
SPECIAL ISSUE | PRIMER REVIEW 
https://doi.org/10.1071/CH23055 

Overview of the synthetic approaches to lysergic acid as 
a precursor to the psychedelic LSD 
Michael J. NuttA,*, Nick WoolfB and Scott G. StewartA,*

ABSTRACT 

In this short primer we will discuss the total synthesis of lysergic acid, an important precursor to 
both lysergic acid diethylamide (LSD) and its derivatives. Lysergic acid is also noted as a precursor 
for many drugs targeting the serotonin receptor family of GPCRs, including multiple known 
hallucinogens. More recently, reinvigorated interest in the therapeutic potential of psychedelics 
from academic and commercial sectors has placed a renewed importance on practical, scalable 
means of accessing this complex alkaloid scaffold.  
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Introduction 

Lysergic acid diethylamide (LSD, 1) is a profoundly powerful psychedelic drug with exquisite 
potency, capable of inducing dramatic alterations to subjective conscious experience at 
microgram doses.[1–3] A semi-synthetic compound derived from alkaloids of the ergot fungus, 
LSD (1) was first synthesised by Swiss chemist Albert Hoffman in 1938 during his time at 
Sandoz under Professor Arthur Stoll.[4] So named from the German lysergsäurediethylamid, 
LSD (1) was the 25th entry in a series of amide-substituted ergoline derivates being investi-
gated by Hoffman. The original intent of the program was to improve upon the existing 
efficacy of several naturally occurring ergot alkaloids as tools in obstetric medicine. Following 
initial animal testing, LSD (1) returned no notable pharmacological properties and was thus 
not further investigated by the Sandoz pharmacology team. In a now infamous series of 
serendipitous events, however, Hoffman felt compelled to return to the compound despite this 
decision. Upon resynthesising the material several years later on a hunch, his apparent 
accidental exposure to the compound, on 16 April 1943, lead to the inadvertent discovery 
of one of the most potent serotonergic psychedelic agents ever reported. 

The precursor most commonly used to prepare LSD (and most of its reported derivatives 
to date) is lysergic acid (2), from which the characteristic tetracyclic ergoline scaffold 3 is 
derived (Fig. 1).[5] Two stereocentres exist at positions C5 and C8, and the overall shape 
bestowed on the scaffold by these stereocentres is of critical importance to LSD’s biological 
activity; only one of the four possible stereoisomers has any appreciable activity as a 
psychedelic.[5,6] These stereochemical requirements for biological activity place an added 
challenge on the study and development of LSD analogues from lysergic acid, given its 
significantly more complex structure compared to the other tryptamine and phenethylamine 
psychedelics. Owing to the renewed interest in such compounds for their potential in the 
treatment of various psychiatric disorders,[7] there is a greater desire than ever for conve-
nient, scalable access to lysergic acid as a precursor to LSD and other novel psychedelics. 

Herein, we highlight some of the unique approaches used in the existing syntheses[8]A 

of this pivotal compound, with particular focus on the often-challenging ring forming 
processes. The aim of our review is to provide readers with a concise and convenient 
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primer of these efforts spanning 1954–2023, categorising 
works based on which of the four ergoline rings forms the 
key retrosynthetic disconnection. 

Total syntheses with key step D-ring cyclisation 

In 1954, the first total synthesis of (±)-lysergic acid was 
achieved by Ed Kornfeld at Eli Lilly, with R. B. Woodward 
acting as a consultant on the project.[9]B Initially, a protected 
version of compound 5, named Kornfeld’s ketone, was pre-
pared through an intramolecular Friedel–Crafts acylation 
based approach from 3-indolepropionic acid 4 (Scheme 1). 
From this ketone, α-installation of a bromine at C5 (lysergic 
acid notation) allowed introduction of nucleophiles such as 
the amine 6. Deprotection of the acetal within compound 7 
set compound 8 up for the second key step, an intramolecular 
aldol condensation, to form the tetracycle 9 containing the 
D-ring. Later functional group interconversion reactions at 
the C8-carbonyl allowed for the production of ester 10. 
Hydrolysis of 10, along with catalytic dehydrogenation in 
water using Raney nickel, finalised this landmark synthesis 
of the target compound (±)-lysergic acid (2). 

