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ABSTRACT 
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declarations see end of paper Context. Long-term multi-environment trials (METs) could improve genomic prediction models for 

plant breeding programs by better representing the target population of environments (TPE).
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However, METs are generally highly unbalanced because genotypes are routinely dropped from
trials after a few years. Furthermore, in the presence of genotype × environment interaction (GEI), 

 selection of the environments to include in a prediction set becomes critical to represent specific 
TPEs. Aims. The goals of this study were to compare strategies for modelling GEI in genomic
prediction, using large METs from oat (Avena sativa L.) breeding programs in the Midwest United 
States, and to develop a variety decision tool for farmers and plant breeders. Methods. TheHandling Editor: 

Chengdao Li performance of genotypes in TPEs was predicted by using different strategies for handling GEI in 
genomic prediction models including systematic and/or random GEI components. These strategies 
were also used to build the variety decision tool for farmers. Key results. Genomic prediction for 
unknown genotypes, locations and years within TPEs had moderate to high predictive ability, 
accuracy and reliability. Modelling GEI was beneficial in small, but not in large, mega-environments. 
The latest 3 years were highly predictive of performance in an upcoming year for most years but not 
for years with unusual weather patterns. High predictive ability, accuracy and reliability were 
obtained when large datasets were used in TPEs. Conclusions. Deployment of historical datasets can 
be accomplished through meaningful delineation and prediction for TPEs. Implications. We have 
shown the performance of a simple modelling strategy for handling prediction for TPEs when 
deploying large historical datasets. 
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Introduction 

The phenotype of an individual plant is determined by its genotype, the environment, and 
genotype × environment interaction (GEI; van Eeuwijk 2006). Multi-environment trials 
(METs) are routinely conducted in plant breeding to capture GEI (Smith et al. 2001; 
Piepho et al. 2008) and to estimate (or predict) genotypic performance. Furthermore, 
plant breeders aim to produce varieties that are best suited for their specific target 
population of environments (TPE), that is, any set of fields and future seasons in which the 
varieties may grow (Atlin et al. 2011). Therefore, TPE and genotypic characterisation in 
those environments are critical for performance evaluation and prediction (Yan 2015). The 
traditional approach for characterising GEI uses a simplification by grouping locations with 
similar rankings of genotypes, reducing the variability within a group (i.e. no ranking-
crossover GEI; Crossa and Cornelius 1997; Yan et al. 2007; Burgueno˜ et al. 2008). Groupings 
of environments on the basis of GEI are often referred to as mega-environments (MEs, Braun 
et al. 1997; Gauch and Zobel 1997; Yan 2015). The ME is useful in guiding decision-making 
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for TPEs, helping the management of breeding goals and 
environments by leveraging relevant information to improve 
the prediction of the performance of genotypes. 

Different strategies have been employed to characterise 
GEI in general, including mixed models (Piepho 2000; 
Verbyla et al. 2003; Malosetti et al. 2004; van Eeuwijk et al. 
2005; Boer et al. 2007; Mathews et al. 2008; Lado et al. 
2016) and the use of environmental covariates in factorial 
and partial least squares regression (Vargas et al. 1999; 
Rebollo et al. 2023). Mixed models can also deal with the 
unbalanced structure of most METs where new genotypes are 
added every year and only the highest performing genotypes, 
relevant varieties and long-term checks are retained (Dawson 
et al. 2013). With the widespread availability of genomic data, 
genomic prediction models (Meuwissen et al. 2001) have 
become an important tool for predicting the genomic estimated 
breeding values or genotypic values of individuals for econom-
ically relevant traits. It is only natural then that mixed models 
have been extended to account for GEI in genomic prediction 
by modelling a variance–covariance matrix between environ-
ments based on the genotypic correlation among environments 
(Piepho 1998; Burgueno˜ et al. 2012; Malosetti et al. 2016; Lado 
et al. 2016; Bhatta et al. 2020) or based on environmental 
covariates (Jarquín et al. 2014). Some of these modelling 
approaches include the use of mixed models such as genomic 
best linear unbiased prediction (GBLUP; Bernardo 1996). In 
this strategy, a set of genotypes with genomic and phenotypic 
information is used to train a model that can predict un-
phenotyped individuals by borrowing information from relatives 
through a genomic-estimated relationship matrix (Meuwissen 
et al. 2001; Heffner et al. 2009). However, a model is only as good 
as the data used to generate it, and multiple years and locations 
within a TPE are required to obtain accurate predictions. 

