Supplementary Material

CCC-NHC pincer Zr diamido complexes: Synthesis, characterization, and catalytic activity in hydroamination/cyclization of unactivated amino-alkenes, -alkynes, and allenes

Henry U. Valle,^a Gopalkrishna Akurathi,^a Joon Cho^b, Wesley D. Clark^a, Amarraj Chakraborty,^a

T. Keith Hollis *a,b

^a Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States

^b Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677, United States

*Email: khollis@chemistry.msstate.edu

NMR spectroscopic data

Complex 4 - toluene preparation

Table 2 entry 1

5-Methyl-3,3-diphenyl-3,4-dihydro-2*H*-pyrrole:

In a screw cap NMR tube 2,2-diphenyl-4-pentyn-1-amine (0.025 g, 0.106 mmol), 2-(1,3-Bis(N-butyl-imidazol-2ylidene) phenylene)bis(dimethylamido)(iodo)zirconium (IV) (0.004 g, 0.0054 mmol) and 0.4 ml of tol-d₈ was added in glove box and heated the reaction mixture at 160 °C. The progress of the reaction was monitored by using ¹H NMR spectroscopy. ¹H NMR (C6D₆, 300MHz): δ 7.08-6.95 (m, 10H), 4.38-4.36 (q, J= 1.5 Hz, 2H), 2.68 (s, 2H), 1.75-1.74 (t, J = 1.8 Hz, 3H).

The proton NMR of this compound showed coupling not reported previously in the literature. The spectrum is included here for reference.

Partial 1H NMR spectrum from Table 1 entry 1 catalytic trial

Xray data

Iodo complex 3

CRYSTAL SUMMARY

Crystal data for C24 H37 I N6 Zr; $M_r = 627.71$; Monoclinic; space group P2₁/c; a = 10.3811(2) Å; b = 11.8205(2) Å; c = 21.6790(4) Å; $\alpha = 90^{\circ}$; $\beta = 97.8822(8)^{\circ}$; $\gamma = 90^{\circ}$; V = 2635.09(8) Å³; Z = 4; T = 100(2) K; λ (Mo-K α) = 0.71073 Å; μ (Mo-K α) = 1.612 mm⁻¹; d_{calc} = 1.582g.cm⁻³; 21565 reflections collected; 4908 unique (R_{int} = 0.0295); giving R₁ = 0.0264, wR₂ = 0.0666 for 4475 data with [I>2 σ (I)] and R₁ = 0.0297, wR₂ = 0.0689 for all 4908 data. Residual electron density (e⁻.Å⁻³) max/min: 0.794/-0.738.

An arbitrary sphere of data were collected on a yellow plate-like-like crystal, having approximate dimensions of $0.150 \times 0.150 \times 0.100$ mm, on a Bruker APEX-II diffractometer using a combination of ω - and φ -scans of 0.5° [1]. Data were corrected for absorption and polarization effects and analyzed for space group determination. The structure was solved by direct methods and expanded routinely [2]. The model was refined by full-matrix least-squares analysis of F² against all reflections. All non-hydrogen atoms were refined with anisotropic thermal displacement parameters. Unless otherwise noted, hydrogen atoms were included in calculated positions. Thermal parameters for the hydrogens were tied to the isotropic thermal parameter of the atom to which they are bonded (1.5 × for methyl, 1.2 × for all others).

REFERENCES

- [1] Bruker AXS. (2008). APEX-2. Bruker-Nonius AXS, Madison, Wisconsin, USA.
- [2] G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- [3] H. D. Flack, Acta Cryst., 1983, A39, 876.
- [4] R. W. W. Hooft, L. H. Straver & A. L. Spek, J. Appl. Cryst., 2008, 41, 96.
- [5] L. Yang, D. R. Powell & R. P. Houser, Dalton Trans., 2007, 955.

[6] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn & G. C. Verschoor, J. Chem. Soc. Dalton Trans., **1984**, 1349.

Table S1. Crystal data and structure refinement for **3**.

Identification code	wdc167		
Empirical formula	C24 H37 I N6 Zr		
Formula weight	627.71		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	$a = 10.3811(2) \text{ Å} \qquad \alpha = 90^{\circ}$		
	$b = 11.8205(2)$ Å $\beta = 97.8822(8)^{\circ}$		
	$c = 21.6790(4) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume	2635.09(8) Å ³		
Ζ	4		
Density (calculated)	1.582 g.cm ⁻³		
Absorption coefficient (μ)	1.612 mm ⁻¹		
F(000)	1264		
Crystal color, habit	yellow, plate-like		
Crystal size	$0.150 \times 0.150 \times 0.100 \text{ mm}^3$		
θ range for data collection	1.897 to 25.623°		
Index ranges	$-12 \le h \le 12, -12 \le k \le 14, -25 \le l \le 26$		
Reflections collected	21565		
Independent reflections	4908 [R _{int} = 0.0295]		
Completeness to $\theta = 25.242^{\circ}$	99.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7452 and 0.6261		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4908 / 0 / 289		
Goodness-of-fit on F ²	1.080		
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0264, wR_2 = 0.0666$		
R indices (all data)	$R_1 = 0.0297, wR_2 = 0.0689$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.794 and -0.738 e ⁻ .Å ⁻³		

Table S2. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **3**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	х	У	Ζ	U(eq)
Zr(1)	0.26485(3)	0.49803(2)	0.36128(2)	0.010(1)
I(1)	0.18125(2)	0.47308(2)	0.21974(2)	0.016(1)
N(1)	0.3364(2)	0.2365(2)	0.32995(11)	0.013(1)
N(2)	0.1407(2)	0.2159(2)	0.34871(11)	0.013(1)
N(3)	0.5508(2)	0.5892(2)	0.33630(11)	0.015(1)

N(4)	0.4641(2)	0.7410(2)	0.36489(12)	0.016(1)
N(5)	0.2921(2)	0.4786(2)	0.45629(12)	0.015(1)
N(6)	0.1250(2)	0.6236(2)	0.34918(11)	0.014(1)
C(1)	0.4482(3)	0.4111(3)	0.33222(13)	0.013(1)
C(2)	0.5602(3)	0.4704(3)	0.32411(14)	0.015(1)
C(3)	0.6712(3)	0.4204(3)	0.30669(14)	0.019(1)
C(4)	0.6695(3)	0.3039(3)	0.29737(14)	0.020(1)
C(5)	0.5606(3)	0.2395(3)	0.30425(14)	0.017(1)
C(6)	0.4535(3)	0.2954(3)	0.32178(13)	0.014(1)
C(7)	0.2337(3)	0.2954(2)	0.34758(13)	0.012(1)
C(8)	0.3053(3)	0.1238(3)	0.31958(14)	0.016(1)
C(9)	0.1821(3)	0.1106(3)	0.33152(14)	0.016(1)
C(10)	0.4384(3)	0.6300(3)	0.35474(13)	0.013(1)
C(11)	0.6423(3)	0.6737(3)	0.33473(14)	0.019(1)
C(12)	0.5873(3)	0.7691(3)	0.35256(15)	0.020(1)
C(13)	0.3772(3)	0.8200(3)	0.39069(15)	0.018(1)
C(14)	0.4094(3)	0.8322(3)	0.46064(14)	0.019(1)
C(15)	0.3231(3)	0.9201(3)	0.48631(15)	0.023(1)
C(16)	0.3433(4)	0.9242(4)	0.55726(17)	0.034(1)
C(17)	0.0111(3)	0.2391(3)	0.36559(14)	0.015(1)
C(18)	0.0136(3)	0.2580(3)	0.43510(14)	0.017(1)
C(19)	0.0506(3)	0.1540(3)	0.47437(15)	0.024(1)
C(20)	0.0583(4)	0.1775(3)	0.54392(15)	0.027(1)
C(21)	0.0156(3)	0.5565(3)	0.36330(16)	0.021(1)
C(22)	0.0782(3)	0.7192(3)	0.31074(15)	0.019(1)
C(23)	0.3730(3)	0.3881(3)	0.48690(15)	0.020(1)
C(24)	0.2348(3)	0.5442(3)	0.50230(15)	0.024(1)
H(3A)	0.7439	0.4634	0.3015	0.023
H(4A)	0.7429	0.2685	0.2863	0.024
H(5A)	0.5593	0.1619	0.2974	0.020
H(8A)	0.3590	0.0679	0.3068	0.020
H(9A)	0.1342	0.0438	0.3287	0.020
H(11A)	0.7252	0.6661	0.3236	0.023
H(12A)	0.6251	0.8406	0.3560	0.024
H(13A)	0.2883	0.7936	0.3807	0.022
H(13B)	0.3832	0.8935	0.3714	0.022

