Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Impacts of thermal limitation on thermoregulatory behaviour and reproductive success in a lizard

Jennifer E. Halstead A and Lisa E. Schwanz A B
+ Author Affiliations
- Author Affiliations

A School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: lisa.schwanz@gmail.com

Australian Journal of Zoology 63(4) 225-232 https://doi.org/10.1071/ZO15012
Submitted: 13 March 2015  Accepted: 28 July 2015   Published: 20 August 2015

Abstract

Climatic variation can impact populations of ectotherms by altering reproduction, development, and survival. While a warm climate can provide additional thermal opportunities for ectotherms, excessively warm conditions can restrict activity in avoidance of lethal temperatures. However, ectotherms are not necessarily passive to thermal conditions, and often employ flexible thermoregulatory behaviour to accommodate environmental variation. Here, we examine whether the Australian jacky dragon lizard, Amphibolurus muricatus, can compensate for reduced basking opportunity by basking with greater intensity, and how the thermal environment influences reproductive success in females. Overall, there was no compelling evidence for compensatory thermoregulatory behaviour in response to reduced basking opportunity. Moreover, females with reduced thermal opportunities did not produce eggs, although reproductive success was quite low for both groups, so additional factors may have limited reproduction in the colony. This study allows insight into the links between climate and population persistence in wild animals by providing crucial and rare data on how thermal environment impacts reproduction in an egg-laying lizard.

Additional keywords: Agamidae, climate change, dragon lizard, plasticity, reptile, thermoregulation.


References

Andrews, R. M. (2000). Evolution of viviparity in squamate reptiles (Sceloporus spp.): a variant of the cold-climate model. Journal of Zoology 250, 243–253.
Evolution of viviparity in squamate reptiles (Sceloporus spp.): a variant of the cold-climate model.CrossRef |

Andrews, R. M., Méndez de al Cruz, F. R., and Santa Cruz, M. V. (1997). Body temperatures of female Sceloporus grammicus: thermal stress or impaired mobility? Copeia 1997, 108–115.
Body temperatures of female Sceloporus grammicus: thermal stress or impaired mobility?CrossRef |

Andrews, R. M., Mathies, T., and Warner, D. A. (2000). Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulates. Herpetological Monograph 14, 420–431.
Effect of incubation temperature on morphology, growth, and survival of juvenile Sceloporus undulates.CrossRef |

Angilletta, M. J., Jr (2009). ‘Thermal Adaptation: A Theoretical and Empirical Synthesis.’ (Oxford University Press: Oxford.)

Bernardo, J. (1996). Maternal effects in animal ecology. American Zoologist 36, 83–105.
Maternal effects in animal ecology.CrossRef |

Blackburn, D. G. (1995). Saltationist and punctuated equilibrium models for the evolution of viviparity and placentation. Journal of Theoretical Biology 174, 199–216.
Saltationist and punctuated equilibrium models for the evolution of viviparity and placentation.CrossRef | 1:STN:280:DyaK2MzntFemsA%3D%3D&md5=1a4a84dcd12ba77ced722515c5d2e2baCAS | 7643614PubMed |

Boggs, C. L. (2009). Understanding insect life histories and senescence through a resource allocation lens. Functional Ecology 23, 27–37.
Understanding insect life histories and senescence through a resource allocation lens.CrossRef |

Booth, D. T. (2006). Influence of incubation temperature on hatchling phenotype in reptiles. Physiological and Biochemical Zoology 79, 274–281.
Influence of incubation temperature on hatchling phenotype in reptiles.CrossRef | 16555187PubMed |

Bowden, R. M., Ewert, M. A., and Nelson, C. E. (2000). Environmental sex determination in a reptile varies seasonally and with yolk hormones. Proceedings of the Royal Society B: Biological Sciences 267, 1745–1749.
Environmental sex determination in a reptile varies seasonally and with yolk hormones.CrossRef | 1:CAS:528:DC%2BD3cXnsVeltbk%3D&md5=f0173a7e5a4e1f6620910081e52acbadCAS | 12233772PubMed |

Braña, F., Bea, A., and Arrayago, M. J. (1991). Egg retention in lacertid lizards: relationships with reproductive ecology and the evolution of viviparity. Herpetologica 47, 218–226.