Several studies have tapped into the large historical MET 
datasets available for many crops (Dawson et al. 2013; Lado 
et al. 2016; Ward et al. 2019; Bhatta et al. 2020). However, 
a clear strategy for predicting a specific TPE, locations and 
year-to-year variation is still needed. In this study, we 
compared strategies for modelling GEI in genomic prediction 
by using large historical MET datasets from oat breeding 
programs in the Midwest of the United States. Specifically, 
our goals were to evaluate strategies for predicting the 
performance of genotypes in TPEs; to evaluate the predictive 
ability for random GEIs such as genotype × year interactions; 
and to develop the concept for a variety decision tool that 
farmers and plant breeders can use to aid in the selection of 
candidate genotypes for their area. 

Materials and methods 

Plant material, multi-environment trial data and 
genomic information 
This study used grain yield from MET historical data of 5220 
oat genotypes that were grown from 1997 to 2021 in 59 

locations across nine states (Illinois, Indiana, Iowa, Michigan, 
Minnesota, New York, North Dakota, South Dakota, Wisconsin) 
in the Midwest United States (Supplementary Table S1). This 
dataset was compiled from different types of plant breeding 
trials including preliminary yield trials (PYT, F7), or stage 1, 
advanced yield trials (AYT, F8), or stage 2, elite yield trials 
(EYT, F9+), or stage 3, early maturity trials (ET) and late 
maturity trials (LT); several collaborative nurseries including 
the uniform early oat performance nursery (UEOPN), uniform 
mid-season oat performance nursery (UMPON), and Midwest 
collaborative nursery (MCON); and a few large experi-
ments including the mega-environmental design (MED) and 
Metabolomics (META) studies. Genotypes were evaluated on 
partially replicated or augmented experimental designs 
(MCON, META), or with different number of replications in 
alpha latices (AYT, PYT, MED), or with a randomised complete 
block design (EYT, ET, LT, UEOPN, UMOPN), depending on the 
experiment type (available at T3/Oat database, https://oat. 
triticeaetoolbox.org). This dataset, typical of plant breeding 
evaluations, is highly unbalanced because not all genotypes 
were evaluated across all combinations of locations and 
years. 

The study also used the genotypic data from the ‘GBS POGI’ 
genotype protocol (available at https://oat.triticeaetoolbox. 
org/breeders_toolbox/protocol/8) from T3/Oat database 
(available at https://oat.triticeaetoolbox.org), consisting of 
1189 genotypes with genotyping-by-sequencing derived 
single-nucleotide polymorphisms (SNPs). After filtering for 
a minor allele frequency >0.05 and missing data <20%, 
there were 3034 high-quality SNPs. 

Phenotypic data analyses for GGE biplot and ME 
delineation 
Given the high level of sparsity in the dataset and the fact that 
proper two-step models tend to perform similarly to single-
step models but are less computationally intensive and do 
not have as many convergence problems (Piepho et al. 2012), 
a two-step approach was used for obtaining best linear 
unbiased estimates (BLUEs) of grain yield for each genotype 
at each location for GEI characterisation. In the first step, 
genotypic BLUEs for grain yield were obtained after 
controlling for multiple experiments within a location–year 
combination using linear mixed models, with experiment 
within location–year combination modelled as random effects. 
In the second step, genotypic BLUEs for grain yield in each 
location–year combination were modelled using the following 
linear mixed model in the asreml-r (Butler et al. 2020) package  
of R statistical software (R Development Core Team 2017): 

yij = μ + gi + ej + geij + εij (1) 

