Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Forage accumulation and nutritive value in extensive, intensive, and integrated pasture-based beef cattle production systems

Rolando Pasquini Neto https://orcid.org/0000-0001-6678-7131 A * , Althieres José Furtado A , Gabriele Voltareli da Silva A , Annelise Aila Gomes Lobo A , Adibe Luiz Abdalla Filho A B , Henrique Bauab Brunetti https://orcid.org/0000-0002-0586-0304 B , Cristiam Bosi https://orcid.org/0000-0001-8318-6477 B , André de Faria Pedroso B , José Ricardo Macedo Pezzopane B , Patrícia Perondi Anchão Oliveira https://orcid.org/0000-0003-4665-3755 A B and Paulo Henrique Mazza Rodrigues A
+ Author Affiliations
- Author Affiliations

A Faculty of Veterinary Medicine and Animal Science, University of São Paulo, 225 Duque de Caxias North Avenue, Pirassununga, São Paulo 13635-900, Brazil.

B Embrapa Southeast Livestock, km 234 Washington Luiz Highway, ‘Fazenda Canchim’, São Carlos, São Paulo 13560-970, Brazil.

* Correspondence to: netopasquini@alumni.usp.br

Handling Editor: Christian Huyghe

Crop & Pasture Science 75, CP24043 https://doi.org/10.1071/CP24043
Submitted: 11 May 2023  Accepted: 22 April 2024  Published: 15 May 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

A challenge for the livestock sector is to improve the production and nutritive value of forage grasses through sustainable management strategies.

Aims

This study evaluated the impact of management on the productive and nutritive value of five pasture-based production systems: irrigated pasture with 600 kg nitrogen (N) ha−1 (IP600); rainfed pasture with 400 kg N ha−1 (RP400); rainfed pasture with 200 kg N ha−1 (RP200); silvopastoral with 200 kg N ha−1 (SP200); and degraded pasture without N fertilisation (DP0).

Methods

During two experimental years, samples were collected pre- and post-grazing to determine forage and nutritional parameters. Land-saving effects and efficiencies of N fertilisation and water use were calculated.

Key results

For C4 grasses, forage mass accumulation was greater for IP600 and RP400. IP600 also presented the greatest leaf area index and crude protein concentration, whereas DP0 presented the lowest values of both. For C3 grasses in the IP600 treatment, greater forage mass accumulation and leaf area index were found in winter than in autumn; all nutritional characteristics were not affected by season of the year. For land-saving effect, and N- and water-use efficiencies, IP600, RP400 and RP200 presented higher values than DP0 and SP200.

Conclusions

More intensified systems with proper management allowed better productive and nutritional characteristics than degraded pasture or silvopasture, especially during seasons with greater precipitation or when irrigated.

Implications

Intensification practices make better use of natural resources (water and land) and agricultural inputs (N fertiliser) to ameliorate the effects of seasonality and improve quality and productivity of tropical grasses in pasture-based livestock production systems.

Keywords: Avena byzantine, cool-season C3 grasses, feed quality, grazing systems, Lolium multiflorum, Megathyrsus maximus, silvopastoral systems, sustainable intensification, tropical pastures, Urochloa brizantha, Urochloa decumbens, warm-season C4 grasses.

References

ABIEC (2022) Beef Report: Perfil da Pecuária no Brasil 2022, Relatório Anual. Available at https://www.abiec.com.br/publicacoes/beef-report-2022/

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations, Irrigation and Drainage Paper No. 56. (FAO: Rome) Available at www.fao.org/3/x0490e/x0490e00.htm

AOAC (1990) ‘Official methods of analysis.’ 15th edn. (AOAC International: Arlington, TX, USA)

Arora NK (2019) Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability 2, 95-96.
| Crossref | Google Scholar |

Basso KC, Barbero LM (2015) Anatomia foliar de forrageiras e a sua relação com o valor nutritivo. Veterinária Notícias 21, 1-10.
| Crossref | Google Scholar |

Bosi C, Pezzopane JRM, Sentelhas PC, Santos PM, Nicodemo MLF (2014) Produtividade e características biométricas do capim-braquiária em sistema silvipastoril. Pesquisa Agropecuária Brasileira 49, 449-456.
| Crossref | Google Scholar |

Bosi C, Pezzopane JRM, Sentelhas PC (2020) Silvopastoral system with Eucalyptus as a strategy for mitigating the effects of climate change on Brazilian pasturelands. Anais da Academia Brasileira de Ciências 92, e20180425.
| Crossref | Google Scholar | PubMed |

Brunetti HB, Pezzopane JRM, Bonani WL, Bosi C, Pasquini Neto R, Bernardi ACdC, de Oliveira PPA (2022) Productive and nutritive traits of Piatã palisadegrass after thinning the forest component of a silvopastoral system in southeastern Brazil. The Journal of Agricultural Science 160, 338-348.
| Crossref | Google Scholar |

