Supplementary Material for

Synthesis of Bulky Aryl Group-Substituted Chiral Bis(guanidino)iminophosphoranes as Uncharged Chiral Organosuperbase Catalysts

Tadahiro Takeda, ${ }^{\ddagger}$ and Masahiro Terada*, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry and Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
${ }^{\dagger}$ Process Technology Research Laboratories, Daiichi Sankyo Co., Ltd., Edogawa-ku, Tokyo 134-8630, Japan

General Information

Unless otherwise noted, the reactions were carried out with dried glassware under an atmosphere of standard grade nitrogen gas. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL ECS-400 $(400 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from the solvent resonance or tetramethylsilane (TMS) as the internal standard ($\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}$, DMSO: 2.50 ppm , TMS: 0.00 ppm). Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad peak), and coupling constants (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECS-400 $(101 \mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl_{3} : 77.0 ppm , DMSO: $39.5 \mathrm{ppm}) .{ }^{31} \mathrm{P}$ NMR spectra were recorded on a JEOL ECS-400 (162 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the $(\mathrm{PhO})_{3} \mathrm{PO}(-17.8 \mathrm{ppm})$ resonance as the external standard. Infrared spectra were recorded on a JASCO FT/IR-6300 type A spectrometer. High resolution mass spectra analysis was performed on a Waters XEVO QTOF MS and JEOL JMS-T100GC. Optical rotations were measured on a Rudolph Research Analytical Autopol V Plus. HPLC was performed on SHIMADZU HPLC systems LC-20A. Silica gel flash column chromatography was performed on BIOTAGE Isolera LS system (SNAP cartridge HP-sil). Reverse phase gel flash column chromatography was performed on BIOTAGE Isolera LS system (SNAP cartridge KP-C18-HS). Silica gel preparative thin layer chromatography was performed on Merck PLC silica gel $60 \mathrm{~F}_{254}$. X-ray crystallographic analysis was performed on a RIGAKU R-AXIS RAPID.

Materials

Unless otherwise noted, materials were purchased from Wako Pure Chemical Industries, Ltd., Tokyo Chemical Industry Co., LTD., Kanto Chemical Co., Inc., Aldrich Inc., and other commercial suppliers and were used without purification. Toluene was used a dehydrated grade purchased from Kanto Chemical Co., Inc. for asymmetric amination reactions.

1tert-Butyl [(1S,2S)-2-amino-1,2-bis(2,4,6-trimethylphenyl)ethyl]carbamate (4b)

To a solution of (1S,2S)-1,2-bis(2,4,6-trimethylphenyl)ethane-1,2-diamine (3b) (2.0 g, 6.75 mmol$)$ in MeOH (24 mL) was added 47% HBr aq. $(0.79 \mathrm{~mL}, 6.75 \mathrm{mmol})$ at rt , and then $\mathrm{H}_{2} \mathrm{O}(2.8 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(1.62 \mathrm{~g}, 7.42 \mathrm{mmol})$ was added. After stirring for $12 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ $(21.2 \mathrm{~mL})$ was added to the mixture and then the mixture was basified with $25 \% \mathrm{NaOH}$ aq. until over pH 14 . The mixture was extracted with toluene $(20 \mathrm{~mL} \times 3)$, and the combined organic layer was washed with $20 \% \mathrm{NaCl}$ aq. and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The^{2} solvent was removed, and the residue was purified by silica gel column chromatography (SNAP cartridge HP-sil 50 g, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=100 / 0$ to $\left.0 / 100\right)$ to give $\mathbf{4 b}\left(1.82 \mathrm{~g}, 68 \%\right.$ yield) as colorless powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 400 \mathrm{MHz}, 100{ }^{\circ} \mathrm{C}\right) \delta$ $1.33(9 \mathrm{H}, \mathrm{s}), 1.98-2.15(19 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}), 5.09-5.13(1 \mathrm{H}, \mathrm{m}), 6.61-6.65(4 \mathrm{H}, \mathrm{br} \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 101\right.$ $\mathrm{MHz}, 100^{\circ} \mathrm{C}$) $\delta 19.5-19.7$ (br m), 27.8, 51.8, 53.3, 77.4, 129.0 (br), 134.3, 134.5, 135.5-135.6 (br m), 137.3, 154.7. IR (KBr) 3385, $3336,3006,2975,2922,2868,2732,1696,1611,1576,1481,1458,1390,1365,1301,1246,1172,1114,1072,1044,1032,1012$, $873,851,774,752,735,681,621,610,589,572,541,444 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}: 397.2855$. found: 397.2860 .