Cadby, C. D., Jones, S. M., and Wapstra, E. (2014). Geographical differences in maternal basking behaviour and offspring growth rate in a climatically widespread viviparous reptile. The Journal of Experimental Biology 217, 1175–1179.
Geographical differences in maternal basking behaviour and offspring growth rate in a climatically widespread viviparous reptile.CrossRef | 24311810PubMed |

Deeming, D. C. (2004). Post-hatching phenotypic effects of incubation in reptiles. In ‘Reptilian Incubation: Environment, Evolution and Behavior’. (Ed. D. C. Deeming.) pp. 229–251. (Nottingham University Press: Nottingham.)

Doughty, P., and Shine, R. (1998). Reproductive energy allocation and long-term energy stores in a viviparous lizard (Eulamprus tympanum). Ecology 79, 1073–1083.
Reproductive energy allocation and long-term energy stores in a viviparous lizard (Eulamprus tympanum).CrossRef |

Esquerré, D., Keogh, J. S., and Schwanz, L. E. (2014). Direct effects of incubation temperature on morphology, thermoregulatory behaviour and locomotor performance in jacky dragons (Amphibolurus muricatus). Journal of Thermal Biology 43, 33–39.
Direct effects of incubation temperature on morphology, thermoregulatory behaviour and locomotor performance in jacky dragons (Amphibolurus muricatus).CrossRef | 24956955PubMed |

Ferguson, G. W., and Fox, S. F. (1984). Annual variation of survival advantage of large juvenile side-blotched lizards, Uta stansburiana: its causes and evolutionary significance. Evolution 38, 342–349.
Annual variation of survival advantage of large juvenile side-blotched lizards, Uta stansburiana: its causes and evolutionary significance.CrossRef |

Harlow, P. S., and Taylor, J. E. (2000). Reproductive ecology of the jacky dragon (Amphibolurus muricatus): an agamid lizard with temperature-dependent sex determination. Austral Ecology 25, 640–652.
Reproductive ecology of the jacky dragon (Amphibolurus muricatus): an agamid lizard with temperature-dependent sex determination.CrossRef |

Heatwole, H., and Firth, B. T. (1982). Voluntary maximum temperature of the jackie lizard. Copeia 1982, 824–829.
Voluntary maximum temperature of the jackie lizard.CrossRef |

Heatwole, H., Firth, B. T., and Webb, G. J. W. (1973). Panting thresholds of lizards – I. Some methodological and internal influences on the panting threshold of an agamid, Amphibolurus muricatus. Comparative Biochemistry and Physiology Part A: Physiology 46, 799–826.
Panting thresholds of lizards – I. Some methodological and internal influences on the panting threshold of an agamid, Amphibolurus muricatus.CrossRef | 1:STN:280:DyaE2c%2Fjt1CrsA%3D%3D&md5=f79284924e1b78bbde61eae79a43d1d5CAS |

Hirshfield, M. F., and Tinkle, D. W. (1975). Natural selection and the evolution of reproductive effort. Proceedings of the National Academy of Sciences of the United States of America 72, 2227–2231.
Natural selection and the evolution of reproductive effort.CrossRef | 1:STN:280:DyaE2M7ns12itw%3D%3D&md5=ad38848b56348a55650d79f58574311bCAS | 1056027PubMed |

Huang, S.-P., Chiou, C.-R., Lin, T.-E., Tu, M.-C., Lin, C.-C., and Porter, W. P. (2013). Future advantages in energetics, activity time, and habitats predicted in a high-altitude pit viper with climate warming. Functional Ecology 27, 446–458.
Future advantages in energetics, activity time, and habitats predicted in a high-altitude pit viper with climate warming.CrossRef |

Huey, R. B., and Berrigan, D. (2001). Temperature, demography, and ectotherm fitness. American Naturalist 158, 204–210.
Temperature, demography, and ectotherm fitness.CrossRef | 1:STN:280:DC%2BD1critlyktg%3D%3D&md5=1efefaf0195816f4fa45fe7897afc89eCAS | 18707349PubMed |