Calderano Filho B, dos Santos HG, da Fonseca OOM, dos Santos RD, Primavesi O, Primavesi AC (1998) Os solos da Fazenda Canchim, Centro de Pesquisa de Pecuária do Sudeste, São Carlos, SP: Levantamento Semidetalhado, Propriedades e Potenciais. Embrapa-CNPS Boletim de Pesquisa, 7; Embrapa-CPPSE Boletim de Pesquisa, 2. Available at http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/335880

Cardoso AS, Berndt A, Leytem A, Alves BJR, de Carvalho IdNO, de Barros Soares LH, Urquiaga S, Boddey RM (2016) Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use. Agricultural Systems 143, 86-96.
| Crossref | Google Scholar |

Cardoso AdS, Barbero RP, Romanzini EP, Teobaldo RW, Ongaratto F, Fernandes MHMdR, Ruggieri AC, Reis RA (2020) Intensification: a key strategy to achieve great animal and environmental beef cattle production sustainability in Brachiaria grasslands. Sustainability 12, 6656.
| Crossref | Google Scholar |

Congreves KA, Otchere O, Ferland D, Farzadfar S, Williams S, Arcand MM (2021) Nitrogen use efficiency definitions of today and tomorrow. Frontiers in Plant Science 12, 637108.
| Crossref | Google Scholar |

Correa LA, Santos PM (2006) Irrigação de pastagens formadas por gramíneas forrageiras tropicais. Embrapa Pecuária Sudeste, Circular Técnica No. 48. Available at https://ainfo.cnptia.embrapa.br/digital/bitstream/item/37269/1/Circular48.pdf

Correa LdA, Santos PM (2009) Manejo e utilização de plantas forrageiras dos gêneros Panicum, Brachiaria e Cynodon. Embrapa Pecuária Sudeste, Documentos No. 34. Available at https://ainfo.cnptia.embrapa.br/digital/bitstream/item/37976/1/Documentos34-0.pdf

Costa JAA, Queiroz HP (2013) Régua de manejo de pastagens. Embrapa Gado de Corte, Comunicado Técnico, No. 125. Available at http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/970497

DaMatta FM, Grandis A, Arenque BC, Buckeridge MS (2010) Impacts of climate changes on crop physiology and food quality. Food Research International 43, 1814-1823.
| Crossref | Google Scholar |

de Klein CAM, van der Weerden TJ, Luo J, Cameron KC, Di HJ (2020) A review of plant options for mitigating nitrous oxide emissions from pasture-based systems. New Zealand Journal of Agricultural Research 63, 29-43.
| Crossref | Google Scholar |

de Oliveira Silva R, Barioni LG, Hall JAJ, Moretti AC, Fonseca Veloso R, Alexander P, Crespolini M, Moran D (2017) Sustainable intensification of Brazilian livestock production through optimized pasture restoration. Agricultural Systems 153, 201-211.
| Crossref | Google Scholar |

Detmann E, Paulino MF, Valadares Filho SdC, Huhtanen P (2014) Nutritional aspects applied to grazing cattle in the tropics: a review based on Brazilian results. Semina: Ciências Agrárias 35, 2829-2854.
| Crossref | Google Scholar |

Dubeux JCB, Jr., Sollenberger LE, Muir JP, Tedeschi LO, dos Santos MVF, da Cunha MV, de Mello ACL, DiLorenzo N (2017) Sustainable intensification of livestock production on pasture. Archivos Latinoamericanos de Producción Animal 25, 97-111 Available at https://ojs.alpa.uy/index.php/ojs_files/article/view/2564.
| Google Scholar |

Euclides VPB, Montagner DB, Barbosa RA, Difante GS, Medeiros SR (2021) Valor nutritivo, estrutura do dossel e desempenho animal de algumas cultivares de Panicum maximum e Brachiaria spp. submetidas à diferentes estratégias de manejo. Embrapa Gado de Corte, Documentos No. 292. Available at http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1135277

Feltran-Barbieri R, Féres JG (2021) Degraded pastures in Brazil: improving livestock production and forest restoration. Royal Society Open Science 8, 201854.
| Crossref | Google Scholar | PubMed |

Garcez Neto AF, Nascimento Junior Dd, Regazzi AJ, Fonseca DMd, Mosquim PR, Gobbi KF (2002) Respostas morfogênicas e estruturais de Panicum maximum cv. Mombaça sob diferentes níveis de adubação nitrogenada e alturas de corte. Revista Brasileira de Zootecnia 31, 1890-1900.
| Crossref | Google Scholar |

Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations, Rome. Available at https://www.fao.org/3/i3437e/i3437e.pdf

