Supplementary Material

Vibrational Properties of the Isotopomers of the Water Dimer Derived from Experiment and Computations

> Robert Kalescky, Wenli Zou, Elfi Kraka,* and Dieter Cremer* Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275-0314, USA.
> *Email: ekraka@gmail.com; dieter.cremer@gmail.com

> > November 15, 2013

Abstract

The water dimer and its eleven deuterated isotopomers are investigated utilizing coupled cluster theory and experimental data as input for a perturbational determination of the isotopomer frequencies. Deuterium substitution reduces the H-bond stretching frequency by maximally 12 cm⁻¹ from 143 to 131 cm⁻¹, which makes a spectroscopic differentiation of H- and D-bonds difficult. Utilizing however the 132 frequencies obtained in this work, the identification of all isotopomers is straightforward. The CCSD(T)/CBS value of the binding energy D_e is 5.00 kcal/mol. The binding energy D₀ of the water dimer increases upon deuterium substitution from 3.28 to maximally 3.71 kcal/mol reflecting a decrease in the zero point energy contribution. The entropy values of the D-isotopomers increase from 73 to 77 entropy units in line with the general observation that a mass increase leads to larger entropies. All 12 isotopomers possess positive free binding energies at 80 K and a reduced pressure of 110 Pa, which means that they can be spectroscopically observed under these conditions.

μ	Characterization of modes ω_{μ} in terms of modes ω^{a}
12	100.0% (H5-O4, H6-O4)
11	93.7% H2-O1, 6.2% H3-O1
10	99.4% (H5-O4, H6-O4)
9	92.5% H3-O1, 5.9% H2-O1
8	91.4% H3-O1-H2
7	94.1% H6-O4-H5
6	42.1% H5-O4-H3-O1, 38.8% O4-H3-O1-H2, 19.2% (H5-O4-H3, H6-O4-H3)
5	43.7% O4-H3-O1, 30.2% (H5-O4-H3, H6-O4-H3), 24.1% H3-O1-H2
4	64.9% O4-H3, 18.0% (H5-O4-H3, H6-O4-H3), 15.2% O4-H3-O1
3	43.6% O4-H3-O1, 33.4% (H5-O4-H3, H6-O4-H3), 17.5% O4-H3
2	41.0% (H5-O4-H3, H6-O4-H3), 30.5% H5-O4-H3-O1, 28.3% O4-H3-O1-H2
1	93.7% O4-H3-O1-H2

Table 1: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the water dimer in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 1: Decomposition of the 12 normal modes of the water dimer **WD** into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 2: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the water dimer **WD**. **a**) Range from 0 to 600 cm⁻¹. **b**) Range from 1400 to 1600 cm⁻¹. **c**) Range from 3500 to 3800 cm⁻¹.

Deuterated Water Dimer ${\bf D2}$

 μ Characterization of modes ω_{μ} in terms of modes ω_{a}

12100.0% (H5-O4, H6-O4) 99.2% (H5-O4, H6-O4) 11 1097.9% H3-O1 9 99.8% H2-O1 8 97.9% H6-O4-H5 795.0% H3-O1-H2 42.6% H5-O4-H3-O1, 38.1% O4-H3-O1-H2, 19.4% (H5-O4-H3, H6-O4-H3) 6 542.2% (H5-O4-H3, H6-O4-H3), 28.2% O4-H3-O1, 26.5% H3-O1-H2 4 79.2% O4-H3, 10.4% O4-H3-O1 3 49.7% O4-H3-O1, 34.8% (H5-O4-H3, H6-O4-H3), 8.7% O4-H3, 5.3% H3-O1-H2 $\mathbf{2}$ 41.8% (H5-O4-H3, H6-O4-H3), 31.1% H5-O4-H3-O1, 27.0% O4-H3-O1-H2 1 98.9% O4-H3-O1-H2

Table 2: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D2** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 3: Decomposition of the 12 normal modes of the deuterated water dimer D2 into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 4: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D2**. **a**) Range from 0 to 600 cm⁻¹. **b**) Range from 1200 to 1600 cm⁻¹. **c**) Range from 2700 to 2710 cm⁻¹. **d**) Range from 3500 to 3800 cm⁻¹.

