. M., and Simms, N. G. (1990). Subspecific separation in the western grey kangaroo, Macropus fuliginosus: a morphometric study. Australian Wildlife Research 17, 159–168.
Subspecific separation in the western grey kangaroo, Macropus fuliginosus: a morphometric study.Crossref | GoogleScholarGoogle Scholar |

Pope, L. C., Estoup, A., and Moritz, C. (2000). Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellites. Molecular Ecology 9, 2041–2053.
Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Oksg%3D%3D&md5=59a976ed509458afa25de31972c39714CAS |

Priddel, D., Wellard, G., and Shepherd, N. C. (1988). Movements of sympatric red kangaroos, Macropus rufus, and western grey kangaroos, M. fuliginosus, in western New South Wales. Australian Wildlife Research 15, 339–346.
Movements of sympatric red kangaroos, Macropus rufus, and western grey kangaroos, M. fuliginosus, in western New South Wales.Crossref | GoogleScholarGoogle Scholar |

Ruedi, M., Smith, M. F., and Patton, J. L. (1997). Phylogenetic evidence of mitochondrial DNA introgression among pocket gophers in New Mexico (family Geomyidae). Molecular Ecology 6, 453–462.
Phylogenetic evidence of mitochondrial DNA introgression among pocket gophers in New Mexico (family Geomyidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFOjsb8%3D&md5=e2dcf2cc9e7470b9b612d7ea13bc39e7CAS |

Schneider, S., Roessli, D., and Excoffier, L. (2000). ‘Arlequin: a software for population genetics data analysis. Ver 2.000.’ (Genetics and Biometry Lab., Dept. of Anthropology, University of Geneva.)

Sigg, D. P., Goldizen, A. W., and Pople, A. R. (2005). The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies. Biological Conservation 123, 289–300.
The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies.Crossref | GoogleScholarGoogle Scholar |

Strahan, R. (Ed.) (1995). ‘The Mammals of Australia.’ (Reed: Sydney.)

Sundqvist, A. K., Ellegren, H., Olivier, M., and Vila, C. (2001). Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers. Molecular Ecology 10, 1959–1966.
Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslyhtrY%3D&md5=af5847c386e74282a2fa6dbe0db6203eCAS |

Thom, B. G., and Chappell, J. (1975). Holocene sea levels relative to Australia. Search 6, 90–93.

Vaha, J., and Primmer, C. R. (2006). Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization senarios and with different numbers of loci. Molecular Ecology 15, 63–72.
Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization senarios and with different numbers of loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGktrY%3D&md5=ffdab5b786d98e804b329b22cd4198bbCAS |

Ward, T. J., Skow, L. C., Gallagher, D. S., Schnabel, R. D., Nall, C. A., Klolenda, C. E., Davis, S. K., Taylor, J. F., and Derr, J. N. (2001). Differential introgression of uniparentally inherited markers in bison populations with hybrid ancestry. Animal Genetics 32, 89–91.
Differential introgression of uniparentally inherited markers in bison populations with hybrid ancestry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFajs7Y%3D&md5=6edf0d147fab6c859bc29f46f85e43faCAS |

Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
Estimating F-statistics for the analysis of population structure.Crossref | GoogleScholarGoogle Scholar |

Wilmer, J., Hall, L., Barratt, E., and Moritz, C. (1999). Genetic structure and male-mediated gene flow in the ghost bat (Macroderma gigas). Evolution 53, 1582–1591.
Genetic structure and male-mediated gene flow in the ghost bat (Macroderma gigas).Crossref | GoogleScholarGoogle Scholar |

Wright, S. (1969). ‘Evolution and the Genetics of Populations. Vol. 2. The Theory of Gene Frequencies.’ (University of Chicago Press: Chicago.)

Zenger, K. R., Eldridge, M. D. B., and Cooper, D. W. (2003). Intraspecific variation, sex-biased dispersal and phylogeography of the eastern grey kangaroo (Macropus giganteus). Heredity 91, 153–162.
Intraspecific variation, sex-biased dispersal and phylogeography of the eastern grey kangaroo (Macropus giganteus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslKju74%3D&md5=46e59b8a79cf657efc644cb52577e7b9CAS |

Zong, E., and Fan, G. (1989). The variety of sterility and gradual progression to fertility in hybrids of the horse and donkey. Heredity 62, 393–406.
The variety of sterility and gradual progression to fertility in hybrids of the horse and donkey.Crossref | GoogleScholarGoogle Scholar |