The synthetic approach from the Rebek Jr research team, 
followed the pioneering studies of Kornfeld, by also using an 
α-amino derivative of Uhle’s ketone 11[10]C as a key inter-
mediate. In this example the natural occurring amino acid 
tryptophan was used as a starting material.[11,12] In the later 
stages of their synthesis, the D-ring was formed using a lac-
tone ring opening and dehydration sequence. Conversely, in 
Ninomiya’s approach, the installation of the ergoline D-ring 
was accomplished by first using reductive photocyclisation 
using a furan-based tether.[13] 

Similar to Kornfeld, the Szántay’s synthetic approach to 
D-ring formation was through an intramolecular aldol con-
densation (Scheme 2); however, this route importantly pro-
duced enantiomerically pure (+)-lysergic acid.[14] Initially, 
3-indolepropionic acid was used to prepare the protected 

4-bromo-Uhle’s ketone 12, en route to diketone 13. 
Following this, the aforementioned aldol condensation, 
under relatively mild conditions provided the expected 
enone. Importantly, this racemic mixture containing 14 
could be chirally resolved using (−)-dibenzoyl-tartaric 
acid to give the so-called Szántay’s intermediate 14 
which was converted into (+)-lysergic acid. Unique to this 
synthesis was the initial reaction of the C8 carbonyl within 
14 with p-toluenesulfonylmethyl isocyanide to install the 
necessary additional carbon attachment required at C8. 
This was the first preparation of (+)-lysergic acid and high-
lights the strength of chiral resolution in the intermediate 
stages of the total synthesis. 

In 1981, Ramage used part of the general synthetic strat-
egy compiled by Kornfeld and Woodward to devise a syn-
thesis of dihydrolysergic acid esters (Scheme 3).[15] In this 
synthesis α,β-unsaturated aldehyde 15, containing a satu-
rated ABC-ring system, was first used in order to attach a 
diester tether through a Wittig olefination using 16. 
Ultimately, the D-ring cyclisation was achieved through 
nucleophilic cyclisation of the aminodienoic ester 17 to 
epimers 18 and 19 in a 9:3 ratio respectively (along with 
an α,β-unsaturated isomer). This significant piece of syn-
thetic chemistry revealed landmark compounds for the syn-
theses of the ergot ring system. Importantly, this research 
also highlighted the possibility of epimerisation of the 
dihydro-isolysergic acid 18 to the epimer 19, containing 
the correct (+)-lysergic acid (2) stereochemistry at C8.D 

Later, Kurihara used a modified synthesis based on this 
work, also incorporating an intermolecular aldol condensation 
using 15, for the D-ring, in their approach to lysergic acid 
(2).[16] Likewise, the Ortar group also used the cyclisation of 
an amino-dienoic ester. In this case the precursor tether was 
prepared through an intermolecular Mizoroki–Heck reaction 
using an acrylate bearing the amine nucleophile.[17] 

Total syntheses with key step C and D-ring 
cyclisation 

In 1981, the Oppolzer group devised an elegant synthetic 
approach to lysergic acid (2) using an intramolecular imino- 
Dies–Alder reaction (Scheme 4) of compound 20, which was 
first prepared over seven-linear steps from 4-hydroxymethyl- 
1-tosylindole (18% overall yield).[18] The key to this cyclo-
addition was an initial retro-Diels–Alder reaction of the methyl 
bicyclo[2.2.1]hept-5-enyl-2-carboxylate moiety, within 20, to 
a diene, which under thermolysis, was quenched immediately 
with the imino-C5 double bond to provide 21 (2:3 mixture of 
syn- and anti-diastereoisomers, 67% yield). Later, Garner 
reported an asymmetric cycloaddition-based pathway as the 

(+)-Lysergic acid
diethylamide or

(+)-LSD (1)

5

8

NH

N
H
Me

O

N

NH

N
H
Me

O

OH

A B

C

D
5

8

(+)-Lysergic acid
(+)-(2)

NH

NH
H

H

Ergoline (3)

Fig. 1. The structures (+)-LSD, (+)-lysergic acid and ergoline.   

BThe first synthesis of lysergic acid was achieved in the Eli Lilly laboratories in Indianapolis by Ed Kornfeld and his co-workers. It is reported 
Kornfeld conceived and carried out the synthesis while Woodward was an Eli Lilly consultant. Please see the references cited here. For the synthesis, 
please see Kornfeld et al. 
CUhle’s ketone, shown in Scheme 2, was first prepared in 1949. 
DThis method could be considered a formal synthesis given compound 13 can be saponified and deprotected using Raney nickel with sodium arsenate. 