Deuterated Water Dimer ${\bf D3}$

- μ Characterization of modes ω_{μ} in terms of modes ω_{a}
- 12 100.0% (H5-O4, H6-O4)
- 11 99.9% H2-O1
- $10 \quad 100.0\% \text{ (H5-O4, H6-O4)}$
- 9 98.9% H3-O1
- 8 97.9% H6-O4-H5
- 7 97.4% H3-O1-H2
- 6 35.4% H5-O4-H3-O1, 32.4% (H5-O4-H3, H6-O4-H3), 32.2% O4-H3-O1-H2
- 5 45.8% (H5-O4-H3, H6-O4-H3), 34.7% O4-H3-O1, 17.0% H3-O1-H2
- 4 74.5% O4-H3, 12.2% O4-H3-O1, 11.8% (H5-O4-H3, H6-O4-H3)
- 3 49.2% O4-H3-O1, 33.6% (H5-O4-H3, H6-O4-H3), 11.4% O4-H3
- 2 39.6% (H5-O4-H3, H6-O4-H3), 32.4% H5-O4-H3-O1, 27.8% O4-H3-O1-H2
- 1 97.1% O4-H3-O1-H2

Table 3: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D3** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 5: Decomposition of the 12 normal modes of the deuterated water dimer D3 into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 6: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D3**. **a**) Range from 0 to 450 cm⁻¹. **b**) Range from 1250 to 1600 cm^{-1} . **c**) Range from 2610 to 2630 cm^{-1} . **d**) Range from 3650 to 3750 cm⁻¹.

Deuterated Water Dimer ${\bf D5}$

 μ Characterization of modes ω_{μ} in terms of modes ω_{a}

```
93.6% H2-O1, 6.2% H3-O1
12
    99.5% H6-O4
11
10
    92.9% H3-O1, 6.0% H2-O1
9
    99.7% H5-O4
8
    96.1% H3-O1-H2
7
    98.2% H6-O4-H5
    43.5% H5-O4-H3-O1, 40.4% O4-H3-O1-H2, 9.6% H6-O4-H3, 6.2% H5-O4-H3
\mathbf{6}
5
    49.7% O4-H3-O1, 24.5% H3-O1-H2, 14.2% H6-O4-H3, 9.1% H5-O4-H3
4
    72.6% O4-H3, 10.4% O4-H3-O1, 10.3% H6-O4-H3
3
    38.7% H6-O4-H3, 25.2% O4-H3-O1, 12.2% H5-O4-H3-O1, 12.0% O4-H3-O1-H2, 8.7% O4-H3
2
    67.2% O4-H3-O1-H2, 16.1% H5-O4-H3, 9.8% H5-O4-H3-O1
    39.7% H5-O4-H3, 27.4% H5-O4-H3-O1, 17.6% O4-H3-O1-H2, 8.6% O4-H3-O1
1
```

Table 4: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D5** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 7: Decomposition of the 12 normal modes of the deuterated water dimer D5 into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 8: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D5**. **a**) Range from 0 to 600 cm⁻¹. **b**) Range from 1350 to 1650 cm⁻¹. **c**) Range from 2600 to 2690 cm⁻¹. **d**) Range from 3580 to 3740 cm⁻¹.