Geremia EV, Crestani S, Mascheroni JDC, Carnevalli RA, Mourão GB, da Silva SC (2018) Sward structure and herbage intake of Brachiaria brizantha cv. Piatã in a crop-livestock-forestry integration area. Livestock Science 212, 83-92.
| Crossref | Google Scholar |

Goering HK, Van Soest PJ (1970) ‘Forage fiber analysis (apparatus, reagents, procedures, and some applications).’ Agricultural Handbook No. 379. (USDA: Washington, DC, USA)

Gomes FJ, Cavalli J, Pedreira BC, Pedreira CGS, Holschuch SG, Pereira DH (2022) Forage nutritive value of Marandu palisade grass under clipping in a silvopastoral system. Agroforestry Systems 96, 79-88.
| Crossref | Google Scholar |

Hatfield JL, Dold C (2019) Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science 10, 103.
| Crossref | Google Scholar |

Hoeschl AR, Canto MWd, Bona Filho A, Moraes A (2007) Produção de forragem e perfilhamento em pastos de capim Tanzânia-1 adubados com doses de nitrogênio. Scientia Agraria 8, 81-86.
| Crossref | Google Scholar |

Lavres Junior J, Monteiro FA (2003) Perfilhamento, área foliar e sistema radicular do capim-Mombaça submetido a combinações de doses de nitrogênio e potássio. Revista Brasileira de Zootecnia 32, 1068-1075.
| Crossref | Google Scholar |

Lemaire G, Jeuffroy M-H, Gastal F (2008) Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. European Journal of Agronomy 28, 614-624.
| Crossref | Google Scholar |

Lopes CM, Paciullo DSC, Araújo SAC, Gomide CAM, Morenz MJF, Villela SDJ (2017) Herbage mass, morphological composition and nutritive value of signalgrass, submitted to shading and fertilization levels. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 69, 225-233.
| Crossref | Google Scholar |

Martha GB, Jr., Alves E, Contini E (2012) Land-saving approaches and beef production growth in Brazil. Agricultural Systems 110, 173-177.
| Crossref | Google Scholar |

Mott GO, Lucas HL (1952) The design, conduct, and interpretation of grazing trials on cultivated and improved pastures. In ‘Proceedings of the International Grassland Congress, 6’. Pennsylvania. pp. 1380–1385. (State College Press: State College, PA, USA)

Mott GO, Moore JE (1985) Evaluating forage production. In ‘Forages – the science of grassland agriculture’. 4th edn. (Eds ME Heath, RF Barnes, DS Metcalfe) pp. 422–429. (Iowa State University Press: Ames, IA, USA)

Moyo M, Nsahlai I (2021) Consequences of increases in ambient temperature and effect of climate type on digestibility of forages by ruminants: a meta-analysis in relation to global warming. Animals 11, 172.
| Crossref | Google Scholar | PubMed |

Oliveira Filho JC (2007) Production of two tropical grasses submitted to different water depths and nitrogen and potassium doses in the state of Tocantins. Ph.D. Dissertation (in Rural constructions and ambiance; Energy in agriculture; Agricultural mechanization), Federal University of Viçosa, Brazil.

Oliveira PPA (2007) Recuperação e reforma de pastagens. In ‘24° Simpósio Sobre Manejo de Pastagens—Produção de Ruminantes em Pastagens, 24’. 1st edn. (Eds CGS Pedreira, JC de Moura, SC da Silva, VP de Faria) pp. 39–74. (Fealq: Piracicaba, Brazil)

Oliveira PPA, Boaretto AE, Trivelin PCO, Oliveira WSd, Corsi M (2003) Liming and fertilization to restore degraded Brachiaria decumbens pastures grown on an entisol. Scientia Agricola 60, 125-131.
| Crossref | Google Scholar |

Oliveira PPA, Primavesi AC, Camargo AC, Ribeiro WM, Silva ETM (2005) Recomendação da sobressemeadura de aveia em pastagens tropicais ou subtropicais irrigadas. Embrapa Pecuária Sudeste, Comunicado Técnico No. 61, São Carlos, Brazil. Available at https://ainfo.cnptia.embrapa.br/digital/bitstream/CPPSE/15934/1/PROCIComT61AAR2005.00184.pdf

Oliveira PPA, Penati MA, Corsi M (2008) Correção do solo e fertilização de pastagens em sistemas intensivos de produção de leite. Embrapa Pecuária Sudeste, Documentos, No. 86. Available at https://ainfo.cnptia.embrapa.br/digital/bitstream/item/33154/1/Documentos86.pdf

Oliveira PPA, Mittelmann A, Campana M (2011) Utilização de cultivares de azevém sobressemeado em capim-Tanzânia. In ‘Proceedings of the III international symposium on forage breeding’. 3rd edn. pp. 199–202. (Embrapa Gado de Corte: Campo Grande, MS, Brazil) Available at https://www.alice.cnptia.embrapa.br/bitstream/doc/909371/1/PROCI2011.00240.pdf

