Supplementary Material

Reactions of trivalent iodine reagents with classic iridium and rhodium complexes

Mohammad Albayer^A and Jason L. Dutton^{A,B}

^ADepartment of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic. 3086, Australia.

^BCorresponding author. Email: j.dutton@latrobe.edu.au

Experimental

Materials and Methods

NMR solvents were purchased from Cambridge Isotope Laboratories and dried by stirring for 3 days over CaH₂, which was distilled and stored over 3 Å molecular sieves in the glovebox. CH₂Cl₂, CH₃CN, n-hexane, toluene and chloroform, which were purchased from Caledon Laboratories, were dried using an Innovative Technologies solvent purification system. All solvents were stored over 3 Å molecular sieves in nitrogen filled glovebox. All remaining reagents were ordered from Sigma-Aldrich and used as received. [Ir(PPh₃)₂(CO)Cl],^[1] [Rh(PPh₃)₃Cl],^[2] [Rh(dppe)₂]Cl,^[3] [PhI(Pyr)₂][OTf]₂ and [PhI(4-DMAP)₂][OTf]₂^[4] were prepared following published procedures.

The metathesis to produce [Rh(dppe)₂]OTf was carried out by the addition of 1:1 stochiometric ratio of TMS-Triflate to CH₂Cl₂ solution of [Rh(dppe)₂]Cl followed by solvent removal at reduced pressure.

X-ray Crystallography Details

Single crystals were selected under n-paratone oil, mounted on nylon loops and placed into a cold stream (172 K) of N₂ on an Oxford CCD diffractometer using Mo Kα radiation. Structure solution and refinement were performed using the SHELXTL suite of software.

Reaction of 20Ac with 9.

A solution of **20Ac** (42 mg, 0.13 mmol) in 2 mL CDCl₃ was added drop wise to a solution of **9** (100 mg, 0.13 mmol) in 5 mL CDCl₃ and stirred for 3 hours at room temperature. A color change from bright yellow to light yellow was observed within 10 minutes. The solvent was reduced to half under reduced pressure and followed by addition of 10 mL n-hexane, which resulted in precipitation of a pale yellow solid. The solid was filtered, washed with n-hexane (2 x 10mL) and dried under reduced pressure. ³¹P NMR (162 MHz, CDCl₃) δ (ppm): 2.0 (s), -1.6 (s), -9.6 (s), -10.9 (s), -12.6, -13.7 (s). See Figure 2 for the ¹H NMR spectrum. The ESI-MS of the identified compounds [M]ⁿ⁺ : m/z 876.1 [Ir(PPh₃)₂(CO)(Cl)₂(OAc)], 894.1 [Ir(PPh₃)₂(OAc)₃].

Figure 1. Reaction of **2OAc** with **9** ³¹P NMR.

Figure 2. Reaction of **2OAc** with **9** ¹H NMR.

Figure 3. Reaction of **2OAc** with **9** ESI mass spectrum.

Reaction of 2R with 9.

A solution of **2R** (0.13 mmol) in 5 mL CDCl₃ was added drop wise to a solution of **9** (100 mg, 0.13 mmol) in 5 mL CDCl₃ and stirred for 3 hours at room temperature. A color change from bright yellow to light yellow was observed within 30 minutes. The solvent was reduced to half under reduced pressure and followed by addition of 10 mL n-hexane, which resulted in precipitation of a pale yellow solid. The solid was filtered, washed with n-hexane (2 x 10mL) and dried under reduced pressure. **R** = **NMe**₂: ³¹P NMR (162 MHz, CDCl₃) δ (ppm): -2.4 (s), -8.4 (s), -15.4 (s). See Figure 5 for the ¹H NMR. ESI-MS [M]ⁿ⁺ : *m*/z 797.1 [Ir(PPh₃)(CO)(Cl)₂(DMAP)₂]⁺, 937.0 [Ir(PPh₃)₂(CO)(Cl)₂(DMAP)]⁺. **R** = **H**: ³¹P NMR (162 MHz, CDCl₃) δ (ppm): 65.9 (s), 26.9 (s), -3.9 (s), -14.6 (s), -15.2 (s), -16.4 (s), -23.1 (s). ESI-MS [M]ⁿ⁺ : *m*/z 711.1 [Ir(PPh₃)(CO)(Cl)₂(Pyr)₂]⁺.

Figure 4. Reaction of **2NMe**₂ with **9** ³¹P NMR.

Figure 5. Reaction of $2NMe_2$ with 9 ¹H NMR.

Figure 6. Reaction of $2NMe_2$ with 9 ESI mass spectrum.

Figure 7. Reaction of **2H** with **9**³¹P NMR.

Figure 8. Reaction of 2H with 9 ESI mass spectrum.