Huey, R. B., and Slatkin, M. (1976). Cost and benefits of lizard thermoregulation. The Quarterly Review of Biology 51, 363–384.
Cost and benefits of lizard thermoregulation.CrossRef | 1:STN:280:DyaE2s%2Fjslarsg%3D%3D&md5=713931632a3351a36625cb9a8201f1caCAS | 981504PubMed |

Huey, R. B., Deutsch, C. A., Tewksbury, J. J., Vitt, L. J., Hertz, P. E., Álvarez Pérez, H. J., and Garland Jr, T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences 276, 1939–1948.
Why tropical forest lizards are vulnerable to climate warming.CrossRef | 19324762PubMed |

Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A. M., Jess, M., and Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transitions of the Royal Society B 367, 1665–1679.
Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation.CrossRef |

Itonaga, K., Jones, S. M., and Wapstra, E. (2012). Effects of maternal basking and food quantity during gestation provide evidence for the selective advantage of matrotrophy in a viviparous lizard. PLoS One 7, e41835.
Effects of maternal basking and food quantity during gestation provide evidence for the selective advantage of matrotrophy in a viviparous lizard.CrossRef | 1:CAS:528:DC%2BC38XhtFeisr7K&md5=b1f92271b7807ea739caa23cddbd1d49CAS | 22848629PubMed |

Kearney, M. R. (2013). Activity restriction and the mechanistic basis for extinctions under climate warming. Ecology Letters 16, 1470–1479.
Activity restriction and the mechanistic basis for extinctions under climate warming.CrossRef |

Kearney, M. R., Shine, R., Porter, W. P., and Wake, D. B. (2009). The potential for behavioural thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America 106, 3835–3840.
The potential for behavioural thermoregulation to buffer ‘cold-blooded’ animals against climate warming.CrossRef | 1:CAS:528:DC%2BD1MXjt1GksLc%3D&md5=b4eb1b96a3fe0d260b80f2393f2892eaCAS |

Lorioux, S., DeNardo, D. F., Gorelik, R., and Lourdais, O. (2012). Maternal influences on early development: preferred temperature prior to oviposition hastens embryogenesis and enhances offspring traits in the Children’s python, Antaresia children. The Journal of Experimental Biology 215, 1346–1353.
Maternal influences on early development: preferred temperature prior to oviposition hastens embryogenesis and enhances offspring traits in the Children’s python, Antaresia children.CrossRef | 22442373PubMed |

Mousseau, T. A., and Fox, C. W. (1998). The adaptive significance of maternal effects. Trends in Ecology & Evolution 13, 403–407.
The adaptive significance of maternal effects.CrossRef | 1:STN:280:DC%2BC3M7itF2rtg%3D%3D&md5=8d2a9c8d5eb2702da17c9af6ecb7fb25CAS |

Olsson, M., and Shine, R. (1997). The seasonal timing of oviposition in sand lizards (Lacerta agilis): why early clutches are better. Journal of Evolutionary Biology 10, 369–381.
The seasonal timing of oviposition in sand lizards (Lacerta agilis): why early clutches are better.CrossRef |

Parmesan, C., and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.
A globally coherent fingerprint of climate change impacts across natural systems.CrossRef | 1:CAS:528:DC%2BD3sXoslM%3D&md5=dc3ba1ade653607ec0c1e71e0996438fCAS | 12511946PubMed |

Peters, R. A., and Ord, T. L. (2003). Display response of the jacky dragon, Amphibolurus muricatus (Lacertilia: Agamidae), to intruders: a semi-Markovian process. Austral Ecology 28, 499–506.
Display response of the jacky dragon, Amphibolurus muricatus (Lacertilia: Agamidae), to intruders: a semi-Markovian process.CrossRef |