Oliveira PPA, Berndt A, Pedroso AF, Alves TC, Pezzopane JRM, Sakamoto LS, Henrique FL, Rodrigues PHM (2020) Greenhouse gas balance and carbon footprint of pasture-based beef cattle production systems in the tropical region (Atlantic Forest biome). Animal 14, s427-s437.
| Crossref | Google Scholar | PubMed |

Oliveira PPA, Rodrigues PHM, Praes MFFM, Pedroso AF, Oliveira BA, Sperança MA, Bosi C, Fernandes FA (2021) Soil carbon dynamics in Brazilian Atlantic forest converted into pasture-based dairy production systems. Agronomy Journal 113, 1136-1149.
| Crossref | Google Scholar |

Penati MA, Corsi M, Lima CGd, Martha Júnior GB, Dias CTdS (2005) Number of sampling and dimension: format ratio of the quadrat for herbage mass determination in tussock-forming grasses. Revista Brasileira de Zootecnia 34, 36-43.
| Crossref | Google Scholar |

Petersen RG (1994) Agricultural field experiments: design and analysis. In ‘Books in soils, plants, and the environment’. 1st edn. (CRC Press: London, UK) doi:10.1201/9781482277371

Pezzopane JRM, Bosi C, Nicodemo MLF, Santos PM, Cruz PGd, Parmejiani RS (2015) Microclimate and soil moisture in a silvopastoral system in southeastern Brazil. Bragantia 74, 110-119.
| Crossref | Google Scholar |

Pezzopane JRM, Bernardi ACdC, Azenha MV, Oliveira PPA, Bosi C, Pedroso AdF, Esteves SN (2020) Production and nutritive value of pastures in integrated livestock production systems: shading and management effects. Scientia Agricola 77, e20180150.
| Crossref | Google Scholar |

Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA (2017) Climate change and livestock: impacts, adaptation, and mitigation. Climate Risk Management 16, 145-163.
| Crossref | Google Scholar |

Rolim GdS, Sentelhas PC, Barbieri V (1998) Planilhas no ambiente EXCEL™ para os cálculos de balanços hídricos: normal, sequencial, de cultura e de produtividade real e potencial. Revista Brasileira de Agrometeorologia 6, 133-137.
| Google Scholar |

Ruggieri AC, Cardoso AdS, Ongaratto F, Casagrande DR, Barbero RP, Brito LdF, Azenha MV, Oliveira AA, Koscheck JFW, Reis RA (2020) Grazing intensity impacts on herbage mass, sward structure, greenhouse gas emissions, and animal performance: analysis of Brachiaria pastureland. Agronomy 10, 1750.
| Crossref | Google Scholar |

Sakamoto LS, Souza LL, Gianvecchio SB, de Oliveira MHV, Silva JAIdV, Canesin RC, Branco RH, Baccan M, Berndt A, de Albuquerque LG, Mercadante MEZ (2021) Phenotypic association among performance, feed efficiency and methane emission traits in Nellore cattle. PLoS ONE 16, e0257964.
| Crossref | Google Scholar | PubMed |

Santos PM, Cruz PGd, Araujo LCd, Pezzopane JRM, Valle CBd, Pezzopane CdG (2013) Response mechanisms of Brachiaria brizantha cultivars to water deficit stress. Revista Brasileira de Zootecnia 42, 767-773.
| Crossref | Google Scholar |

Silva JdL, Ribeiro KG, Herculano BN, Pereira OG, Pereira RC, Soares LFP (2016) Massa de forragem e características estruturais e bromatológicas de cultivares de Brachiaria e Panicum. Ciência Animal Brasileira 17, 342-348.
| Crossref | Google Scholar |

Thornthwaite CW, Mather JR (1955) ‘The water balance.’ p. 104. (Drexel Institute of Technology – Laboratory of Climatology: Centertown, NJ, USA)

Van Soest PJ (1994) ‘Nutritional ecology of the ruminant.’ 2nd edn. (Cornell University Press: New York, NY, USA)

Wang Z, Goonewardene LA (2004) The use of MIXED models in the analysis of animal experiments with repeated measures data. Canadian Journal of Animal Science 84, 1-11.
| Crossref | Google Scholar |

Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, Jonell M, Clark M, Gordon LJ, Fanzo J, Hawkes C, Zurayk R, Rivera JA, De Vries W, Majele Sibanda L, Afshin A, et al. (2019) Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. The Lancet 393, 447-492.
| Crossref | Google Scholar | PubMed |

Yasuoka JI, Pedreira CGS, Holschuch SG, Almeida OG, Pedroso GB (2021) The exclosure cage technique revisited: pasture responses under continuous stocking and their relationship with estimates of forage accumulation in grazing experiments. Crop Science 61, 1488-1499.
| Crossref | Google Scholar |