M. J. Nutt et al.                                                                                                                        Australian Journal of Chemistry 

280 



key step in their synthesis of Szántay’s intermediate 14[14] 

(Scheme 5). This reaction was primed through initial forma-
tion of the azomethine ylide (formed through a reaction 
between the aldehyde at C5 and an amine) bearing a cam-
phorsultam chiral auxiliary. An intramolecular reaction of 
this ylide, with an alkyne 22, afforded 23 which required a 
Cossy–Charette ring expansion to furnish the required piper-
idine D-ring.[19] 

When comparing these two cycloaddition approaches, 
the Oppolzer group synthesis was performed in 11 steps at 
3.9% overall yield while the Garner asymmetric synthesis 
was carried out in 20 steps from commercially available 4- 
bromoindole in 0.4% overall yield (if the previously 
reported Szántay[14] steps are included). 

The group of Fujii and Ohno have published several papers 
involving the synthesis of ergoline alkaloid derivatives such as 
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(±)-lysergic acid (2), (±)-lysergol and (±)-isolysergol. In 
2008, this group reported a key synthetic step involving 
palladium-catalysed domino cyclisation of amino allene to 
construct the ergoline CD-ring system (Scheme 6).[20] 

Following oxidative addition, a coordination of the indolyl-
palladium(II) to the allenic tether was proposed to promote 
nosylamide anti-attack leading to the palladacycle 26. 
Overall, this amidopalladation pathway provides 27 as the 
major product, following reductive elimination. The minor 
product, the epimer at C5, was proposed to be formed through 
an alternative carbopalladation and nucleophilic attack of 
the η3-allylpalladium complex. Unfortunately, although this 
synthesis is quite elegant, the 13 synthetic steps required to 
make the precursor 24 make this synthesis less practical.E 

Later, the same group reported two enantioselective total 
syntheses of (+)-lysergic acid (2) using similar ring closing 
methodology. Emphasis was placed on producing the enan-
tiopure allenes (derivatives of 39) through a Myers allene 
formation. Here, the requisite propargyl alcohol precursor 
was prepared through reductive ring-opening reaction of 

chiral 2-alkynyl-3-indolyloxirane[21] or through alpine- 
borane reduction of an ynone.[22] 

Later, the Jia group reported a stereocontrolled total 
synthesis of (+)-lysergic acid (2) in 12 steps and 12.7% 
overall yield (Scheme 7).[23] The synthesis at the time show-
cased three metal-catalysed and powerful bond-forming 
strategies for the construction of three rings. The (R)-4- 
iodotryptophan derivative 28 was obtained from the chiral 
pool starting material tryptophan. Compound 28 was syn-
thetically converted into the diene 30 over eight steps. In 
these transformations the key-steps included two Wittig 
reactions to introduce the mono-substituted olefin moiety 
and the fragment 29 to introduce the second olefin. 
Compound 30 readily underwent ring-closing metathesis 
(RCM) to construct the D-ring of lysergic acid, as represented 
in 31. It is instructive to note that the C9 to C10 double bond 
migration was first conducted before a range of conditions 
for the intramolecular C-ring Mizoroki–Heck cross-coupling 
reaction were trialled.F The same group later reported a 
more detailed synthesis along with a modification where a 
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EImportant to note is that these 13 synthetic steps were impressively achieved in 23.7% overall. 
FSilver salts were used to supress initial alkyne isomerisation and the incorrect ring system being formed. Pd(OAc)2 (10 mol%) Ph3P (30 mol%) and 2 
equiv Ag2CO3. 
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Pd-catalysed indole synthesis was included using 3-chloro-2- 
iodoaniline.[24] 

In 2013, the Fukuyama group expanded their earlier 
intramolecular Mizoroki–Heck cross-coupling approach by 
incorporating a key D-ring cyclisation (Scheme 8).[25] This 
synthesis proceeded firstly through the preparation of two 
chiral fragments 33 and 34, both synthesised in three steps 
from the chiral oxazolidinone auxiliary 32 which also cre-
ated the requisite stereochemistry. The two fragments were 
connected through a reductive alkylation which was fol-
lowed by RCM to construct the D-ring. Overall, the total 
synthesis of (+)-lysergic acid was achieved in 19 steps and 
12% calculated from 32. The Fukuyama group also completed 
another approach using this ring formation strategy.[26] 