Reaction of 20Ac.OTf with 9.

A mixture of **2OAc** (20.6 mg, 0.064 mmol) and TMS-OTf (23.3 μ L, 0.128 mmol) in 2 mL CDCl₃ was added drop wise to a solution of **9** (50 mg, 0.064 mmol) in 2 mL CDCl₃. A color change from

bright yellow to brown was observed in 10 min. Aliquot was removed for NMR and mass spectrometry analysis. ³¹P NMR (162 MHz, CDCl₃) δ (ppm): 14.4 (s), 8.0 (s), 5.3 (s), 2.6 (s), 0.4 (s), -3.6 (s), -8.1 (s), -15.6, (s), -21.4 (s). ESI-MS [M]ⁿ⁺ : m/z 745.2 [Ir(PPh₃)₂CO]⁺, 753.2 [Ir(PPh₃)₂Cl]⁺, 786.1 [Ir(PPh₃)₂Cl₂]⁺, 803.1 [Ir(PPh₃)₂CO(OAc)]⁺, 839.1 [Ir(PPh₃)₂CO(OAc)Cl]⁺.

Figure 9. Reaction of **2OAc.OTf** with **9** ³¹P NMR.

Figure 10. Reaction of **2OAc.OTf** with **9** ESI mass spectrum.

A solution of **2OAc** (35 mg, 0.11 mmol) in 2 mL CDCl₃ was added drop wise to a solution of **10** (100 mg, 0.11 mmol) in 5 mL CDCl₃ and stirred for 3 hours at room temperature. A color change from burgundy to light red was observed. The solvent was reduced to half under reduced pressure and followed by addition of 10 mL n-hexane, which resulted in precipitation of a light orange solid. The solid was filtered, washed with n-hexane (2 x 10mL) and dried under reduced pressure. ³¹P NMR (162 MHz, CDCl₃) δ (ppm): 24.5 (d, J= 122 Hz). ¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.43-7.38 (m, 6H), 7.37-7.32 (m, 12H), 7.20-7.17 (m, 12H), 2.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 191.24, 135.61, 130.94, 129.28, 127.71, 25.70. ESI-MS [M]ⁿ⁺ : *m/z* 721.1 [Rh(PPh₃)₂(Cl)(OAc)]⁺.

Figure 11. Isolated solid from the reaction of **2OAc** with **10** ³¹P NMR.

Figure 13. Reaction of **2OAc** with **10** ¹³C NMR.

Figure 14. Reaction of 2OAc with 10 ESI mass spectrum.

Reaction of **2R** with Wilkinson's catalyst (**10**).

A solution of **2R** (0.11 mmol) in 5 mL CDCl₃ was added drop wise to a solution of **10** (100 mg, 0.11 mmol) in 5 mL CDCl₃ and stirred for 3 hours at room temperature. A color change from burgundy to light red-brown was observed. The solvent was reduced to half under reduced pressure and followed by addition of 10 mL n-hexane, which resulted in precipitation of a light brown solid. The solid was filtered, washed with n-hexane (2 x 10mL) and dried under reduced pressure. **R** = **NMe**₂: ³¹P NMR (162 MHz, CH₂Cl₂) δ (ppm): 28.2 (s), 14.1 (d, J= 88 *Hz*), 11.9 (d, J=88 *Hz*). ESI-MS [M]ⁿ⁺: *m/z* 803.0 [Rh(PPh₃)(Cl)₂(DMAP)₃]⁺, 942.2 [Rh(PPh₃)₂(Cl)₂(DMAP)₂]⁺. **R** = **H**: ³¹P NMR (162 MHz, CH₂Cl₂) δ (ppm): 65.0 (s), 14.0 (d, J= 84 *Hz*), 9.7 (d, J= 104 *Hz*). ESI-MS [M]ⁿ⁺: *m/z* 673.6 [Rh(PPh₃)(Cl)₂(Pyr)₃]⁺, 854.9 [Rh(PPh₃)₂(Cl)₂(Pyr)₂]⁺.

Figure 15. Reaction of **2NMe**₂ with **10** ³¹P NMR.

Figure 16. Reaction of 2NMe2 with 10 ESI mass spectrum.

Figure 17. Reaction of **2H** with **10** ³¹P NMR.

Figure 18. Reaction of 2H with 10 ESI mass spectrum.

Reaction of 20Ac.OTf with 10.