H(14A)	0.4997	0.8544	0.4709	0.023
H(14B)	0.3982	0.7598	0.4802	0.023
H(15A)	0.3417	0.9940	0.4702	0.028
H(15B)	0.2328	0.9026	0.4718	0.028
H(16A)	0.2872	0.9806	0.5711	0.051
H(16B)	0.4322	0.9429	0.5719	0.051
H(16C)	0.3231	0.8517	0.5734	0.051
H(17A)	-0.0458	0.1759	0.3526	0.018
H(17B)	-0.0244	0.3057	0.3433	0.018
H(18A)	0.0750	0.3180	0.4483	0.021
H(18B)	-0.0717	0.2832	0.4427	0.021
H(19A)	0.1343	0.1265	0.4657	0.028
H(19B)	-0.0131	0.0950	0.4628	0.028
H(20A)	0.0820	0.1094	0.5668	0.040
H(20B)	-0.0248	0.2032	0.5530	0.040
H(20C)	0.1225	0.2347	0.5558	0.040
H(21A)	-0.0609	0.6030	0.3598	0.032
H(21B)	0.0340	0.5275	0.4049	0.032
H(21C)	0.0014	0.4947	0.3345	0.032
H(22A)	0.0039	0.7516	0.3261	0.028
H(22B)	0.0539	0.6944	0.2686	0.028
H(22C)	0.1457	0.7750	0.3120	0.028
H(23A)	0.3737	0.3932	0.5311	0.030
H(23B)	0.4601	0.3956	0.4772	0.030
H(23C)	0.3382	0.3162	0.4724	0.030
H(24A)	0.2653	0.5159	0.5432	0.035
H(24B)	0.1418	0.5380	0.4944	0.035
H(24C)	0.2595	0.6222	0.4997	0.035

Table S3. Anisotropic displacement parameters (Å²) for **3**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$

I(1)	0.0188(1)	0.0153(1)	0.0125(1)	-0.0014(1)	0.0006(1)	0.0037(1)
N(1)	0.0159(13)	0.0105(13)	0.0125(13)	0.0000(10)	0.0016(10)	0.0011(10)
N(2)	0.0142(12)	0.0124(13)	0.0114(13)	0.0002(10)	0.0008(10)	-0.0003(10)
N(3)	0.0144(12)	0.0157(14)	0.0142(13)	0.0009(11)	0.0023(10)	-0.0031(10)
N(4)	0.0174(13)	0.0144(14)	0.0144(13)	0.0011(11)	-0.0001(10)	-0.0030(10)
N(5)	0.0180(13)	0.0138(13)	0.0126(13)	-0.0010(10)	0.0029(10)	-0.0009(10)
N(6)	0.0138(12)	0.0131(13)	0.0142(13)	-0.0001(10)	0.0017(10)	0.0012(10)
C(1)	0.0125(14)	0.0158(16)	0.0090(14)	0.0011(12)	0.0010(11)	0.0018(11)
C(2)	0.0143(15)	0.0178(17)	0.0117(15)	0.0008(12)	0.0001(11)	0.0014(12)
C(3)	0.0128(15)	0.0283(19)	0.0161(16)	0.0013(14)	0.0016(12)	-0.0034(13)
C(4)	0.0153(15)	0.0278(19)	0.0166(16)	-0.0007(14)	0.0033(12)	0.0071(13)
C(5)	0.0179(15)	0.0164(16)	0.0155(16)	0.0011(13)	0.0013(12)	0.0060(12)
C(6)	0.0143(14)	0.0161(16)	0.0106(15)	0.0020(12)	0.0013(11)	0.0009(12)
C(7)	0.0133(14)	0.0121(15)	0.0107(14)	0.0002(12)	0.0004(11)	0.0008(11)
C(8)	0.0226(16)	0.0097(15)	0.0165(16)	-0.0008(12)	0.0023(12)	0.0027(12)
C(9)	0.0221(16)	0.0107(15)	0.0165(16)	-0.0007(12)	0.0027(12)	-0.0001(12)
C(10)	0.0148(14)	0.0135(16)	0.0106(15)	0.0001(12)	-0.0002(11)	0.0007(11)
C(11)	0.0169(15)	0.0222(18)	0.0181(16)	0.0006(13)	0.0038(12)	-0.0071(13)
C(12)	0.0225(17)	0.0187(17)	0.0196(17)	0.0015(13)	0.0027(13)	-0.0084(13)
C(13)	0.0227(16)	0.0103(16)	0.0215(17)	-0.0011(13)	-0.0001(13)	0.0008(12)
C(14)	0.0210(16)	0.0165(17)	0.0185(17)	0.0003(13)	0.0013(13)	-0.0009(13)
C(15)	0.0224(17)	0.0218(18)	0.0257(18)	-0.0028(15)	0.0046(13)	0.0010(14)
C(16)	0.035(2)	0.042(2)	0.027(2)	-0.0065(18)	0.0096(16)	0.0007(17)
C(17)	0.0124(14)	0.0127(15)	0.0203(16)	-0.0012(13)	0.0025(12)	-0.0018(11)
C(18)	0.0174(16)	0.0143(16)	0.0214(17)	-0.0016(13)	0.0063(12)	-0.0014(12)
C(19)	0.0333(19)	0.0197(18)	0.0192(17)	0.0000(14)	0.0086(14)	-0.0009(14)
C(20)	0.035(2)	0.0253(19)	0.0204(18)	0.0027(15)	0.0064(15)	-0.0021(15)
C(21)	0.0134(15)	0.0184(17)	0.0312(19)	0.0017(14)	0.0021(13)	0.0018(13)
C(22)	0.0207(16)	0.0168(17)	0.0181(17)	0.0003(13)	0.0017(12)	0.0057(13)
C(23)	0.0240(17)	0.0212(18)	0.0152(16)	0.0024(13)	0.0009(13)	0.0010(13)
C(24)	0.0310(19)	0.0235(18)	0.0180(17)	-0.0016(14)	0.0098(14)	0.0019(14)

Table S4. Bond lengths [Å] for **3**.