tert-Butyl [(1S,2S)-2-amino-1,2-bis(1-naphthyl)ethyl]carbamate (4c)

To a solution of (1S,2S)-1,2-bis(1-naphthyl)ethane-1,2-diamine (3c) (3.19 g, 10.2 mmol) in $\mathrm{MeOH}(57 \mathrm{~mL})$ and THF (57 mL) was added $47 \% \mathrm{HBr}$ aq. $(1.19 \mathrm{~mL}, 10.2 \mathrm{mmol})$ at rt , and then $\mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(2.45 \mathrm{~g}, 11.2 \mathrm{mmol})$ was added, and the mixture was refluxed for 12 h . Additional $\mathrm{Boc}_{2} \mathrm{O}(0.60 \mathrm{~g}, 2.3 \mathrm{mmol})$ was added, and the mixture was refluxed for 12 h . $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added to the mixture and then the mixture was basified with $25 \% \mathrm{NaOH}$ aq. until over pH 14 . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL} \times 3)$, and the combined organic layer was washed with $20 \% \mathrm{NaCl}$ aq. and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed, and the residue was purified by silica gel column chromatography (SNAP cartridge HP -sil $50 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100 / 0$ to $95 / 5)$ to give $4 \mathbf{c}\left(2.61 \mathrm{~g}, 61 \%\right.$ yield) as colorless powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 60^{\circ} \mathrm{C}\right) \delta 1.31-1.44(12 \mathrm{H}, \mathrm{br} \mathrm{m}), 5.18(1 \mathrm{H}, \mathrm{br}$ s), $5.82\left(1 \mathrm{H}\right.$, br s), $6.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.44-7.87(12 \mathrm{H}, \mathrm{m}), 8.19-8.24(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}, 60{ }^{\circ} \mathrm{C}\right) \delta 28.2,28.3,53.1$, $54.3,54.3,54.3,79.3,122.8,123.2,123.6,124.1,125.3,125.5,125.7,126.2,126.2,127.9,128.1,129.0,129.2,130.9,130.9,131.1$, 134.2, 134.3, 138.2, 138.6, 155.6. IR (KBr) 3384, 3328, 3050, 3004, 2975, 2929, 2868, 1716, 1596, 1579, 1512, 1479, 1392, 1366, $1335,1306,1240,1164,1093,1072,1048,1031,1024,1000,970,951,925,906,893,870,860,846,799,781,734,688,651,627$, $569,558,533,520,504,495,432 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}: 413.2229$. found: 413.2239.
(1S,2S)-2-(2-imino-3-methylimidazolidin-1-yl)-1,2-bis(2,4,6-trimethylphenyl)ethanamine dihydrobromide (6b)

A solution of monoBoc-diamine $\mathbf{4 b}(1.5 \mathrm{~g}, 3.8 \mathrm{mmol})$ and cyanamide $\mathbf{5}(0.8 \mathrm{~g}, 4.9 \mathrm{mmol})$ in $\mathrm{EtOH}(4.5 \mathrm{~mL})$ was refluxed for 6 days.