A mixture of **2OAc** (17.4 mg, 0.054 mmol) and TMS-OTf (19.7 μ L, 0.108 mmol) in 2 mL CDCl₃ was added drop wise to a solution of **10** (50 mg, 0.054 mmol) in 2 mL CDCl₃. A color change from

burgundy to brown was observed in 10 min. Aliquot was removed for NMR and mass spectrometry analysis. ³¹P NMR (162 MHz, CDCl₃) δ (ppm): 61.9 (s), 45.2 (dt, J= 135 *Hz*), 23.4 (s), 19.8 (dt, J= 100 *Hz*). ESI-MS [M]ⁿ⁺ : *m/z* 297.1 [PPh3-Cl]⁺, 307.1 [Rh-I-Ph]⁺, 406.0 [Rh-PPh₃-NCCH₃]⁺, 477.0 [Rh-PPh₃-Cl₂-NCCH₃]⁺, 568.9 [PPh₃-Rh-I-Ph]⁺, 627.0 [Rh(PPh₃)₂]⁺, 697.0 [Rh(PPh₃)₂Cl₂]⁺.

Figure 19. Reaction of **2OAc.OTf** with **10** ³¹P NMR.

Figure 20. Reaction of 2OAc.OTf with 10 ESI mass spectrum.

Reaction of 20Ac.OTf with 11.

A mixture of **2OAc** (31 mg, 0.095 mmol) and TMS-OTf (35 µL, 0.19 mmol) in 5 mL CH₂Cl₂ was added drop wise to a solution of **11** (100 mg, 0.095 mmol) in 5 mL CH₂Cl₂ and stirred for one hour at room temperature. A color change from bright yellow to yellow was observed within 5 minutes. The solvent was reduced to half under reduced pressure and followed by addition of 10 mL n-hexane, which resulted in precipitation of a yellow solid. The solid was filtered, washed with n-hexane (2 x 10mL) and dried under reduced pressure (84 mg, 70% yield). ³¹P NMR (162 MHz, CH₂Cl₂): δ (ppm) 58.6 (dt, J= 11, 84 *Hz*), 42.5 (dt, J= 11, 115 *Hz*). ¹H NMR (400 MHz, CD₃CN) δ (ppm): 7.81-7.76 (m, 8H), 7.68-7.60 (m, 8H), 7.58-7.56 (m, 12H), 7.39-7.34 (m, 4H), 7.24-7.20 (m, 4H), 7.18-7.15 (m, 4H), 2.68-2.56 (m, 8H), 1.96 (s, 3H). ¹³C NMR (100 MHz, CD₃CN): δ (ppm): 172.07, 134.55, 134.08, 133.55, 133.25, 130.45, 130.24, 126.05, 125.51, 24.37, 20.22, 16.68. ESI-MS [M]ⁿ⁺: *m/z* 479.1 [Rh(dppe)₂(OAc)]²⁺.

Figure 21. Reaction of **2OAc.OTf** with **11** ³¹P NMR.

Figure 23. Reaction of **2OAc** with 11 ¹³C NMR.

Figure 24. Reaction of **2OAc** with **11** ESI mass spectrum.

Reaction of 2NMe₂ with 11.

A solution of **2NMe**₂ (72 mg, 0.095 mmol) in 5 mL CDCl₃ was added drop wise to a solution of **11** (100 mg, 0.095 mmol) in 5 mL CDCl₃ and stirred for 3 hours at room temperature. A color change from bright yellow to yellow was observed. The solvent was reduced to half under reduced pressure and followed by addition of 10 mL n-hexane, which resulted in precipitation of a pale orange solid. The solid was filtered, washed with n-hexane (2 x 10mL) and dried under reduced pressure. ³¹P NMR (162 MHz, CH₂Cl₂) δ (ppm) 40.7 (dt, J= 15, 113 *Hz*), 34.5 (dt, 15, 86 *Hz*). ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.98-6.65 (m, 50H), 3.19 (s, 12H). ESI-MS [M]ⁿ⁺ : *m/z* 380.7 [Rh(dppe)₂(DMAP)₂]³⁺, 510.1 [Rh(dppe)₂(DMAP)]²⁺.

Figure 25. Reaction of $2NMe_2$ with $11^{31}P$ NMR.

Figure 26. Reaction of **2NMe**₂ with **11** ¹H NMR.

Figure 27. Reaction of $2NMe_2$ with 11 ESI mass spectrum.

References:

[1] J. P. Collman, C. T. Sears, M. Kubota, A. Davison, E. T. Shawl, J. R. Sowa, R. J. Angelici, *Inorg. Synth.* **1990**, 28, 92.

- [2] J. A. Osborn, G. Wilkinson, J. J. Mrowca, *Inorg. Synth.* **1990**, *28*, 77.
- [3] A. J. Kunin, E. J. Nanni, R. Eisenberg, *Inorg. Chem.* **1985**, *24*, 1852.
- [4] R. Weiss, J. Seubert, J. Angew. Chem., Int. Ed. 1994, 33, 891.