atom-atom	distance	atom-atom	distance
Zr(1)-N(5)	2.053(3)	Zr(1)-N(6)	2.068(2)
Zr(1)-C(1)	2.325(3)	Zr(1)-C(10)	2.402(3)
Zr(1)-C(7)	2.429(3)	Zr(1)-C(21)	2.684(3)
Zr(1)-I(1)	3.0864(3)	N(1)-C(7)	1.371(4)
N(1)-C(8)	1.382(4)	N(1)-C(6)	1.433(4)
N(2)-C(7)	1.351(4)	N(2)-C(9)	1.384(4)
N(2)-C(17)	1.468(4)	N(3)-C(10)	1.371(4)
N(3)-C(11)	1.381(4)	N(3)-C(2)	1.435(4)
N(4)-C(10)	1.351(4)	N(4)-C(12)	1.383(4)
N(4)-C(13)	1.462(4)	N(5)-C(24)	1.453(4)
N(5)-C(23)	1.462(4)	N(6)-C(22)	1.448(4)
N(6)-C(21)	1.452(4)	C(1)-C(6)	1.388(4)
C(1)-C(2)	1.390(4)	C(2)-C(3)	1.392(4)
C(3)-C(4)	1.391(5)	C(3)-H(3A)	0.9300
C(4) - C(5)	1.388(4)	C(4)-H(4A)	0.9300
C(5)-C(6)	1.390(4)	C(5)-H(5A)	0.9300
C(8)-C(9)	1.349(4)	C(8)-H(8A)	0.9300
C(9)-H(9A)	0.9300	C(11)-C(12)	1.345(5)
C(11)-H(11A)	0.9300	C(12)-H(12A)	0.9300
C(13)-C(14)	1.514(4)	C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700	C(14)-C(15)	1.525(4)
C(14)-H(14A)	0.9700	C(14)-H(14B)	0.9700
C(15)-C(16)	1.525(5)	C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700	C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600	C(16)-H(16C)	0.9600
C(17)-C(18)	1.520(4)	C(17)-H(17A)	0.9700
C(17)-H(17B)	0.9700	C(18)-C(19)	1.514(5)
C(18)-H(18A)	0.9700	C(18)-H(18B)	0.9700
C(19)-C(20)	1.524(5)	C(19)-H(19A)	0.9700
C(19)-H(19B)	0.9700	C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600	C(20)-H(20C)	0.9600
C(21)-H(21A)	0.9600	C(21)-H(21B)	0.9600
C(21)-H(21C)	0.9600	C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600	C(22)-H(22C)	0.9600
C(23)-H(23A)	0.9600	C(23)-H(23B)	0.9600
C(23)-H(23C)	0.9600	C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600	C(24)-H(24C)	0.9600

Table S5. Bond angles [°] for **3**.

atom-atom-atom	angle	atom-atom-atom	angle
N(5)-Zr(1)-N(6)	101.85(10)	N(5)-Zr(1)-C(1)	102.54(10)
N(6)-Zr(1)-C(1)	150.42(10)	N(5)- $Zr(1)$ - $C(10)$	97.50(10)
N(6)-Zr(1)-C(10)	92.62(10)	C(1)- $Zr(1)$ - $C(10)$	67.82(10)
N(5)-Zr(1)-C(7)	90.58(10)	N(6)-Zr(1)-C(7)	127.80(10)
C(1)-Zr(1)-C(7)	68.35(10)	C(10)- $Zr(1)$ - $C(7)$	136.15(10)
N(5)-Zr(1)-C(21)	90.74(10)	N(6)- $Zr(1)$ - $C(21)$	32.39(10)
C(1)-Zr(1)-C(21)	160.92(10)	C(10)- $Zr(1)$ - $C(21)$	124.49(10)
C(7)- $Zr(1)$ - $C(21)$	98.26(10)	N(5)- $Zr(1)$ - $I(1)$	165.47(7)
N(6)-Zr(1)-I(1)	81.12(7)	C(1)- $Zr(1)$ - $I(1)$	79.47(7)
C(10)- $Zr(1)$ - $I(1)$	96.56(7)	C(7)- $Zr(1)$ - $I(1)$	76.69(7)
C(21)- $Zr(1)$ - $I(1)$	84.29(8)	C(7)-N(1)-C(8)	111.2(2)
C(7)-N(1)-C(6)	119.5(2)	C(8)-N(1)-C(6)	129.2(2)
C(7)-N(2)-C(9)	111.9(2)	C(7)-N(2)-C(17)	123.8(2)
C(9)-N(2)-C(17)	124.3(2)	C(10)-N(3)-C(11)	111.6(3)
C(10)-N(3)-C(2)	118.6(2)	C(11)-N(3)-C(2)	129.7(3)
C(10)-N(4)-C(12)	111.6(3)	C(10)-N(4)-C(13)	124.4(2)
C(12)-N(4)-C(13)	123.8(3)	C(24)-N(5)-C(23)	110.0(2)
C(24)-N(5)-Zr(1)	128.0(2)	C(23)-N(5)-Zr(1)	121.92(19)
C(22)-N(6)-C(21)	109.7(2)	C(22)-N(6)-Zr(1)	143.88(19)
C(21)-N(6)-Zr(1)	97.89(18)	C(6)-C(1)-C(2)	115.0(3)
C(6)-C(1)-Zr(1)	122.2(2)	C(2)-C(1)-Zr(1)	122.8(2)
C(1)-C(2)-C(3)	123.9(3)	C(1)-C(2)-N(3)	113.0(3)
C(3)-C(2)-N(3)	123.0(3)	C(4)-C(3)-C(2)	117.7(3)
C(4)-C(3)-H(3A)	121.2	C(2)-C(3)-H(3A)	121.2
C(5)-C(4)-C(3)	121.4(3)	C(5)-C(4)-H(4A)	119.3
C(3)-C(4)-H(4A)	119.3	C(4)-C(5)-C(6)	117.5(3)
C(4)-C(5)-H(5A)	121.2	C(6)-C(5)-H(5A)	121.2
C(1)-C(6)-C(5)	124.3(3)	C(1)-C(6)-N(1)	113.9(2)
C(5)-C(6)-N(1)	121.8(3)	N(2)-C(7)-N(1)	103.7(2)
N(2)-C(7)-Zr(1)	140.1(2)	N(1)-C(7)-Zr(1)	116.07(19)
C(9)-C(8)-N(1)	106.7(3)	C(9)-C(8)-H(8A)	126.7
N(1)-C(8)-H(8A)	126.7	C(8)-C(9)-N(2)	106.6(3)
C(8)-C(9)-H(9A)	126.7	N(2)-C(9)-H(9A)	126.7
N(4)-C(10)-N(3)	103.4(2)	N(4)-C(10)-Zr(1)	138.9(2)
N(3)-C(10)-Zr(1)	117.7(2)	C(12)-C(11)-N(3)	106.2(3)
C(12)-C(11)-H(11A)	126.9	N(3)-C(11)-H(11A)	126.9
C(11)-C(12)-N(4)	107.1(3)	C(11)-C(12)-H(12A)	126.4
N(4)-C(12)-H(12A)	126.4	N(4)-C(13)-C(14)	112.4(3)
N(4)-C(13)-H(13A)	109.1	C(14)-C(13)-H(13A)	109.1
N(4)-C(13)-H(13B)	109.1	C(14)-C(13)-H(13B)	109.1
H(13A)-C(13)-H(13B)	107.9	C(13)-C(14)-C(15)	111.7(3)
C(13)-C(14)-H(14A)	109.3	C(15)-C(14)-H(14A)	109.3