After cooling to $50{ }^{\circ} \mathrm{C}, 47 \% \mathrm{HBr}$ aq. ($1.1 \mathrm{~mL}, 9.1 \mathrm{mmol}$) was added to the mixture. The mixture was stirred for 12 h at the same temperature. EtOH and $\mathrm{H}_{2} \mathrm{O}$ in the mixture were removed azeotropically with $\mathrm{CH}_{3} \mathrm{CN}$, and the residue was purified by silica gel column chromatography (SNAP cartridge HP-sil $50 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100 / 0$ to $90 / 10$) to give $\mathbf{6 b}(1.84 \mathrm{~g}, 90 \%$ yield) as colorless powder. The crude 11d was suspended in $\mathrm{CH}_{3} \mathrm{CN}(130 \mathrm{~mL})$ at rt , and the precipitate was collected by filtration and dried in vacuo $(8.8 \mathrm{~g}, 92 \%)$ as colorless powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.86(3 \mathrm{H}, \mathrm{s}), 2.16(3 \mathrm{H}, \mathrm{s}), 2.19(3 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s}), 2.47(3 \mathrm{H}, \mathrm{s})$, $2.58(3 \mathrm{H}, \mathrm{s}), 3.01-3.02(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.20(3 \mathrm{H}, \mathrm{s}), 3.43(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.09-4.17(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 5.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.15-6.17(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 6.56(2 \mathrm{H}$, s), $6.87(1 \mathrm{H}, \mathrm{s}), 6.89(1 \mathrm{H}, \mathrm{s}), 8.50(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.87(3 \mathrm{H}, \mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 20.6,20.8,21.3,21.9,22,34.3,42.4$, $47.7,55.1,58.7,126.9,127.1,130.4,130.7,131.3,131.9,136.3,137,138.7,138.8,139.3,156.7$. IR (KBr) $3327,3261,3096,3008$, $2965,2919,2582,1998,1664,1609,1560,1482,1461,1426,1379,1309,1270,1214,1164,1144,1103,1055,1032,1000,951,852$, 804, 701, 691, 663, 631, 610, 588, 560, 521, 510, 492, 430, $420 \mathrm{~m}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{4}: 379.2862$. found: 379.2866 .

(1S,2S)-2-(2-imino-3-methylimidazolidin-1-yl)-1,2-bis(1-naphthyl)ethanamine dihydrobromide (6c)

A solution of monoBoc-diamine $\mathbf{4 c}(2.4 \mathrm{~g}, 5.8 \mathrm{mmol})$ and cyanamide $\mathbf{5}(1.23 \mathrm{~g}, 7.56 \mathrm{mmol})$ in EtOH (7.2 mL) was refluxed for 3 days. Additional cyanamide $\mathbf{5}(0.28 \mathrm{~g}, 1.74 \mathrm{mmol})$ was added, and the mixture was refluxed for $\mathbf{4}$ days. Additional cyanamide $\mathbf{5}$ $(0.28 \mathrm{~g}, 1.74 \mathrm{mmol})$ was added again, and the mixture was refluxed for 3 days. After cooling to $50^{\circ} \mathrm{C}, 47 \% \mathrm{HBr}$ aq. $(1.6 \mathrm{~mL}, 13.9$ mmol) was added to the mixture. The mixture was stirred for 12 h at the same temperature. Additional $47 \% \mathrm{HBr}$ aq. (1.6 mL , 13.9 mmol) was added to the mixture and the mixture was stirred for 12 h at the same temperature. EtOH and $\mathrm{H}_{2} \mathrm{O}$ in the mixture were removed azeotropically with $\mathrm{CH}_{3} \mathrm{CN}$, and the residue was purified by crystallization from $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and dried in vacuo $(2.41 \mathrm{~g}, 75 \%)$ as colorless powder. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 400 \mathrm{MHz}\right) \delta 2.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=10.0 \mathrm{~Hz}), 2.98(3 \mathrm{H}, \mathrm{s}), 3.42(3 \mathrm{H}, \mathrm{s}), 3.47$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}), 3.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=10.0 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.4 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6$ Hz), $7.29\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}\right.$), 7.48-7.92 ($9 \mathrm{H}, \mathrm{m}$), 8.32-8.39 ($2 \mathrm{H}, \mathrm{m}$), 8.97-9.07 ($6 \mathrm{H}, \mathrm{m}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-D ${ }_{6}, 101 \mathrm{MHz}$) $\delta 32.9$, $40.1,41.8,47.5,48.7,55.5,122.2,123.9,124.3,125.0,126.3,127.0,127.5,127.9,128.7,129.2,129.5,129.7,130.3,131.0,133.2$, 133.5, 158.0. IR (KBr) 3421, 3337, 3229, 3097, 3013, 2995, 2969, 2927, 2893, 2874, 2627, 2611, 2552, 1952, 1670, 1609, 1593, $1571,1548,1514,1495,1463,1444,1423,1401,1374,1363,1350,1309,1275,1255,1245,1210,1170,1144,1119,1097,1058$, 1038, $978,955,866,803,793,777,740,694,640,632,600,571,558,537,513,477,437 \mathrm{~m}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{4}$: 395.2236. found: 395.2235 .
(4S,4'S,5S,5'S)-9,9'-dimethyl-4,4',5,5'-tetraphenyl-4,4',5,7',8,8',9,9'-octahydro-3H,5'H,7H-2,2'-spirobi[imidazo[2,1-d] [1,3,5,2]triazaphosphepine] hydrobromide $((M)-\mathbf{1 a} \cdot \mathrm{HBr}$ and $(P)-\mathbf{1 a} \cdot \mathrm{HBr})$