Characterization of modes ω_{μ} in terms of modes ω_{a} μ 100.0% (H5-O4, H6-O4) 12100.0% (H5-O4, H6-O4) 11 83.8% H2-O1, 16.0% H3-O1 109 83.1% H3-O1, 16.0% H2-O1 8 97.9% H6-O4-H5 796.8% H3-O1-H2 35.8% H5-O4-H3-O1, 32.6% (H5-O4-H3, H6-O4-H3), 31.5% O4-H3-O1-H2 6 554.6% (H5-O4-H3, H6-O4-H3), 22.1% O4-H3-O1, 19.4% H3-O1-H2 4 86.3% O4-H3, 7.4% O4-H3-O1

- 3 53.9% O4-H3-O1, 33.8% (H5-O4-H3, H6-O4-H3), 5.5% H3-O1-H2, 5.3% O4-H3
- 2 40.0% (H5-O4-H3, H6-O4-H3), 32.7% H5-O4-H3-O1, 27.3% O4-H3-O1-H2
- 1 94.9% O4-H3-O1-H2

Table 5: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D2D3** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 9: Decomposition of the 12 normal modes of the deuterated water dimer **D2D3** into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 10: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D2D3**. **a**) Range from 50 to 450 cm⁻¹. **b**) Range from 1030 to 1600 cm⁻¹. **c**) Range from 2600 to 2740 cm⁻¹. **d**) Range from 3650 to 3750 cm⁻¹.

μ Ch	aracterization	of	modes	ω_{μ}	in	terms	of	modes	ω_a
----------	----------------	----	-------	----------------	----	------------------------	----	-------	------------

12	99.7% H6-O4
11	98.7% H3-O1
10	99.8% H2-O1
9	99.7% H5-O4
8	94.5% H3-O1-H2
7	97.7% H6-O4-H5
6	44.0% H5-O4-H3-O1, 39.9% O4-H3-O1-H2, 9.6% H6-O4-H3, 6.4% H5-O4-H3
5	34.9% O4-H3-O1, 27.6% H3-O1-H2, 21.5% H6-O4-H3, 12.3% H5-O4-H3
4	82.6% O4-H3, 8.2% O4-H3-O1
3	39.4% H6-O4-H3, 26.4% O4-H3-O1, 13.5% H5-O4-H3-O1, 12.9% O4-H3-O1-H2
2	38.3% H5-O4-H3, 24.6% H5-O4-H3-O1, 21.3% O4-H3-O1-H2, 10.0% O4-H3-O1
1	95.2% O4-H3-O1-H2

Table 6: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D2D5** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 11: Decomposition of the 12 normal modes of the deuterated water dimer **D2D5** into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 12: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D2D5**. **a**) Range from 0 to 600 cm⁻¹. **b**) Range from 1280 to 1460 cm⁻¹. **c**) Range from 2670 to 2710 cm⁻¹. **d**) Range from 3585 to 3720 cm⁻¹.

 μ Characterization of modes ω_{μ} in terms of modes ω_{a}

```
99.8% H2-O1
12
    99.7% H6-O4
11
10
    99.6% H5-O4
    98.8% H3-O1
9
8
    97.0% H6-O4-H5
7
    95.9% H3-O1-H2
    38.4% H5-O4-H3-O1, 35.0% O4-H3-O1-H2, 17.7% H6-O4-H3, 8.3% H5-O4-H3
\mathbf{6}
    42.7% O4-H3-O1, 20.2% H6-O4-H3, 17.9% H3-O1-H2, 15.1% H5-O4-H3
5
4
    79.1% O4-H3, 9.2% O4-H3-O1, 6.5% H6-O4-H3
3
    37.7% H6-O4-H3, 29.5% O4-H3-O1, 12.0% H5-O4-H3-O1, 11.1% O4-H3-O1-H2, 6.1% O4-H3
    88.9% O4-H3-O1-H2
2
```

1 36.6% H5-O4-H3, 27.3% H5-O4-H3-O1, 21.4% O4-H3-O1-H2, 8.1% O4-H3-O1

Table 7: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D3D5** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 13: Decomposition of the 12 normal modes of the deuterated water dimer **D3D5** into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 14: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D3D5**. **a**) Range from 0 to 400 cm⁻¹. **b**) Range from 1290 to 1410 cm⁻¹. **c**) Range from 2610 to 2700 cm⁻¹. **d**) Range from 3670 to 3730 cm⁻¹.