C(13)-C(14)-H(14B)	109.3	C(15)-C(14)-H(14B)	109.3
H(14A)-C(14)-H(14B)	107.9	C(16)-C(15)-C(14)	112.6(3)
C(16)-C(15)-H(15A)	109.1	C(14)-C(15)-H(15A)	109.1
С(16)-С(15)-Н(15В)	109.1	C(14)-C(15)-H(15B)	109.1
H(15A)-C(15)-H(15B)	107.8	C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5	H(16A)-C(16)-H(16B)	109.5
С(15)-С(16)-Н(16С)	109.5	H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5	N(2)-C(17)-C(18)	112.5(2)
N(2)-C(17)-H(17A)	109.1	C(18)-C(17)-H(17A)	109.1
N(2)-C(17)-H(17B)	109.1	C(18)-C(17)-H(17B)	109.1
H(17A)-C(17)-H(17B)	107.8	C(19)-C(18)-C(17)	114.0(3)
C(19)-C(18)-H(18A)	108.8	C(17)-C(18)-H(18A)	108.8
C(19)-C(18)-H(18B)	108.8	C(17)-C(18)-H(18B)	108.8
H(18A)-C(18)-H(18B)	107.7	C(18)-C(19)-C(20)	112.5(3)
C(18)-C(19)-H(19A)	109.1	C(20)-C(19)-H(19A)	109.1
C(18)-C(19)-H(19B)	109.1	C(20)-C(19)-H(19B)	109.1
H(19A)-C(19)-H(19B)	107.8	C(19)-C(20)-H(20A)	109.5
C(19)-C(20)-H(20B)	109.5	H(20A)-C(20)-H(20B)	109.5
C(19)-C(20)-H(20C)	109.5	H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5	N(6)-C(21)-Zr(1)	49.72(13)
N(6)-C(21)-H(21A)	109.5	Zr(1)-C(21)-H(21A)	159.2
N(6)-C(21)-H(21B)	109.5	Zr(1)-C(21)-H(21B)	81.7
H(21A)-C(21)-H(21B)	109.5	N(6)-C(21)-H(21C)	109.5
Zr(1)-C(21)-H(21C)	81.7	H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5	N(6)-C(22)-H(22A)	109.5
N(6)-C(22)-H(22B)	109.5	H(22A)-C(22)-H(22B)	109.5
N(6)-C(22)-H(22C)	109.5	H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5	N(5)-C(23)-H(23A)	109.5
N(5)-C(23)-H(23B)	109.5	H(23A)-C(23)-H(23B)	109.5
N(5)-C(23)-H(23C)	109.5	H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5	N(5)-C(24)-H(24A)	109.5
N(5)-C(24)-H(24B)	109.5	H(24A)-C(24)-H(24B)	109.5
N(5)-C(24)-H(24C)	109.5	H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5		

Table S6. Torsion angles [°] for **3**.

angle	atom-atom-atom-atom	angle
0.2(4)	Zr(1)-C(1)-C(2)-C(3)	-179.9(2)
-179.1(2)	Zr(1)-C(1)-C(2)-N(3)	0.8(4)
0.9(4)	C(11)-N(3)-C(2)-C(1)	178.2(3)
-178.4(3)	C(11)-N(3)-C(2)-C(3)	-1.1(5)
-0.5(5)	N(3)-C(2)-C(3)-C(4)	178.7(3)
	angle 0.2(4) -179.1(2) 0.9(4) -178.4(3) -0.5(5)	angleatom-atom-atom-atom $0.2(4)$ $Zr(1)$ - $C(1)$ - $C(2)$ - $C(3)$ $-179.1(2)$ $Zr(1)$ - $C(1)$ - $C(2)$ - $N(3)$ $0.9(4)$ $C(11)$ - $N(3)$ - $C(2)$ - $C(1)$ $-178.4(3)$ $C(11)$ - $N(3)$ - $C(2)$ - $C(3)$ $-0.5(5)$ $N(3)$ - $C(2)$ - $C(3)$ - $C(4)$

C(2)-C(3)-C(4)-C(5)	0.9(5)	C(3)-C(4)-C(5)-C(6)	-1.0(5)
C(2)-C(1)-C(6)-C(5)	-0.2(4)	Zr(1)-C(1)-C(6)-C(5)	179.9(2)
C(2)-C(1)-C(6)-N(1)	-179.5(2)	Zr(1)-C(1)-C(6)-N(1)	0.6(3)
C(4)-C(5)-C(6)-C(1)	0.6(5)	C(4)-C(5)-C(6)-N(1)	179.9(3)
C(7)-N(1)-C(6)-C(1)	-1.0(4)	C(8)-N(1)-C(6)-C(1)	175.4(3)
C(7)-N(1)-C(6)-C(5)	179.7(3)	C(8)-N(1)-C(6)-C(5)	-3.9(5)
C(9)-N(2)-C(7)-N(1)	-0.9(3)	C(17)-N(2)-C(7)-N(1)	179.7(2)
C(9)-N(2)-C(7)-Zr(1)	175.0(2)	C(17)-N(2)-C(7)-Zr(1)	-4.4(5)
C(8)-N(1)-C(7)-N(2)	1.0(3)	C(6)-N(1)-C(7)-N(2)	178.0(2)
C(8)-N(1)-C(7)-Zr(1)	-176.07(19)	C(6)-N(1)-C(7)-Zr(1)	1.0(3)
C(7)-N(1)-C(8)-C(9)	-0.8(3)	C(6)-N(1)-C(8)-C(9)	-177.4(3)
N(1)-C(8)-C(9)-N(2)	0.2(3)	C(7)-N(2)-C(9)-C(8)	0.4(3)
C(17)-N(2)-C(9)-C(8)	179.9(3)	C(12)-N(4)-C(10)-N(3)	0.7(3)
C(13)-N(4)-C(10)-N(3)	-174.5(3)	C(12)-N(4)-C(10)-Zr(1)	179.8(2)
C(13)-N(4)-C(10)-Zr(1)	4.6(5)	C(11)-N(3)-C(10)-N(4)	-0.5(3)
C(2)-N(3)-C(10)-N(4)	177.2(2)	C(11)-N(3)-C(10)-Zr(1)	-179.8(2)
C(2)-N(3)-C(10)-Zr(1)	-2.1(3)	C(10)-N(3)-C(11)-C(12)	0.2(4)
C(2)-N(3)-C(11)-C(12)	-177.2(3)	N(3)-C(11)-C(12)-N(4)	0.3(3)
C(10)-N(4)-C(12)-C(11)	-0.6(4)	C(13)-N(4)-C(12)-C(11)	174.6(3)
C(10)-N(4)-C(13)-C(14)	93.9(3)	C(12)-N(4)-C(13)-C(14)	-80.7(4)
N(4)-C(13)-C(14)-C(15)	176.6(3)	C(13)-C(14)-C(15)-C(16)	173.5(3)
C(7)-N(2)-C(17)-C(18)	-73.9(4)	C(9)-N(2)-C(17)-C(18)	106.7(3)
N(2)-C(17)-C(18)-C(19)	-66.4(3)	C(17)-C(18)-C(19)-C(20)	177.3(3)
C(22)-N(6)-C(21)-Zr(1)	156.3(3)		

Bromo complex 4

CRYSTAL SUMMARY

Crystal data for C28 H45 Br N6 O Zr; $M_r = 652.83$; Monoclinic; space group P2₁/c; a = 9.0178(3)Å; b = 13.7634(4) Å; c = 24.1447(8) Å; $\alpha = 90^{\circ}$; $\beta = 92.5093(16)^{\circ}$; $\gamma = 90^{\circ}$; V = 2993.86(17) Å³; Z = 4; T = 100(2) K; λ (Mo-K α) = 0.71073 Å; μ (Mo-K α) = 1.733 mm⁻¹; d_{calc} = 1.448g.cm⁻³; 24368 reflections collected; 5547 unique (R_{int} = 0.0284); giving R₁ = 0.0390, wR₂ = 0.0949 for 5112 data with [I>2 σ (I)] and R₁ = 0.0426, wR₂ = 0.0963 for all 5547 data. Residual electron density (e⁻.Å⁻³) max/min: 0.798/-0.771.