To a suspension of aminoguanidine hydrobromide $\mathbf{6 a}(5.0 \mathrm{~g}, 11.0 \mathrm{mmol})$ in sulforane (300 mL) was added 1 M solution of $\operatorname{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in THF $(46.0 \mathrm{~mL}, 46.0 \mathrm{mmol})$ at rt , and then a solution of $\mathrm{PCl}_{5}(1.25 \mathrm{~g}, 6.0 \mathrm{mmol})$ and DMAP $(0.73 \mathrm{~g}, 6.0 \mathrm{mmol})$ in sulforane (45 mL) was added to the solution at rt. After stirring for 1 h , the reaction was quenched with $10 \% \mathrm{NH}_{4} \mathrm{Br}$ aq. (300 mL),
and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic layer was washed with NaBr aq. and water several times to remove sulforane, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the residue was purified by silica gel column chromatography (SNAP cartridge HP-sil $100 \mathrm{~g}, \mathrm{EtOAc} / \mathrm{MeOH}=90 / 10$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=90 / 10$) to separate $(M)-\mathbf{1 a} \cdot \mathrm{HBr}$ and $(P) \mathbf{- 1} \mathbf{a} \cdot \mathrm{HBr}$. Crude $(M) \mathbf{- 1} \mathbf{a} \cdot \mathrm{HBr}$ was further purified by crystallization from toluene $(6 \mathrm{~mL})$ at rt to give $(M) \mathbf{- 1 a} \cdot \mathrm{HBr}$ mono-toluene solvate $(0.60 \mathrm{~g}, 14 \%$ yield from a half amount of $\mathbf{6 a})$. Crude $(P) \mathbf{- 1 a} \cdot \mathrm{HBr}$ was further purified by silica gel column chromatography (SNAP cartridge HP -sil $50 \mathrm{~g}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=90 / 10$) and crystallization from THF $(3 \mathrm{~mL})$ to give $(P)-\mathbf{1 a} \cdot \mathrm{HBr}(0.16 \mathrm{~g}, 4 \%$ yield from a half amount of $\mathbf{6 a}$).
(M)-1a $\cdot \mathrm{HBr}:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.35(3 \mathrm{H}, \mathrm{s}), 2.82(6 \mathrm{H}, \mathrm{s}), 2.97-3.04(2 \mathrm{H}, \mathrm{m}), 3.26-3.45(6 \mathrm{H}, \mathrm{m}), 4.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.5$ $\mathrm{Hz})$, 4.96-5.05 ($2 \mathrm{H}, \mathrm{m}$), $6.14(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}), 6.91-6.94(4 \mathrm{H}, \mathrm{m}), 7.12-7.28(21 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 21.4,32.2$, $45.3,45.7,58.4,58.5,71.7,125.2,127.3,127.6,127.6,127.8,128.1,128.4,128.4,128.9,137.7,138.8,139.5,139.6,158.7,158.8$. ${ }^{31} \mathrm{P}$-NMR ($\left.\mathrm{CDCl}_{3}, 202 \mathrm{MHz}\right) \delta 19.7$.