Radder, R. S., Pike, D. A., Quinn, A. E., and Shine, R. (2009). Offspring sex in a lizard depends on egg size. Current Biology 19, 1102–1105.
Offspring sex in a lizard depends on egg size.CrossRef | 1:CAS:528:DC%2BD1MXosVyhs7o%3D&md5=19d1fd19346e0002db0a87d0698cb922CAS | 19500989PubMed |

Rock, J., Cree, A., and Andrews, R. M. (2002). The effect of reproductive condition on thermoregulation in a viviparous gecko from a cool climate. Journal of Thermal Biology 27, 17–27.
The effect of reproductive condition on thermoregulation in a viviparous gecko from a cool climate.CrossRef |

Rodríguez-Díaz, T., and Braña, F. (2011). Shift in thermal preference of female oviparous common lizards during egg retention: insights into the evolution of reptilian viviparity. Evolutionary Biology 38, 352–359.
Shift in thermal preference of female oviparous common lizards during egg retention: insights into the evolution of reptilian viviparity.CrossRef |

Ruffino, L., Salo, P., Koivisto, E., Banks, P., and Korpimäki, E. (2014). Reproductive responses of birds to experimental food supplementation: a meta-analysis. Frontiers in Zoology 11, 80.
Reproductive responses of birds to experimental food supplementation: a meta-analysis.CrossRef | 25386221PubMed |

Schwanz, L. E., and Janzen, F. J. (2008). Climate change and temperature-dependent sex determination: can individual plasticity in nesting phenology prevent extreme sex ratios? Physiological and Biochemical Zoology 81, 826–834.
Climate change and temperature-dependent sex determination: can individual plasticity in nesting phenology prevent extreme sex ratios?CrossRef | 18831689PubMed |

Schwanz, L. E., Spencer, R.-J., Bowden, R. M., and Janzen, F. J. (2010). Climate and predation dominate juvenile and adult recruitment in a turtle with temperature-dependent sex determination. Ecology 91, 3016–3026.
Climate and predation dominate juvenile and adult recruitment in a turtle with temperature-dependent sex determination.CrossRef | 21058561PubMed |

Shine, R. (1983). Reptilian reproductive modes: the oviparity–viviparity continuum. Herpetologica 39, 1–8.

Shine, R. (1985). The evolution of viviparity in reptiles: an ecological analysis. In Biology of the Reptilia 15’. (Eds C. Gans, and F. Billett.) pp. 605–694. (John Wiley: New York.)

Shine, R. (1999). Why is sex determined by nest temperature in many reptiles? Trends in Ecology & Evolution 14, 186–189.
Why is sex determined by nest temperature in many reptiles?CrossRef |

Shine, R. (2006). Is increased maternal basking an adaptation or a pre-adaptation to viviparity in lizards? The Journal of Experimental Zoology 305A, 524–535.
Is increased maternal basking an adaptation or a pre-adaptation to viviparity in lizards?CrossRef |

Shine, R., and Harlow, P. S. (1993). Maternal thermoregulation influences offspring viability in a viviparous lizard. Oecologia 96, 122–127.
Maternal thermoregulation influences offspring viability in a viviparous lizard.CrossRef |

Shine, R., and Harlow, P. S. (1996). Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology 77, 1808–1817.
Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard.CrossRef |

Sinervo, B., Doughty, P., Huey, R. B., and Zamudio, K. (1992). Allometric engineering: a casual analysis of natural selection on offspring size. Science 258, 1927–1930.
Allometric engineering: a casual analysis of natural selection on offspring size.CrossRef | 1:STN:280:DC%2BC3cvlslGiug%3D%3D&md5=875df50433bf8ae2efd16c051a9b09afCAS | 17836187PubMed |

Sinervo, B., Mendez-de-la-Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagran-Santa Cruz, M., Lara-Resendiz, R., Martinez-Mendez, N., Lucia Calderon-Espinosa, M., Nelsi Meza-Lazaro, R., Gadsden, H., Javier Avila, L., Morando, M., De la Riva, I. J., Victoriano Sepulveda, P., Frederico Duarte Rocha, C., Ibarguengoytia, N., Aguila Puntriano, C., Massot, M., Lepetz, V., Oksanen, T. A., Chapple, D. G., Bauer, A. M., Branch, W. R., Clobert, J., and Sites Jr, J. W. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899.
Erosion of lizard diversity by climate change and altered thermal niches.CrossRef | 1:CAS:528:DC%2BC3cXlvVeltrY%3D&md5=0a1a4bc7095bb05360074b73c0fbfb11CAS | 20466932PubMed |