An arbitrary sphere of data were collected on a Yellow Needle-Like-like crystal, having approximate dimensions of $0.200 \times 0.100 \times 0.100$ mm, on a Bruker APEX-II diffractometer using a combination of ω - and φ -scans of 0.5° [1]. Data were corrected for absorption and polarization effects and analyzed for space group determination. The structure was solved by direct methods and expanded routinely [2]. The model was refined by full-matrix least-squares analysis of F² against all reflections. All non-hydrogen atoms were refined with anisotropic thermal displacement parameters. Unless otherwise noted, hydrogen atoms were included in calculated positions. Thermal parameters for the hydrogens were tied to the isotropic thermal parameter of the atom to which they are bonded (1.5 × for methyl, 1.2 × for all others).

REFERENCES

- [1] Bruker AXS. (2008). APEX-2. Bruker-Nonius AXS, Madison, Wisconsin, USA.
- [2] G. M. Sheldrick, Acta Cryst., 2008, A64, 112.
- [3] H. D. Flack, Acta Cryst., 1983, A39, 876.
- [4] R. W. W. Hooft, L. H. Straver & A. L. Spek, J. Appl. Cryst., 2008, 41, 96.
- [5] L. Yang, D. R. Powell & R. P. Houser, Dalton Trans., 2007, 955.

[6] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn & G. C. Verschoor, J. Chem. Soc. Dalton Trans., **1984**, 1349.

Table S7. Crystal data and structure refinement for **4**.

Identification code	WDC168		
Empirical formula	C28 H45 Br N6 O Zr		
Formula weight	652.83		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/c$		
Unit cell dimensions	a = 9.0178(3) Å	$\alpha = 90^{\circ}$	
	b = 13.7634(4) Å	$\beta = 92.5093(16)^{\circ}$	
	c = 24.1447(8) Å	$\gamma = 90^{\circ}$	
Volume	2993.86(17) Å ³		
Ζ	4		
Density (calculated)	1.448 g.cm ⁻³		
Absorption coefficient (μ)	1.733 mm ⁻¹		
F(000)	1352		
Crystal color, habit	Yellow, Needle-Like		
Crystal size	$0.200 \times 0.100 \times 0.100 \text{ mm}^3$		
θ range for data collection	1.703 to 25.540°		
Index ranges	$-10 \le h \le 10, -16 \le k \le 16, -28 \le l \le 29$		
Reflections collected	24368		
Independent reflections	5547 [R _{int} = 0.0284]		
Completeness to $\theta = 25.242^{\circ}$	99.6 %		
Absorption correction	Semi-empirical from e	equivalents	
Max. and min. transmission	0.7452 and 0.5984		
Refinement method	Full-matrix least-square	res on F ²	
Data / restraints / parameters	5547 / 0 / 340		
Goodness-of-fit on F ²	1.163		
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0390, wR_2 = 0.$	0949	
R indices (all data)	$R_1 = 0.0426, wR_2 = 0.$	0963	
Extinction coefficient	0		
Largest diff. peak and hole	0.798 and -0.771 e ⁻ .Å ⁻	-3	

Table S8. Atomic coordinates and equivalent isotropic displacement parameters (Å²) for **4**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	Х	У	Ζ	U(eq)
Zr(1)	0.43694(4)	0.34668(2)	0.35257(2)	0.016(1)
Br(1)	0.29657(4)	0.35563(2)	0.24654(2)	0.021(1)
O(1)	0.1095(6)	0.8081(3)	0.4275(2)	0.082(1)
N(1)	0.7147(3)	0.2757(2)	0.28098(13)	0.020(1)
N(2)	0.6149(3)	0.1407(2)	0.30165(12)	0.019(1)
N(3)	0.5166(3)	0.5766(2)	0.33526(12)	0.019(1)
N(4)	0.3284(3)	0.5871(2)	0.38539(13)	0.020(1)
N(5)	0.2424(3)	0.2772(2)	0.37850(13)	0.024(1)
N(6)	0.5734(3)	0.3253(2)	0.42148(13)	0.021(1)
C(1)	0.6198(4)	0.4294(2)	0.30556(15)	0.019(1)
C(2)	0.6315(4)	0.5298(3)	0.30552(15)	0.019(1)
C(3)	0.7427(4)	0.5813(3)	0.28027(16)	0.022(1)
C(4)	0.8500(4)	0.5276(3)	0.25444(17)	0.025(1)
C(5)	0.8474(4)	0.4263(3)	0.25399(17)	0.025(1)
C(6)	0.7310(4)	0.3810(3)	0.27891(15)	0.020(1)
C(7)	0.5983(4)	0.2377(3)	0.30759(15)	0.019(1)
C(8)	0.8018(4)	0.2039(3)	0.25924(16)	0.022(1)
C(9)	0.7387(4)	0.1190(3)	0.27232(16)	0.022(1)
C(10)	0.4141(4)	0.5202(3)	0.36107(15)	0.019(1)
C(11)	0.4934(4)	0.6745(3)	0.34377(16)	0.023(1)
C(12)	0.3742(4)	0.6813(3)	0.37548(16)	0.023(1)
C(13)	0.1963(4)	0.5634(3)	0.41644(16)	0.022(1)
C(14)	0.0627(4)	0.5422(3)	0.37838(17)	0.029(1)
C(15)	-0.0732(5)	0.5137(3)	0.41072(19)	0.038(1)
C(16)	-0.1475(5)	0.5987(4)	0.4376(2)	0.051(1)
C(17)	0.5166(4)	0.0685(3)	0.32594(15)	0.021(1)
C(18)	0.5859(4)	0.0214(3)	0.37761(16)	0.026(1)
C(19)	0.4797(5)	-0.0513(3)	0.40191(17)	0.033(1)
C(20)	0.5486(6)	-0.1073(3)	0.4506(2)	0.045(1)
C(21)	0.2469(5)	0.2189(3)	0.42912(18)	0.036(1)
C(22)	0.0923(4)	0.2702(3)	0.3542(2)	0.038(1)

C(23)	0.7156(4)	0.2809(3)	0.43525(17)	0.027(1)
C(24)	0.5177(5)	0.3740(3)	0.46975(17)	0.029(1)
C(25)	0.0784(10)	0.8813(6)	0.4669(3)	0.099(3)
C(26)	-0.0085(8)	0.9601(6)	0.4364(3)	0.081(2)
C(27)	0.0175(7)	0.9422(5)	0.3763(3)	0.067(2)
C(28)	0.0381(12)	0.8330(6)	0.3757(3)	0.109(3)
H(3A)	0.7451	0.6503	0.2807	0.026
H(4A)	0.9271	0.5606	0.2366	0.030
H(5A)	0.9228	0.3899	0.2372	0.031
H(8A)	0.8889	0.2128	0.2391	0.026
H(9A)	0.7728	0.0560	0.2631	0.026
H(11A)	0.5501	0.7267	0.3300	0.027
H(12A)	0.3303	0.7394	0.3884	0.028
H(13A)	0.1733	0.6186	0.4409	0.026
H(13B)	0.2179	0.5060	0.4402	0.026
H(14A)	0.0870	0.4886	0.3529	0.035
H(14B)	0.0388	0.6004	0.3557	0.035
H(15A)	-0.1463	0.4812	0.3851	0.045
H(15B)	-0.0423	0.4663	0.4398	0.045
H(16A)	-0.2333	0.5756	0.4574	0.076
H(16B)	-0.1806	0.6454	0.4090	0.076
H(16C)	-0.0768	0.6303	0.4638	0.076
H(17A)	0.4923	0.0176	0.2981	0.026
H(17B)	0.4227	0.1006	0.3354	0.026
H(18A)	0.6115	0.0721	0.4055	0.032
H(18B)	0.6786	-0.0122	0.3682	0.032
H(19A)	0.3909	-0.0163	0.4141	0.039
H(19B)	0.4466	-0.0979	0.3726	0.039
H(20A)	0.4729	-0.1482	0.4669	0.067
H(20B)	0.5882	-0.0615	0.4786	0.067
H(20C)	0.6291	-0.1483	0.4379	0.067
H(21A)	0.2141	0.1526	0.4203	0.054
H(21B)	0.1810	0.2477	0.4558	0.054
H(21C)	0.3486	0.2174	0.4451	0.054
H(22A)	0.0220	0.2964	0.3802	0.056
H(22B)	0.0685	0.2019	0.3464	0.056