The single crystal of $(M) \mathbf{- 1 a} \cdot \mathrm{HBr}$ for X-ray crystallographic analysis was obtained by recrystallization from toluene as toluene solvate.

(P)-1a•HBr: mp $298{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.02(6 \mathrm{H}, \mathrm{s}), 3.11(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.8 \mathrm{~Hz}), 3.26-3.51(6 \mathrm{H}, \mathrm{m})$, 4.18-4.20 ($2 \mathrm{H}, \mathrm{m}$), 4.90-4.99 ($4 \mathrm{H}, \mathrm{m}$), 6.97-7.04 ($10 \mathrm{H}, \mathrm{m}$), 7.18-7.25 ($6 \mathrm{H}, \mathrm{m}$), 7.33-7.35 ($4 \mathrm{H}, \mathrm{m}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta$ $33.0,46.4,46.5,60.2,67.4,127.4,127.5,127.6,128.1,128.3,128.6,136.4,140.6,140.6,158.2,158.3 .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 162\right.$ $\mathrm{MHz}) \delta 9.5$. IR (KBr) 3369, 3331, 3134, 3088, 3059, 3030, 2932, 2870, 2790, 1727, 1642, 1591, 1579, 1519, 1484, 1455, 1407, $1358,1336,1277,1234,1210,1184,1155,1081,1038,999,988,958,941,919,904,845,834,809,789,775,755,739,716,704$, $695,665,649,600,590,556,540,521,512,503,432,419,413 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{P}: 615.3114$. found: 615.3123. $[\alpha]_{\mathrm{D}}{ }^{25} 7.9\left(c 1.01, \mathrm{CHCl}_{3}\right)$.
 of the reaction mixture diluted with $\mathrm{AcOH} / \mathrm{CH}_{3} \mathrm{CN}=3 / 97$, Waters XSELECT HSS C18 $2.5 \mu \mathrm{~m} 2.1 \times 50 \mathrm{~mm}, \mathrm{CH}_{3} \mathrm{CN} / 0.1 \% \mathrm{TFA}$ aq. $=25 / 75$ to $95 / 5$ linear gradient over $6 \mathrm{~min}, 0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, 220 \mathrm{~nm}, 3.6 \mathrm{~min}[(M)-\mathbf{1 a}], 3.9 \mathrm{~min}[(P)-\mathbf{1 a}]$.

The single crystal of $(P) \mathbf{- 1 a} \cdot \mathrm{HBr}$ for X-ray crystallographic analysis was obtained by recrystallization from 2-PrOH and n-hexane.

($4 \mathrm{~S}, 4^{\prime} \mathrm{S}, 5 \mathrm{5S}, 55^{\prime} \mathrm{S}$)-9,9'-dimethyl-4,4',5,5'-tetrakis(2,4,6-trimethylphenyl)-4,4',5,7',8,8',9,9'-octahydro-3H,5'H,7H-2,2'-spi robi[imidazo[2,1-d][1,3,5,2]triazaphosphepine] hydrobromide (1b-HBr)