The Bisai group also used a C and D-ring cyclisation synthetic 
approach to the lysergic acid related compounds (+)-lysergol 
and (+)-isolysergol. In this report an asymmetric nitronate 
addition onto an α,β-unsaturated ester aza-Michael addition is 
used to construct the C-ring while a 6-endo-trig cyclisation is 
used to install the D-ring.[27] 

In 2010, the Martin group, during their synthesis of the 
ergot alkaloids ring system, first applied a reductive Heck 
coupling cyclisation to generate the key tricyclic compound 
37 (Scheme 9).[28] Following this, the introduction of a 
diene, using bispentadienylzinc and amine 37, was accom-
plished to afford compound 38 as well as a linear regioi-
somer. The second ring closure was achieved using the 
Schrock–Hoveyda molybdenum catalyst (represented as 

[Mo] in Scheme 9) and microwave to induce a RCM diaster-
eoselectively to 39. This compound was used to later gener-
ate the lysergic acid precursor (+)-isolysergol. 

Total syntheses with key step B and C-ring 
cyclisation 

In 1994, the Parsons group reported a tandem radical cyclisa-
tion approach to the ergot B and C-rings in a single step, 
through first radical generation using tin hydride.[29,30] 

Although this research did not produce lysergic acid (2) itself, 
several interesting and advanced ABCD-ring analogues were 
obtained. A synthetically different B and C-ring forming 
approach to (+)-lysergol was conceived by the Luo group 
(Scheme 10).[31] In this strategy, it was first conceived that 
the indole B-ring could be prepared at a later stage in the 
synthesis. The A–D ring connected piperidine skeleton 40 
was prepared through a cyclopropanation ring-opening/ 
nucleophilic substitution cascade reaction from a pyrrole pre-
cursor. The key B and C-rings were formed following similar 
intramolecular dearomatising [3 + 2] annulation methodol-
ogy using a N-sulfonyl 1,2,3-triazole as developed by 
Murakami and Miura.[32] The required fully aromatised 3,4- 
fused indole skeleton 42 was then isolated after a manganese 
dioxide oxidation. Finally, (+)-lysergol 43, a precursor to 
lysergic acid, was isolated after sequential deprotections and 
a reductive amination. Importantly, this sequence was also 
repeated with a meta-difluorophenyl derivative of 42 to 
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deliver the C13-fluoro equivalent of (+)-lysergol (43). This is 
especially notable for its potential in the context of medicinal 
chemistry investigations of LSD, where functionalisation of 
the ergoline A-ring has historically often been unfeasible. 

Total syntheses with key step C-ring cyclisation 

One of the early lysergic acid total syntheses was through a 
C-ring cyclisation approach, devised by the Julia group. 
Firstly 5-bromoisatin (AB-ring) and methyl 6-methylnicoti- 
nate (D-ring) were linked through a condensation reaction 
leading to 44 (Scheme 11). Importantly, for later synthetic 
approaches to lysergic acid, this work established that the 
pyridine ring could be methylated and reduced with potas-
sium borohydride to afford the D-ring piperidine α,β- 
unsaturated ester 45. A reagent consisting of sodium amide 
in refluxing ammonia then allowed for C-ring formation 
through reaction with the halogenated indole (AB-ring).[33] 

This product 46, also an intermediate in the Kornfeld synthe-
sis, was then be converted into (±)-lysergic acid (2). 

A later approach, through an alternate retrosynthetic 
disconnection, was attempted by the Hendrickson research 
group, where indole-4-boronic acid 48 and a chlorinated 
pyridine derivative 47 underwent coupling using Suzuki– 
Miyaura protocol to access 49, following additional functional 
group interconversions.[34] In this original report, cyclisation 
of aldehyde 49 to the alcohol 50 was purported to occur 

under strongly basic conditions (Scheme 12). The synthesis 
was later contested by the Nichols research group, whereupon 
their attempts to replicate this work instead yielded only 
B-ring methoxylated product 51.[35] 