H(22C)	0.0852	0.3074	0.3196	0.056
H(23A)	0.7037	0.2314	0.4639	0.041
H(23B)	0.7856	0.3307	0.4491	0.041
H(23C)	0.7538	0.2504	0.4021	0.041
H(24A)	0.5131	0.3276	0.5004	0.043
H(24B)	0.4182	0.3997	0.4607	0.043
H(24C)	0.5843	0.4276	0.4807	0.043
H(25A)	0.1719	0.9080	0.4836	0.118
H(25B)	0.0195	0.8539	0.4968	0.118
H(26A)	-0.1155	0.9554	0.4436	0.097
H(26B)	0.0279	1.0252	0.4479	0.097
H(27A)	0.1074	0.9764	0.3645	0.081
H(27B)	-0.0689	0.9624	0.3524	0.081
H(28A)	-0.0592	0.7999	0.3712	0.131
H(28B)	0.1001	0.8136	0.3447	0.131

Table S9. Anisotropic displacement parameters ($Å^2$) for **4**. The anisotropic displacement factor exponent takes the form:

$-2\pi^{2}[h^{2}a^{*2}U_{11} + + 2hka^{*}b^{*}U_{11}]$	J ₁₂]	
--	-------------------	--

	U11	U22	U33	U23	U13	U12
Zr(1)	0.0168(2)	0 0115(2)	0 0204(2)	0 0007(1)	-0.0022(1)	-0.0005(1)
Br(1)	0.0248(2)	0.0140(2)	0.0233(2)	-0.0007(1)	-0.0055(1)	0.0010(1)
O(1)	0.103(4)	0.068(3)	0.075(3)	0.013(2)	0.003(3)	0.035(3)
N(1)	0.0184(15)	0.0136(15)	0.0263(17)	0.0022(12)	-0.0032(12)	0.0022(12)
N(2)	0.0213(15)	0.0147(15)	0.0199(16)	0.0017(12)	-0.0046(12)	0.0015(12)
N(3)	0.0196(15)	0.0123(14)	0.0233(16)	0.0000(12)	-0.0049(12)	-0.0012(11)
N(4)	0.0209(15)	0.0160(15)	0.0234(17)	-0.0005(12)	-0.0019(13)	-0.0016(12)
N(5)	0.0202(15)	0.0222(16)	0.0286(18)	0.0014(14)	-0.0010(13)	-0.0036(13)
N(6)	0.0237(16)	0.0160(15)	0.0215(16)	0.0004(12)	-0.0022(12)	-0.0018(12)
C(1)	0.0185(17)	0.0150(17)	0.0215(19)	0.0000(14)	-0.0054(14)	-0.0021(14)
C(2)	0.0187(17)	0.0185(18)	0.0201(19)	0.0003(14)	-0.0058(14)	0.0001(14)
C(3)	0.0212(18)	0.0141(17)	0.030(2)	0.0018(15)	-0.0066(15)	-0.0011(14)
C(4)	0.0181(18)	0.0202(19)	0.037(2)	0.0041(17)	0.0001(16)	-0.0051(15)

C(5)	0.0200(18)	0.0204(19)	0.036(2)	0.0001(17)	0.0002(16)	0.0028(15)
C(6)	0.0189(17)	0.0165(17)	0.0240(19)	-0.0009(15)	-0.0048(14)	-0.0031(14)
C(7)	0.0196(17)	0.0148(17)	0.0221(19)	-0.0001(14)	-0.0063(14)	-0.0003(14)
C(8)	0.0192(18)	0.0208(19)	0.026(2)	-0.0005(15)	-0.0007(15)	0.0063(15)
C(9)	0.0228(18)	0.0170(18)	0.026(2)	-0.0023(15)	-0.0023(15)	0.0061(14)
C(10)	0.0185(17)	0.0168(17)	0.0214(19)	0.0018(14)	-0.0050(14)	-0.0015(14)
C(11)	0.0276(19)	0.0100(16)	0.030(2)	0.0000(15)	-0.0045(16)	-0.0017(14)
C(12)	0.0274(19)	0.0117(17)	0.030(2)	-0.0026(15)	-0.0031(16)	0.0024(15)
C(13)	0.0229(18)	0.0194(18)	0.024(2)	-0.0002(15)	-0.0003(15)	-0.0003(15)
C(14)	0.026(2)	0.033(2)	0.028(2)	-0.0008(17)	-0.0027(16)	-0.0018(17)
C(15)	0.030(2)	0.045(3)	0.037(3)	0.008(2)	-0.0066(19)	-0.009(2)
C(16)	0.034(3)	0.073(4)	0.045(3)	0.002(3)	0.008(2)	0.005(2)
C(17)	0.0247(19)	0.0138(17)	0.025(2)	0.0020(15)	-0.0034(15)	-0.0028(14)
C(18)	0.034(2)	0.0200(19)	0.025(2)	0.0035(16)	-0.0071(17)	-0.0028(16)
C(19)	0.046(2)	0.022(2)	0.029(2)	0.0042(17)	-0.0027(19)	-0.0082(18)
C(20)	0.069(3)	0.032(2)	0.034(3)	0.012(2)	-0.002(2)	-0.005(2)
C(21)	0.039(2)	0.036(2)	0.033(2)	0.0098(19)	0.0001(19)	-0.016(2)
C(22)	0.025(2)	0.038(3)	0.049(3)	0.008(2)	-0.0010(19)	-0.0059(18)
C(23)	0.0237(19)	0.029(2)	0.029(2)	-0.0002(17)	-0.0065(16)	0.0001(16)
C(24)	0.035(2)	0.026(2)	0.026(2)	-0.0028(17)	-0.0062(17)	0.0046(17)
C(25)	0.113(6)	0.100(6)	0.085(6)	0.034(5)	0.032(5)	0.055(5)
C(26)	0.075(4)	0.078(5)	0.089(5)	0.020(4)	-0.003(4)	0.016(4)
C(27)	0.063(4)	0.071(4)	0.067(4)	0.018(3)	0.004(3)	0.014(3)
C(28)	0.170(9)	0.072(5)	0.081(5)	0.022(4)	-0.033(6)	0.035(5)

Table S10. Bond lengths [Å] for 4.

atom-atom	distance	atom-atom	distance
Zr(1)-N(6)	2.047(3)	Zr(1)-N(5)	2.116(3)
Zr(1)-C(1)	2.339(4)	Zr(1)-C(7)	2.384(4)
Zr(1)-C(10)	2.407(4)	Zr(1)-Br(1)	2.8087(5)
O(1)-C(25)	1.422(9)	O(1)-C(28)	1.423(8)
N(1)-C(7)	1.359(5)	N(1)-C(8)	1.380(5)
N(1)-C(6)	1.457(4)	N(2)-C(7)	1.352(4)
N(2)-C(9)	1.380(5)	N(2)-C(17)	1.470(5)
N(3)-C(10)	1.377(5)	N(3)-C(11)	1.381(4)
N(3)-C(2)	1.438(5)	N(4)-C(10)	1.352(5)
N(4)-C(12)	1.385(5)	N(4)-C(13)	1.472(5)