1b $\cdot \mathrm{HBr}$
Bis(guanidine)iminophosphorane hydrobromide $\mathbf{1 b} \cdot \mathrm{HBr}$ was synthesized from aminoguanidine hydrobromide $\mathbf{6 b}(1.5 \mathrm{~g}, 2.78 \mathrm{mmol})$ with the same procedure as $\mathbf{1 a} \cdot \mathrm{HBr}$. Crude $\mathbf{1 b} \cdot \mathrm{HBr}$ was purified by reverse phase gel column chromatography (SNAP cartridge $\mathrm{KP}-\mathrm{C} 1860 \mathrm{~g}, \mathrm{CH}_{3} \mathrm{CN} / 1 \% \mathrm{NH}_{4} \mathrm{Br}$ aq. $=50 / 50$ to $95 / 5$) and silica gel column chromatography (SNAP cartridge HP-sil 50 g , $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=95 / 5\right)$ to separate each diastereomer. Separated each isomer of $\mathbf{1 b} \cdot \mathrm{HBr}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ respectively and the solutions were washed with $10 \% \mathrm{NH}_{4} \mathrm{Br}$ aq. $(5 \mathrm{~mL})$. The respective solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvents were removed to give major isomer of $\mathbf{1 b} \cdot \mathrm{HBr}(77 \mathrm{mg}, 6 \%$ yield from a half amount of $\mathbf{6 b})$ and minor isomer of $\mathbf{1 b} \cdot \mathrm{HBr}(58$ $\mathrm{mg}, 5 \%$ yield from a half amount of $\mathbf{6 b}$) respectively.
Major isomer of $\mathbf{1 b} \cdot \mathrm{HBr}: \mathrm{mp} 238^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.70(6 \mathrm{H}, \mathrm{s}), 1.76(6 \mathrm{H}, \mathrm{s}), 2.15-2.17(12 \mathrm{H}, \mathrm{m}), 2.57$ $(6 \mathrm{H}, \mathrm{s}), 2.79(6 \mathrm{H}, \mathrm{s}), 2.87(6 \mathrm{H}, \mathrm{s}), 2.94-2.98(2 \mathrm{H}, \mathrm{m}), 3.31-3.52(6 \mathrm{H}, \mathrm{m}), 4.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}), 5.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz})$, 5.67-5.74 (2H, m), 6.49-6.51 (4H, m), $6.78(2 \mathrm{H}, \mathrm{s}), 6.85(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 20.1,20.3,20.6,20.6,21.5,22.0$, 32.4, 45.1, 45.7, 49.2, 62.5, 129.0, 129.5, 130.0, 131.0, 131.5, 132.3, 132.3, 136.4, 136.7, 137.4, 138.4, 157.7, 157.9. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta 16.4$. IR (KBr) 3412, 3160, 3003, 2953, 2920, 2871, 2733, 1724, 1610, 1565, 1513, 1480, 1452, 1397, 1338, $1325,1273,1228,1210,1169,1137,1064,1021,956,910,851,797,743,732,707,659,638,618,608,599,586,568,556,446,406$ cm^{-1}. HRMS (ESI): calcd. for $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{P}$: 783.4992. found: 783.5000. $[\alpha]_{\mathrm{D}}{ }^{25}-317.4$ (c 1.02, CHCl_{3}).
Minor isomer of $\mathbf{1 b} \cdot \mathrm{HBr}: \mathrm{mp} 205{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.91(6 \mathrm{H}, \mathrm{s}), 1.68(6 \mathrm{H}, \mathrm{s}), 2.10(6 \mathrm{H}, \mathrm{s}), 2.15(6 \mathrm{H}, \mathrm{s})$, $2.28(6 \mathrm{H}, \mathrm{s}), 2.75(6 \mathrm{H}, \mathrm{s}), 2.98-3.07(8 \mathrm{H}, \mathrm{m}), 3.45-3.84(8 \mathrm{H}, \mathrm{m}), 5.11(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=12.4,8.1 \mathrm{~Hz}), 5.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}), 6.35(2 \mathrm{H}$, s), $6.46(2 \mathrm{H}, \mathrm{s}), 6.69(2 \mathrm{H}, \mathrm{s}), 6.82(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 19.3,20.0,20.5,20.6,20.6,21.2,32.8,45.5,45.9,49.2$, $49.3,63.1,129.1,129.5,129.7,131.1,131.2,131.5,131.5,134.9,135.6,137.3,137.5,137.6,138.1,158.1 .{ }^{31} \mathrm{P}_{-} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 162\right.$ $\mathrm{MHz}) \delta 15.4$. $\mathrm{IR}(\mathrm{KBr}) 3439,2954,2922,2870,2734,1724,1611,1558,1515,1482,1453,1394,1345,1288,1271,1230,1163$, $1137,1076,1018,1006,990,956,893,851,797,743,732,711,694,638,626,609,587,576,556,465,455,444,433,425,416 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{P}: 783.4992$. found: 783.5021. $[\alpha]_{\mathrm{D}}{ }^{25}-219.7\left(c 1.01, \mathrm{CHCl}_{3}\right)$.
(4S,4'S,5S,5'S)-9,9'-dimethyl-4,4',5,5'-tetrakis(1-naphthyl)-4,4',5,7',8,8',9,9'-octahydro-3H,5'H,7H-2,2'-spirobi[imida zo[2,1-d][1,3,5,2]triazaphosphepine] hydrobromide $((M)-1 \mathbf{c} \cdot \mathrm{HBr}$ and $(P)-1 \mathbf{c} \cdot \mathrm{HBr})$