Characterization of modes ω_{μ} in terms of modes ω_{a} μ 1293.8% H2-O1, 6.1% H3-O1 93.0% H3-O1, 6.0% H2-O1 11 10100.0% (H5-O4, H6-O4) 9 100.0% (H5-O4, H6-O4) 8 96.1% H3-O1-H2 7 98.6% H6-O4-H5 44.9% H5-O4-H3-O1, 42.2% O4-H3-O1-H2, 12.8% (H5-O4-H3, H6-O4-H3) $\mathbf{6}$ 56.8% O4-H3-O1, 25.1% H3-O1-H2, 16.8% (H5-O4-H3, H6-O4-H3) 54 82.6% O4-H3, 10.4% (H5-O4-H3, H6-O4-H3), 5.7% O4-H3-O1 3 44.3% O4-H3-O1, 43.2% (H5-O4-H3, H6-O4-H3), 7.4% O4-H3 $\mathbf{2}$ 86.1% O4-H3-O1-H2 43.6% (H5-O4-H3, H6-O4-H3), 31.0% H5-O4-H3-O1, 25.2% O4-H3-O1-H2 1

Table 8: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D5D6** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 15: Decomposition of the 12 normal modes of the deuterated water dimer **D5D6** into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 16: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D5D6**. **a**) Range from 0 to 600 cm⁻¹. **b**) Range from 1110to 1690 cm⁻¹. **c**) Range from 2620to 2760 cm⁻¹. **d**) Range from 3580 to 3740 cm⁻¹.

 μ Characterization of modes ω_{μ} in terms of modes ω_{a}

```
99.8% H6-O4
12
    83.7% H2-O1, 16.0% H3-O1
11
10
    99.5% H5-O4
9
    83.1% H3-O1, 16.0% H2-O1
8
    98.2% H6-O4-H5
7
    96.8% H3-O1-H2
    38.8% H5-O4-H3-O1, 34.5% O4-H3-O1-H2, 17.6% H6-O4-H3, 8.6% H5-O4-H3
6
5
    29.2% O4-H3-O1, 26.4% H6-O4-H3, 20.7% H3-O1-H2, 17.7% H5-O4-H3
4
    87.4% O4-H3, 6.7% O4-H3-O1
    37.8% H6-O4-H3, 29.4% O4-H3-O1, 13.7% H5-O4-H3-O1, 12.6% O4-H3-O1-H2
3
2
    37.0% H5-O4-H3, 25.7% H5-O4-H3-O1, 21.4% O4-H3-O1-H2, 10.2% O4-H3-O1
1
    95.9% O4-H3-O1-H2
```

Table 9: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D2D3D5** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 17: Decomposition of the 12 normal modes of the deuterated water dimer **D2D3D5** into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 18: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D2D3D5**. **a**) Range from 0 to 400 cm⁻¹. **b**) Range from 1050 to 1450 cm⁻¹. **c**) Range from 2610 to 2740 cm⁻¹. **d**) Range from 3670 to 3710 cm⁻¹.

Deuterated Water Dimer $\mathbf{D2D5D6}$

- μ Characterization of modes ω_{μ} in terms of modes ω_{a}
- 98.8% H3-O1 12100.0% (H5-O4, H6-O4) 11 1099.8% H2-O1 9 100.0% (H5-O4, H6-O4) 8 95.1% H3-O1-H2 798.6% H6-O4-H5 45.3% H5-O4-H3-O1, 41.8% O4-H3-O1-H2, 13.0% (H5-O4-H3, H6-O4-H3) $\mathbf{6}$ 44.0% O4-H3-O1, 29.3% H3-O1-H2, 24.6% (H5-O4-H3, H6-O4-H3) 5486.7% O4-H3, 5.9% O4-H3-O1 3 47.0% O4-H3-O1, 42.4% (H5-O4-H3, H6-O4-H3) $\mathbf{2}$ 42.6% (H5-O4-H3, H6-O4-H3), 30.0% H5-O4-H3-O1, 27.3% O4-H3-O1-H2 97.8% O4-H3-O1-H2 1