N(6)-C(23) C(1)-C(2) C(2)-C(3) C(3)-H(3A) C(4)-U(4A)	1.446(5) 1.385(5) 1.391(5) 0.9500 0.9500 0.9500	N(6)-C(24) C(1)-C(6) C(3)-C(4) C(4)-C(5) C(5)-C(6)	1.453(5) 1.386(5) 1.387(5) 1.394(5)
C(1)-C(2) C(2)-C(3) C(3)-H(3A) C(4)-H(4A)	1.385(5) 1.391(5) 0.9500 0.9500 0.9500	C(1)-C(6) C(3)-C(4) C(4)-C(5) C(5)-C(6)	1.386(5) 1.387(5) 1.394(5)
C(2)-C(3) C(3)-H(3A) C(4) $H(4A)$	1.391(5) 0.9500 0.9500 0.9500 0.9500	C(3)-C(4) C(4)-C(5) C(5)-C(6)	1.387(5) 1.394(5)
C(3)- $H(3A)$	0.9500 0.9500 0.9500	C(4)-C(5) C(5)-C(6)	1.394(5)
$C(A) \Pi(AA)$	0.9500 0.9500	C(5) - C(6)	
$C(4) - \Pi(4A)$	0 9500		1.382(5)
C(5)-H(5A)	0.7000	C(8)-C(9)	1.344(5)
C(8)-H(8A)	0.9500	C(9)-H(9A)	0.9500
C(11)-C(12)	1.350(5)	C(11)-H(11A)	0.9500
C(12)-H(12A)	0.9500	C(13)-C(14)	1.511(5)
C(13)-H(13A)	0.9900	C(13)-H(13B)	0.9900
C(14)-C(15)	1.533(6)	C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900	C(15)-C(16)	1.508(7)
C(15)-H(15A)	0.9900	C(15)-H(15B)	0.9900
C(16)-H(16A)	0.9800	C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800	C(17)-C(18)	1.516(5)
C(17)-H(17A)	0.9900	C(17)-H(17B)	0.9900
C(18)-C(19)	1.521(5)	C(18)-H(18A)	0.9900
C(18)-H(18B)	0.9900	C(19)-C(20)	1.516(6)
C(19)-H(19A)	0.9900	C(19)-H(19B)	0.9900
C(20)-H(20A)	0.9800	C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800	C(21)-H(21A)	0.9800
C(21)-H(21B)	0.9800	C(21)-H(21C)	0.9800
C(22)-H(22A)	0.9800	C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800	C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800	C(23)-H(23C)	0.9800
C(24)-H(24A)	0.9800	C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800	C(25)-C(26)	1.511(9)
C(25)-H(25A)	0.9900	C(25)-H(25B)	0.9900
C(26)-C(27)	1.499(9)	C(26)-H(26A)	0.9900
C(26)-H(26B)	0.9900	C(27)-C(28)	1.514(10)
C(27)-H(27A)	0.9900	C(27)-H(27B)	0.9900
C(28)-H(28A)	0.9900	C(28)-H(28B)	0.9900

Table S11. Bond angles [°] for **4**.

atom-atom-atom	angle	atom-atom-atom	angle
N(6)-Zr(1)-N(5)	99.88(12)	N(6)- $Zr(1)$ - $C(1)$	93.02(12)
N(5)- $Zr(1)$ - $C(1)$	167.10(12)	N(6)-Zr(1)-C(7)	85.57(12)
N(5)-Zr(1)-C(7)	112.39(12)	C(1)- $Zr(1)$ - $C(7)$	68.16(12)
N(6)-Zr(1)-C(10)	97.11(12)	N(5)- $Zr(1)$ - $C(10)$	110.35(12)
C(1)- $Zr(1)$ - $C(10)$	67.84(12)	C(7)- $Zr(1)$ - $C(10)$	136.00(12)

N(6)-Zr(1)-Br(1)	168.01(9)	N(5)- $Zr(1)$ - $Br(1)$	86.74(9)
C(1)-Zr(1)-Br(1)	80.53(8)	C(7)-Zr(1)-Br(1)	82.65(8)
C(10)-Zr(1)-Br(1)	89.84(8)	C(25)-O(1)-C(28)	108.8(5)
C(7)-N(1)-C(8)	111.6(3)	C(7)-N(1)-C(6)	118.7(3)
C(8)-N(1)-C(6)	129.7(3)	C(7)-N(2)-C(9)	111.3(3)
C(7)-N(2)-C(17)	123.6(3)	C(9)-N(2)-C(17)	125.0(3)
C(10)-N(3)-C(11)	111.9(3)	C(10)-N(3)-C(2)	119.1(3)
C(11)-N(3)-C(2)	129.0(3)	C(10)-N(4)-C(12)	112.5(3)
C(10)-N(4)-C(13)	124.1(3)	C(12)-N(4)-C(13)	123.3(3)
C(22)-N(5)-C(21)	107.0(3)	C(22)-N(5)-Zr(1)	132.8(3)
C(21)-N(5)-Zr(1)	120.2(2)	C(23)-N(6)-C(24)	110.2(3)
C(23)-N(6)-Zr(1)	138.0(3)	C(24)-N(6)-Zr(1)	111.7(2)
C(2)-C(1)-C(6)	115.0(3)	C(2)-C(1)-Zr(1)	122.8(3)
C(6)-C(1)-Zr(1)	122.1(2)	C(1)-C(2)-C(3)	124.4(3)
C(1)-C(2)-N(3)	113.0(3)	C(3)-C(2)-N(3)	122.6(3)
C(4)-C(3)-C(2)	117.1(3)	C(4)-C(3)-H(3A)	121.5
C(2)-C(3)-H(3A)	121.5	C(3)-C(4)-C(5)	121.7(4)
C(3)-C(4)-H(4A)	119.2	C(5)-C(4)-H(4A)	119.2
C(6)-C(5)-C(4)	117.4(4)	C(6)-C(5)-H(5A)	121.3
C(4)-C(5)-H(5A)	121.3	C(5)-C(6)-C(1)	124.3(3)
C(5)-C(6)-N(1)	122.9(3)	C(1)-C(6)-N(1)	112.7(3)
N(2)-C(7)-N(1)	103.8(3)	N(2)-C(7)-Zr(1)	137.9(3)
N(1)-C(7)-Zr(1)	118.2(2)	C(9)-C(8)-N(1)	106.2(3)
C(9)-C(8)-H(8A)	126.9	N(1)-C(8)-H(8A)	126.9
C(8)-C(9)-N(2)	107.0(3)	C(8)-C(9)-H(9A)	126.5
N(2)-C(9)-H(9A)	126.5	N(4)-C(10)-N(3)	102.8(3)
N(4)-C(10)-Zr(1)	139.9(3)	N(3)-C(10)-Zr(1)	117.3(2)
C(12)-C(11)-N(3)	106.4(3)	C(12)-C(11)-H(11A)	126.8
N(3)-C(11)-H(11A)	126.8	C(11)-C(12)-N(4)	106.5(3)
C(11)-C(12)-H(12A)	126.8	N(4)-C(12)-H(12A)	126.8
N(4)-C(13)-C(14)	112.0(3)	N(4)-C(13)-H(13A)	109.2
C(14)-C(13)-H(13A)	109.2	N(4)-C(13)-H(13B)	109.2
С(14)-С(13)-Н(13В)	109.2	H(13A)-C(13)-H(13B)	107.9
C(13)-C(14)-C(15)	111.9(3)	C(13)-C(14)-H(14A)	109.2
C(15)-C(14)-H(14A)	109.2	C(13)-C(14)-H(14B)	109.2
C(15)-C(14)-H(14B)	109.2	H(14A)-C(14)-H(14B)	107.9
C(16)-C(15)-C(14)	113.6(4)	C(16)-C(15)-H(15A)	108.8
С(14)-С(15)-Н(15А)	108.8	C(16)-C(15)-H(15B)	108.8
С(14)-С(15)-Н(15В)	108.8	H(15A)-C(15)-H(15B)	107.7
C(15)-C(16)-H(16A)	109.5	C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5	C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5	H(16B)-C(16)-H(16C)	109.5
N(2)-C(17)-C(18)	112.5(3)	N(2)-C(17)-H(17A)	109.1
C(18)-C(17)-H(17A)	109.1	N(2)-C(17)-H(17B)	109.1
С(18)-С(17)-Н(17В)	109.1	H(17A)-C(17)-H(17B)	107.8
C(17)-C(18)-C(19)	110.8(3)	C(17)-C(18)-H(18A)	109.5