(M)-1c- HBr

$(P)-1 \mathbf{c} \cdot \mathrm{HBr}$

Bis(guanidine)iminophosphorane hydrobromide $\mathbf{1} \mathbf{c} \cdot \mathrm{HBr}$ was synthesized from aminoguanidine hydrobromide $\mathbf{6 c}(2.0 \mathrm{~g}, 3.59 \mathrm{mmol}$) with the same procedure as $\mathbf{1 a} \cdot \mathrm{HBr}$. Crude $\mathbf{1 c} \cdot \mathrm{HBr}$ was purified by silica gel column chromatography (SNAP cartridge HP -sil 50 g , $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=95 / 5$) to separate each diastereomer. Separated each isomer of $\mathbf{1 c} \cdot \mathrm{HBr}$ was crystallized from toluene (6 mL for major isomer and 4 mL for minor isomer) respectively to give $(M)-1 \mathbf{c} \cdot \mathrm{HBr}$ as toluene solvate ($205 \mathrm{mg}, 12 \%$ yield from a half amount of $\mathbf{6 c}$) and $(P)-\mathbf{1 c} \cdot \mathrm{HBr}(83 \mathrm{mg}, 5 \%$ yield from a half amount of $\mathbf{6 c})$ respectively.
$(M)-\mathbf{1 c} \cdot \mathrm{HBr}: \mathrm{mp} 332{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}, 400 \mathrm{MHz}, 10{ }^{\circ} \mathrm{C}\right.$) $\delta 2.31(3 \mathrm{H}, \mathrm{s}), 2.88-2.96(8 \mathrm{H}, \mathrm{m}), 3.29(6 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.37(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.77(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.11-6.17(2 \mathrm{H}, \mathrm{m}), 7.16-8.00(33 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 101 \mathrm{MHz}, 100{ }^{\circ} \mathrm{C}\right) \delta 20.3$, $31.8,45.2,45.3,52.5,52.8,66.0,66.0,121.8,122.3,122.3,122.3,122.4,122.4,124.3,124.5,124.6,124.7,124.8,124.9,125.1$, $125.5,126.0,126.1,126.1,126.1,127.5,127.9,128.0,128.2,129.5,130.1,132.7,132.8,133.4,135.4,135.5,135.6,136.7,156.9$, 157.0. ${ }^{31} \mathrm{P}$-NMR (DMSO-d ${ }_{6}, 162 \mathrm{MHz}, 100^{\circ} \mathrm{C}$) δ 17.1. IR (KBr) 3646, 3410, 3053, 2943, 2874, 1624, 1596, 1555, 1509, 1480, $1453,1388,1359,1295,1280,1264,1234,1208,1165,1144,1075,1032,1019,1006,990,953,912,856,778,737,715,697,645$, $623,611,605,579,567,555,534,508,489,466,454,429,411 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{52} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{P}$: 815.3740 . found: 815.3746. $[\alpha]_{\mathrm{D}}{ }^{25}-337.8^{\circ}\left(c 1.02, \mathrm{CHCl}_{3}\right)$.
$(P)-1 \mathbf{c} \cdot \mathrm{HBr}: \mathrm{mp} 298{ }^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 400 \mathrm{MHz}, 100^{\circ} \mathrm{C}\right) \delta 2.81-2.91(8 \mathrm{H}, \mathrm{m}), 3.22-3.42(6 \mathrm{H}, \mathrm{m}), 5.78-5.85(2 \mathrm{H}$, m), 6.06-6.14 ($2 \mathrm{H}, \mathrm{m}$), $6.49(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.98-7.91(28 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 101 \mathrm{MHz}, 100{ }^{\circ} \mathrm{C}\right) \delta 20.4,31.9,44.9,45.4,52$, 64.9, 121.7, 122.2, 124.1, 124.3, 124.4, 124.4, 124.7, 124.9, 125.6, 127.2, 127.6, 127.9, 128.1, 128.3, 129.7, 130.3, 132.4, 132.5, $133.5,135.3,135.4,136.8,157.9,157.9 .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 162 \mathrm{MHz}, 100{ }^{\circ} \mathrm{C}\right.$) $\delta 19.2$. IR (KBr) $3637,3396,3046,3010,2936$, $2873,1569,1507,1481,1450,1396,1360,1293,1263,1236,1207,1169,1142,1078,1050,1020,983,954,888,859,786,775,735$, $638,605,581,567,555,508,445,409,579,567,555,534,508,489,466,454,429,411 \mathrm{~cm}^{-1}$. HRMS (ESI): calcd. for $\mathrm{C}_{52} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{P}$: 815.3740. found: 815.3745. [$\alpha]_{\mathrm{D}}{ }^{25} 15.0\left(c 1.01, \mathrm{CHCl}_{3}\right)$.