The intramolecular Mizoroki–Heck cross-coupling reaction 
is now a well-studied and prevalent reaction for creating the 
six-membered C-ring from precursors resembling the ergoline 
AB-D-ring. Importantly, in this reaction the retention of the 
double bond position at C9–C10 is possible through more 
recent methods. This synthetic approach was first explored 
by Fukuyama in 2009, outlined in Scheme 13. Initially, the 
D-ring was prepared starting with an enantiopure pyrrolidi-
none 52 which was converted through a number of synthetic 
steps into a piperidine precursor 53, while the AB-ring system 
was attached using 4-bromoindole.[36] The key palladium- 
catalysed reaction was ultimately successful providing tetra-
cyclic ring-system 55, following additional double-bond 
migration. This compound could then be converted into 
(+)-lysergic acid (2) through the previous method of 
Oppolzer.[18] The overall yield of this synthesis was quite 
low; however, this strategy was also used later by Fukuyama 
in a more effective total synthesis.[37] 

More recently, a Mizoroki–Heck C-ring closing strategy 
was used by the Wipf group in a short, scalable four-step 
synthesis of methyl lysergates in a combined 28% yield from 
a methyl nicotinate precursor (Scheme 14).[38] Initially, a 
Cs2CO3-mediated hydrogen autotransfer reaction joins the D 
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with the AB-rings using the commercially available 56 and 57 
respectively. A combined methylation, reduction and isomer-
isation reaction sequence afforded 59 and 60 as a 2:1 mixture 
of diastereosiomers. Importantly, the key Mizoroki–Heck 
cross-coupling reaction, using PdCl2[P(o-tol)3]2 and Et3N in 
MeCN, performed well on a > 1 g scale to afford methyl 
lysergate 61 and methyl isolysergate 62 (2:1 ratio respec-
tively), without migration of the double bond. Finally, 
reduction of these compounds provided both lysergol and 
isolysergol. 

In 2023, the Smith group reported a concise synthesis 
of (±)-lysergic acid over six synthetic steps (Scheme 15)[39] 

starting with the two simple commercially available 
halogenated aromatic precursors 63 and 64. Initially, a 
magnesium–halogen exchange of iodopyridine 63 and 
subsequent addition to aldehyde 64 furnishes an inter-
mediate alcohol which underwent simultaneous reduction 
and N-deprotection to give the AB-D-ring precursor 65. 
Sequential reprotection, methylation and isomerisation of 
the enolate with LiTMP gave a 1:1.6 diastereomeric mixture 
of 66:67. Importantly, re-exposure of the mixture to these 
conditions further enriched the amount of desired dia-
stereomer 66. The synthesis of (±)-lysergic acid (2) was 
finalised through the key intramolecular Mizoroki–Heck 
reaction, leading to three products (the enone 68 and two 
diastereomeric alkene isomers 69). Conveniently, this mixture 
of three products could be treated with potassium hydroxide 
to mediate deprotection, saponification and isomerisation and 
deliver (±)-lysergic acid (2) diastereoselectively. 

Conclusion 

Several of the contemporary approaches outlined above 
have now established efficient, scalable and potentially 
modular access to lysergic acid (2) and its derivatives, offer-
ing more practical opportunities for derivatisation and new 

structure–activity relationship (SAR) studies. Fortuitously, 
this progress also comes at a turning point in our under-
standing of LSD’s pharmacodynamics. Recent landmark 
reports featuring X-ray crystal structures obtained for LSD 
bound to two human serotonin receptors (5-HT2A and 5- 
HT2B) have revealed for the first time key receptor–ligand 
interactions that may help direct the rational design of new 
LSD analogues.[40,41] For example, the authors postulate 
LSD’s uniquely high potency and long duration of action is 
mediated by conformational changes upon binding that 
move an extracellular loop of the receptor over the binding 
pocket containing LSD, acting as a lid to prevent ligand 
dissociation. From the crystal structure of LSD bound to 
the 5-HT2AR, it can be seen that hydrophobic residues 
within this lid motif lay in close proximity to LSD’s 
A- and D-rings. This discovery places a new importance on 
routes to accessing LSD analogues functionalised at these sites 
(such as the method of Yuan et al.[31] described in Scheme 10 
above) for their potential to modulate any possible interactions 
with this region of the receptor. Thus, together with recent 
advances in our understanding of receptor–ligand interactions, 
many of the modern syntheses of lysergic acid described 
herein open the door to an exciting future of furthering the 
potential held by LSD as a therapeutic tool. 
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