C(19)-C(18)-H(18A)	109.5	C(17)-C(18)-H(18B)	109.5
C(19)-C(18)-H(18B)	109.5	H(18A)-C(18)-H(18B)	108.1
C(20)-C(19)-C(18)	112.9(4)	C(20)-C(19)-H(19A)	109.0
C(18)-C(19)-H(19A)	109.0	C(20)-C(19)-H(19B)	109.0
C(18)-C(19)-H(19B)	109.0	H(19A)-C(19)-H(19B)	107.8
С(19)-С(20)-Н(20А)	109.5	C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5	C(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5	H(20B)-C(20)-H(20C)	109.5
N(5)-C(21)-H(21A)	109.5	N(5)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5	N(5)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5	H(21B)-C(21)-H(21C)	109.5
N(5)-C(22)-H(22A)	109.5	N(5)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5	N(5)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5	H(22B)-C(22)-H(22C)	109.5
N(6)-C(23)-H(23A)	109.5	N(6)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5	N(6)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5	H(23B)-C(23)-H(23C)	109.5
N(6)-C(24)-H(24A)	109.5	N(6)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5	N(6)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5	H(24B)-C(24)-H(24C)	109.5
O(1)-C(25)-C(26)	107.2(6)	O(1)-C(25)-H(25A)	110.3
C(26)-C(25)-H(25A)	110.3	O(1)-C(25)-H(25B)	110.3
C(26)-C(25)-H(25B)	110.3	H(25A)-C(25)-H(25B)	108.5
C(27)-C(26)-C(25)	104.7(6)	C(27)-C(26)-H(26A)	110.8
C(25)-C(26)-H(26A)	110.8	C(27)-C(26)-H(26B)	110.8
C(25)-C(26)-H(26B)	110.8	H(26A)-C(26)-H(26B)	108.9
C(26)-C(27)-C(28)	101.4(6)	C(26)-C(27)-H(27A)	111.5
C(28)-C(27)-H(27A)	111.5	C(26)-C(27)-H(27B)	111.5
C(28)-C(27)-H(27B)	111.5	H(27A)-C(27)-H(27B)	109.3
O(1)-C(28)-C(27)	106.3(6)	O(1)-C(28)-H(28A)	110.5
C(27)-C(28)-H(28A)	110.5	O(1)-C(28)-H(28B)	110.5
C(27)-C(28)-H(28B)	110.5	H(28A)-C(28)-H(28B)	108.7

Table S12. Torsion angles [°] for **4**.

atom-atom-atom-atom	angle	atom-atom-atom-atom	angle
C(6)-C(1)-C(2)-C(3)	1.2(5)	Zr(1)-C(1)-C(2)-C(3)	176.8(3)
C(6)-C(1)-C(2)-N(3)	-178.0(3)	Zr(1)-C(1)-C(2)-N(3)	-2.4(4)
C(10)-N(3)-C(2)-C(1)	1.9(4)	C(11)-N(3)-C(2)-C(1)	180.0(3)
C(10)-N(3)-C(2)-C(3)	-177.3(3)	C(11)-N(3)-C(2)-C(3)	0.8(6)
C(1)-C(2)-C(3)-C(4)	-1.2(6)	N(3)-C(2)-C(3)-C(4)	177.9(3)
C(2)-C(3)-C(4)-C(5)	-0.4(6)	C(3)-C(4)-C(5)-C(6)	1.9(6)
C(4)-C(5)-C(6)-C(1)	-2.0(6)	C(4)-C(5)-C(6)-N(1)	179.6(3)
C(2)-C(1)-C(6)-C(5)	0.5(5)	Zr(1)-C(1)-C(6)-C(5)	-175.2(3)
C(2)-C(1)-C(6)-N(1)	179.0(3)	Zr(1)-C(1)-C(6)-N(1)	3.4(4)
C(7)-N(1)-C(6)-C(5)	178.4(3)	C(8)-N(1)-C(6)-C(5)	-1.8(6)
C(7)-N(1)-C(6)-C(1)	-0.1(5)	C(8)-N(1)-C(6)-C(1)	179.7(3)
C(9)-N(2)-C(7)-N(1)	0.2(4)	C(17)-N(2)-C(7)-N(1)	177.5(3)
C(9)-N(2)-C(7)-Zr(1)	-176.4(3)	C(17)-N(2)-C(7)-Zr(1)	0.9(6)
C(8)-N(1)-C(7)-N(2)	-0.2(4)	C(6)-N(1)-C(7)-N(2)	179.6(3)
C(8)-N(1)-C(7)-Zr(1)	177.2(2)	C(6)-N(1)-C(7)-Zr(1)	-3.0(4)
C(7)-N(1)-C(8)-C(9)	0.1(4)	C(6)-N(1)-C(8)-C(9)	-179.7(3)
N(1)-C(8)-C(9)-N(2)	0.0(4)	C(7)-N(2)-C(9)-C(8)	-0.1(4)
C(17)-N(2)-C(9)-C(8)	-177.4(3)	C(12)-N(4)-C(10)-N(3)	0.1(4)
C(13)-N(4)-C(10)-N(3)	176.9(3)	C(12)-N(4)-C(10)-Zr(1)	178.8(3)
C(13)-N(4)-C(10)-Zr(1)	-4.3(6)	C(11)-N(3)-C(10)-N(4)	0.0(4)
C(2)-N(3)-C(10)-N(4)	178.4(3)	C(11)-N(3)-C(10)-Zr(1)	-179.1(2)
C(2)-N(3)-C(10)-Zr(1)	-0.7(4)	C(10)-N(3)-C(11)-C(12)	0.0(4)
C(2)-N(3)-C(11)-C(12)	-178.2(3)	N(3)-C(11)-C(12)-N(4)	0.1(4)
C(10)-N(4)-C(12)-C(11)	-0.1(4)	C(13)-N(4)-C(12)-C(11)	-177.0(3)
C(10)-N(4)-C(13)-C(14)	-78.7(4)	C(12)-N(4)-C(13)-C(14)	97.8(4)
N(4)-C(13)-C(14)-C(15)	177.8(3)	C(13)-C(14)-C(15)-C(16)	76.1(5)
C(7)-N(2)-C(17)-C(18)	-102.5(4)	C(9)-N(2)-C(17)-C(18)	74.4(4)
N(2)-C(17)-C(18)-C(19)	179.0(3)	C(17)-C(18)-C(19)-C(20)	174.8(4)
C(28)-O(1)-C(25)-C(26)	-4.4(9)	O(1)-C(25)-C(26)-C(27)	-17.2(9)
C(25)-C(26)-C(27)-C(28)	30.3(8)	C(25)-O(1)-C(28)-C(27)	24.3(10)
C(26)-C(27)-C(28)-O(1)	-33.8(9)		