The single crystal of (P) - $\mathbf{1} \mathbf{c} \cdot \mathrm{HBr}$ for X-ray crystallographic analysis was obtained by recrystallization from 2-PrOH and n-hexane as 2-PrOH solvate.

Typical procedure of enatioselective amination (9)

A suspension of ketone $\mathbf{8}(0.5 \mathrm{mmol})$ and catalyst bis(guanidino)iminophosphorane $\mathbf{1} \cdot \mathrm{HBr}(0.01 \mathrm{mmol})$ in dehydrated toluene (1 mL) was degassed under vacuum and sonication. $0.6 \mathrm{M} \mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ in toluene $(33.3 \mu \mathrm{~L}, 0.02 \mathrm{mmol})$ was added to the suspension at rt , and the mixture was stirred for ca. 1 min . After temperature control (to $-40^{\circ} \mathrm{C}$ or $25^{\circ} \mathrm{C}$), di-tert-butyl azodicarboxylate 7 (23.0 mg , 0.1 mmol) was added in one potion. After stirring for 3 h at the same temperature, the reaction was quenched by addition of AcOH $(5 \mu \mathrm{~L})$. The mixture was purified with preparative thin layer chromatography (n-hexane/acetone $=9 / 1$) to give product 9 . HPLC analysis DAICEL Chiralpak IA-3 $2.1 \times 150 \mathrm{~mm}$, n -hexane $/ 2-\mathrm{PrOH}=95 / 5,0.4 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, 246 \mathrm{~nm}, 3.4 \mathrm{~min}$ (major) 6.2 min (minor)

Low temperature NMR analyses of $(M)-1 \mathrm{a} \cdot \mathrm{HBr}$ and $(P)-1 \mathrm{a} \cdot \mathrm{HBr}$

$(M) \mathbf{- 1 a} \cdot \mathrm{HBr}$ and $(P) \mathbf{- 1 a} \cdot \mathrm{HBr}$ were analyzed at $25^{\circ} \mathrm{C}$ and $-80^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ respectively. Noticeable broadening was detected in the analysis of $(P) \mathbf{- 1 a} \cdot \mathrm{HBr}$ at $-80^{\circ} \mathrm{C}$. These NMR spectra were recorded on a JEOL ECA-500 $(500 \mathrm{MHz})$ spectrometer.
$(M) \mathbf{- 1 a} \cdot \mathrm{HBr}$

$(P)-\mathbf{1 a} \cdot \mathrm{HBr}$

4b

4c

6c

Major isomer of $\mathbf{1 b} \cdot \mathrm{HBr}$

Minor isomer of $\mathbf{1 b} \cdot \mathrm{HBr}$

$(M)-\mathbf{1 c} \cdot \mathrm{HBr}$ (toluene solvate)

(P)-1c $\mathbf{c} \cdot \mathrm{HBr}$