Tan, W. C., and Schwanz, L. E. (2015). Thermoregulation across thermal environments in a nocturnal gecko. Journal of Zoology 296, 208–216.
Thermoregulation across thermal environments in a nocturnal gecko.CrossRef |

Telemeco, R. S., Radder, R. S., Baird, T. A., and Shine, R. (2010). Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard. Biological Journal of the Linnean Society 100, 642–655.
Thermal effects on reptile reproduction: adaptation and phenotypic plasticity in a montane lizard.CrossRef |

Visser, M. E., and Both, C. (2005). Shifts in phenology due to global climatic change: the need for a yardstick. Proceedings of the Royal Society B: Biological Sciences 272, 2561–2569.
Shifts in phenology due to global climatic change: the need for a yardstick.CrossRef | 16321776PubMed |

Visser, M. E., Holleman, L. J. M., and Caro, S. P. (2009). Temperature has a causal effect on avian timing of reproduction. Proceedings of the Royal Society B: Biological Sciences 276, 2323–2331.
Temperature has a causal effect on avian timing of reproduction.CrossRef | 19324731PubMed |

Wapstra, E. (2000). Maternal basking opportunity affects juvenile phenotype in a viviparous lizard. Functional Ecology 14, 345–352.
Maternal basking opportunity affects juvenile phenotype in a viviparous lizard.CrossRef |

Wapstra, E., Uller, T., While, G. M., Olsson, M., and Shine, R. (2010). Giving offspring a head start in life: field experimental evidence for selection on maternal basking behaviour in lizards. Journal of Evolutionary Biology 23, 651–657.
Giving offspring a head start in life: field experimental evidence for selection on maternal basking behaviour in lizards.CrossRef | 1:STN:280:DC%2BC3czkvFWktg%3D%3D&md5=43726b614210723e8fe31edd568f0e39CAS | 20074306PubMed |

Warner, D. A., and Shine, R. (2007). Fitness of juvenile lizards depends on seasonal timing of hatching, not offspring body size. Oecologia 154, 65–73.
Fitness of juvenile lizards depends on seasonal timing of hatching, not offspring body size.CrossRef | 17653771PubMed |

Warner, D. A., and Shine, R. (2008). The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451, 566–568.
The adaptive significance of temperature-dependent sex determination in a reptile.CrossRef | 1:CAS:528:DC%2BD1cXhs1ent7c%3D&md5=71be16c15f36efb39b8c3922180be158CAS | 18204437PubMed |

Warner, D. A., and Shine, R. (2009). Maternal and environmental effects on offspring phenotypes in an oviparous lizard: do field data corroborate laboratory data? Oecologia 161, 209–220.
Maternal and environmental effects on offspring phenotypes in an oviparous lizard: do field data corroborate laboratory data?CrossRef | 19452172PubMed |

Warner, D. A., Lovern, M. B., and Shine, R. (2007). Maternal nutrition affects reproductive output and sex allocation in a lizard with environmental sex determination. Proceedings of the Royal Society B: Biological Sciences 274, 883–890.
Maternal nutrition affects reproductive output and sex allocation in a lizard with environmental sex determination.CrossRef | 1:CAS:528:DC%2BD2sXktFOis7c%3D&md5=64c3fdd8fd93c41bdf8606070e0d6ce2CAS | 17251109PubMed |

Watt, M. J., and Joss, J. M. P. (2003). Structure and function of visual displays produced by male jacky dragons, Amphibolurus muricatus, during social interactions. Brain, Behavior and Evolution 61, 172–183.
Structure and function of visual displays produced by male jacky dragons, Amphibolurus muricatus, during social interactions.CrossRef | 12784055PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (1)