Supplementary Material

Ketenes from N-(2-Pyridyl)amides

Carsten Plüg,^A Hussein Kanaani^A and Curt Wentrup^{A,B}

^ASchool of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia

^BCorresponding author. Email: <u>wentrup@uq.edu.au</u>

Contents:

- Figure S1. IR spectrum of *s*-*Z* and *s*-*E*-2-pyridylketene 4f.
- Figure S2. Changing structure of ketene peak of 2-pyridylketene 4f on warm-up.
- Figure S3. Matrix-IR spectrum of 2-aminopyridine
- Figure S4. Matrix-IR spectrum of 2-(methylamino)pyridine
- Figure S5. Matrix-IR spectrum of 2-picoline.
- Figures S6-S15: ¹H and ¹³C NMR spectra of starting materials 3.

Figure S1. Detail of the IR spectrum of *s-Z* and *s-E*-2-pyridylketene **4f** from FVT of **3f** (Ar matrix, 10 K).

Figure S2. Changing structure of ketene peak of 2-pyridylketene **4f** on warm-up from 10 to 90 K. the *s*-*Z* and *s*-*E* peaks merge and blue-shift when Ar has been removed at 40 K.

Figure S3. IR spectrum of 2-aminopyridine (Ar, 10 K).

Figure S4. IR spectrum of 2-(methylamino)pyridine **1a** (Ar, 14 K). A small peak at 2340 cm⁻¹ is due to CO₂. The peak at 3573 cm⁻¹ is ascribed to the H₂O dimer. The band at 3504 and 3480 cm⁻¹ are due to the NH stretchings of the *s*-*Z* and *s*-*E* conformers, respectively. These absorptions have calculated intensities of 20 and 34 km/mol, respectively, at the B3LYP/6-31G* level. A peak at 1661 cm⁻¹ may be due to a 2-(methylimino)-1*H*-pyridine tautomer **9a** (see Chart 1). The spectrum was obtained from a commercial sample.

Figure S5. Matrix-IR spectrum of 2-picoline (Ar, 10 K). 3016w, 1598s, 1594s, 1571m, 1479s, 1455vs, 1437m, 1425m, 1378w, 1297m, 1244w, 1149m, 1102w, 1052m, 1038m, 1002m, 977w, 801w, 761s, 731m, 629w, 546w, 472m, 405m cm⁻¹. Bands due to water are seen in the region 3500-3700 cm⁻¹ and CO₂ at 2340w cm⁻¹.

Figure S6. ¹H NMR spectrum of methyl *N*-methyl-*N*-(2-pyridyl)aminocarbonylacetate **3a** (CDCl₃) with enlarged image of the aromatic region.

Figure S7. ¹³C NMR spectrum of methyl *N*-methyl-*N*-(2-pyridyl)aminocarbonylacetate **3a** (CDCl₃).

Figure S8. ¹H NMR spectrum of *N*-(2-pyridyl)chloroacetamide **3c** (CDCl₃). The peak at 7.23 ppm in due to CHCl₃.

Figure S9. ¹³C NMR spectrum of *N*-(2-pyridyl)chloroacetamide **3c** (CDCl₃).

Figure S10. ¹H NMR spectrum of *N*-(2-pyridyl)cyanoacetamide 3d (CDCl₃)

Figure S11. ¹³C NMR spectrum of *N*-(2-pyridyl)cyanoacetamide **3d** (CDCl₃).

Figure S12. ¹H NMR spectrum of *N*-(2-pyridyl)diphenylmethylacetamide **3e** (CDCl₃). The peak at 7.19-7.26 ppm corresponds to 10 aromatic protons plus CHCl₃.

Figure S13. ¹³C NMR spectrum of *N*-(2-pyridyl)diphenylmethylacetamide **3e** (CDCl₃). Peaks at 24.29, 32.61 and 77 correspond to ethyl acetate, acetone and CHCl₃, respectively.

Figure S14. ¹H NMR spectrum of *N*-(2-pyridyl)-2-pyridylacetamide **3f** (CDCl₃). The peak at 2.18 ppm corresponds to acetone.

Figure S15. ¹³C NMR spectrum of *N*-(2-pyridyl)-2-pyridylacetamide **3f** (CDCl₃). The small peak at 30.9 ppm corresponds to acetone.