Table 10: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D2D5D6** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 19: Decomposition of the 12 normal modes of the deuterated water dimer **D2D5D6** into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 20: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D2D5D6**. **a**) Range from 0 to 600 cm⁻¹. **b**) Range from 1160to 1440 cm⁻¹. **c**) Range from 2620 to 2760 cm⁻¹. **d**) Range from 3596 to 3612 cm⁻¹.

- μ Characterization of modes ω_{μ} in terms of modes ω_{a}
- 99.9% H2-O1 12100.0% (H5-O4, H6-O4) 11 95.2% (H5-O4, H6-O4) 109 94.1% H3-O1 8 97.4% H3-O1-H2 798.6% H6-O4-H5 42.0% H5-O4-H3-O1, 39.0% O4-H3-O1-H2, 19.0% (H5-O4-H3, H6-O4-H3) $\mathbf{6}$ 52.8% O4-H3-O1, 26.4% (H5-O4-H3, H6-O4-H3), 19.3% H3-O1-H2 54 84.6% O4-H3, 6.0% O4-H3-O1 3 98.1% O4-H3-O1-H2 247.1% O4-H3-O1, 41.6% (H5-O4-H3, H6-O4-H3), 6.1% O4-H3 41.6% (H5-O4-H3, H6-O4-H3), 31.1% H5-O4-H3-O1, 27.1% O4-H3-O1-H2 1

Table 11: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **D3D5D6** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 21: Decomposition of the 12 normal modes of the deuterated water dimer **D3D5D6** into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 22: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **D3D5D6**. **a**) Range from 0 to 400 cm⁻¹. **b**) Range from 1150 to 1400 cm⁻¹. **c**) Range from 2600 to 2760 cm⁻¹. **d**) Range from 3705 to 3730 cm⁻¹.

Deuterated Water Dimer All ${\bf D}$

μ	Characterization of modes ω_{μ} in terms of modes ω_{a}
12	100.0% (H5-O4, H6-O4)
11	83.8% H2-O1, 16.0% H3-O1
10	99.2% (H5-O4, H6-O4)
9	82.7% H3-O1, 15.8% H2-O1
8	95.2% H3-O1-H2
7	97.2% H6-O4-H5
6	42.3% H5-O4-H3-O1, 38.5% O4-H3-O1-H2, 19.2% (H5-O4-H3, H6-O4-H3)
5	39.5% O4-H3-O1, 34.2% (H5-O4-H3, H6-O4-H3), 23.1% H3-O1-H2
4	88.6% O4-H3, 5.8% O4-H3-O1
3	49.5% O4-H3-O1, 40.6% (H5-O4-H3, H6-O4-H3)
2	41.8% (H5-O4-H3, H6-O4-H3), 31.1% H5-O4-H3-O1, 27.0% O4-H3-O1-H2
1	98.3% O4-H3-O1-H2

Table 12: Characterization of the normal modes $\omega_{\mu}(\text{Exp.})$ of the deuterated water dimer **All D** in terms of the local mode contributions $\omega_a(\text{Exp.})$. Only local mode contributions larger than 5.0% are given.

Figure 23: Decomposition of the 12 normal modes of the deuterated water dimer **All D** into local modes. Contributions are given in % and are color-coded for the local modes (identified via the internal coordinate driving a local mode and given on the right).

Figure 24: Adiabatic connection scheme relating local mode frequencies (left) to the measured normal mode frequencies (right) of the deuterated water dimer **All D**. **a**) Range from 0 to 400 cm⁻¹. **b**) Range from 1060 to 1180 cm⁻¹. **c**) Range from 2600 to 2760 cm⁻¹.