10.1071/CH13209_AC © CSIRO 2013 Australian Journal of Chemistry 2013, 66(10), 1235-1245

Supplementary Material (6 Pages)

Preparation and Structures of Group 12 and 14 Element Halide-Carbene Complexes

S. M. Ibrahim Al-Rafia, Paul A. Lummis, Anindya K. Swarnakar, Kelsey C. Deutsch, Michael J. Ferguson, Robert McDonald and Eric Rivard*

Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, Canada T6G 2G2

Content

Table S1. Crystallographic data for $IPr \cdot ZnI_2$		S2
Figure S1. N	Molecular structure of IPr•ZnI ₂	S4
Figure S2.	¹ H NMR spectrum for IPr•Zn(BH ₄) ₂	85
Figure S3.	¹¹ B NMR spectrum for IPr•Zn(BH ₄) ₂	S6

Table S1. Crystallographic Experimental Details for IPr•ZnI₂

A. Crystal Data	
formula	C ₂₇ H ₃₆ I ₂ N ₂ Zn
formula weight	707.75
crystal dimensions (mm)	$0.35 \times 0.25 \times 0.21$
crystal system	monoclinic
space group	$P2_1/n$ (an alternate setting of $P2_1/c$)
unit cell parameters ^a	
a (Å)	10.4644 (3)
<i>b</i> (Å)	17.4461 (5)
<i>c</i> (Å)	16.3027 (5)
β (deg)	98.2614 (4)
V (Å ³)	2945.38 (15)
Ζ	4
$ ho_{ m calcd} (m g cm^{-3})$	1.596
$\mu (\mathrm{mm}^{-1})$	2.946

B. Data Collection and Refinement Conditions

diffractometer radiation (λ [Å]) (0.71073)temperature (°C) scan type data collection 2θ limit (deg) total data collected 18) independent reflections number of observed reflections (*NO*) structure solution method 2008^{c} refinement method 97^d) absorption correction method range of transmission factors data/restraints/parameters goodness-of-fit (S)^e final *R* indices^{*f*} $R_1 [F_0^2 \ge 2\sigma(F_0^2)]$ $wR_2 [F_0^2 \ge -3\sigma(F_0^2)]$ largest difference peak and hole

Bruker D8/APEX II CCD^b graphite-monochromated Mo K α

-100 ω scans (0.4°) (10 s exposures) 55.14 18298 (-13 $\leq h \leq 13$, -22 $\leq k \leq 22$, -21 $\leq l \leq$

6730 ($R_{int} = 0.0150$) 5952 [$F_0^2 \ge 2\sigma(F_0^2)$] Patterson/structure expansion (*DIRDIF*-

full-matrix least-squares on F^2 (SHELXL-

Gaussian integration (face-indexed) 0.5766-0.4271 $6730 [F_0^2 \ge -3\sigma(F_0^2)] / 0 / 289$ $1.019 [F_0^2 \ge -3\sigma(F_0^2)]$

0.0212 0.0505 0.942 and -0.829 e Å⁻³

- *^a*Obtained from least-squares refinement of 9961 reflections with $4.94^{\circ} < 2\theta < 55.12^{\circ}$.
- ^bPrograms for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
- ^cBeurskens, P. T.; Beurskens, G.; de Gelder, R.; Smits, J. M. M; Garcia-Granda, S.; Gould, R. O. (2008). The *DIRDIF-2008* program system. Crystallography Laboratory, Radboud University Nijmegen, The Netherlands.

^dSheldrick, G. M. *Acta Crystallogr.* **2008**, *A64*, 112–122.

 ${}^{eS} = [\Sigma w (F_0{}^2 - F_c{}^2)^2 / (n - p)]^{1/2} (n = \text{number of data; } p = \text{number of parameters}$ varied; $w = [\sigma^2 (F_0{}^2) + (0.0216P)^2 + 1.8973P]^{-1}$ where $P = [\text{Max}(F_0{}^2, 0) + 2F_c{}^2]/3).$

 $f_{R_1} = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; w_{R_2} = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^4)]^{1/2}.$

Figure S2. Thermal ellipsoid plot (30 % probability level) for IPr•ZnI₂. All hydrogen atoms have been omitted for clarity. Selected bond lengths [Å] and angles [°]: Zn-C(1) 2.0026(19), Zn-I(1) 2.5135(3), Zn-I(2) 2.5097(3); I(1)-Zn-I(2) 116.883(10), C(1)-Zn-I(1) 119.36(5), C(1)-Zn-I(2) 123.70(5); N(1)-C(1)-Zn-I(1) torsion angle = $84.45(15)^{\circ}$.

^1H NMR spectrum (in C₆D₆) of compound **7**