where yij is the genotypic BLUE for grain yield of the ith genotype 
in the jth environment (i.e. location–year combination), μ is 
the overall mean or intercept, gi is the effect of the ith 
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genotype, ej is the effect of the jth environment, geij is the 
effect of the interaction of the ith genotype evaluated in the 
jth environment with ge ~ N(0,∑), and εij is the residual 
error with ε ~ N(0,R). Here, ∑ is the variance–covariance 
matrix of the GEI, with Σð½gxe x½gxe  = ΣG⊗ΣE where ∑G(g×g) 
is the realised additive relationship matrix estimated with 
the molecular markers using the VanRaden (2008) method 
in the package AGHmatrix (Amadeu et al. 2016) in R  
statistical software, and ∑E(e×e) is the genotypic variance– 
covariance matrix among environments modelled as a factor 
analytic of order 1 (FA1); R([g×e]×[g×e]) is the variance– 
covariance matrix of residuals and was modelled as a 
diagonal matrix with the reciprocals of the standard error of 
the BLUEs for each genotype in each environment to account 
for the heterogeneity in the precision of mean estimates in the 
two-step model following Piepho et al. (2012). However, not 
all genotypes were used in this second step because of the high 
level of sparsity. Therefore, a subset of 2000 genotypes that 
had been evaluated in at least four environments was included 
in the second step. This ended up accounting for ~82% of all 
data information. Of this subset, 401 genotypes had phenotypic 
and genotypic information. Variance components were 
estimated from a modification of Model 1, where genotype × 
environment was modelled fully by genotype × location × 
year interaction (see Table S2 for a full description of the 
model). 

Mega-environments were then delineated by GGE 
(genotype + GEI) biplot analysis from the grain yield BLUEs 
for each location using the package GGEplot (Dumble et al. 
2017) in R statistical software. Basically, a singular value 
decomposition of the genotypic main effect and GEI matrix 
was conducted (Yan et al. 2000; Yan and Tinker 2006) and 
then it was graphically represented in a biplot (Gabriel 1971; 
Yan and Tinker 2006). A GGE2 biplot was used for this 
representation. Winning genotypes were then used to delineate 
MEs from the GGE2 model (Yan and Tinker 2006). For this 
analysis a modification of Model 1 was used (see Table S2 
for details). 

Genomic prediction models 
Genomic predictions were accomplished using small 
modifications from the general GBLUP model described in 
Model 1 with a full description of all of the prediction 
strategies in Table S2. When no explicit GEI was modelled, 
the general model was denoted GBLUPM following the 
nomenclature of Lado et al. (2016). On the other hand, when 
GEI (geij) was modelled with Σ gxe x gxe Þ = ΣG⊗ΣE, with some 
type of variance–covariance structure for ∑E, the model 
was denoted as GBLUPG×E following the Burgueno˜ et al. 
(2012) model and the nomenclature of Lado et al. (2016). 
GBLUPG×E assumes known environments where the variance– 
covariance relationship matrix can be estimated. 

Genomic prediction cross-validation schemes 
Several cross-validation schemes were implemented to 
address different prediction goals and scenarios. In all the 
cross-validation scenarios, a portion of the phenotypic dataset 
is masked, the remaining data are used to predict their 
performance, and the predictive ability, or correlation 
between the predicted and observed values, is estimated. 
One of the interesting prediction scenarios is the prediction 
of the performance of genotypes that have not yet been 
evaluated in any environment. Burgueno˜ et al. (2012) called 
this strategy a CV1. We used the CV1 strategy with a 10-fold 
cross-validation scheme. Each iteration of the 10-fold cross-
validation consists of (1) randomly splitting the dataset 
into 10 subsets; (2) using nine of the subsets to predict 
the remaining subset; (3) repeating the previous step 
multiple times for predicting the remaining nine subsets; 
and (4) estimating the correlation between observed and 
predicted values for the full set. The CV1 strategy was used 
for an overall prediction of the dataset and for predicting 
the performance in each ME using 100 iterations. 

Another prediction scenario consisted of the leave-one-
environment-out prediction strategy that Jarquín et al. 
(2017) called CV0. In this case, all of the phenotypic data 
for an environment at a time are masked and data from the 
remaining environments used for the prediction of the new 
environment. We evaluated six different scenarios with the 
CV0 approach. First, within MEs the GBLUPM model was 
used to predict the new or masked location (CV0LOC|M). With 
this strategy, we assume that GEI within MEs is very low and 
that locations can be properly grouped in MEs even before 
new performance data are available. Second, within MEs 
the GBLUPG×E model was used to predict the new or masked 
locations (CV0LOC|GEI). This situation assumes that the GEI 
within MEs, although small, is known and can be used to 
model the variance–covariance structure. Our next scenarios 
consisted of the leave-one-year-out strategy within each ME. 
For these scenarios, we used the GBLUPM model assuming 
unknown genotype × year relationships. We then predicted 
either each year within a location (CV0Y|LOC), or each year 
within an ME (CV0Y|ME). The predictions by location were 
performed only for the three largest locations in each ME 
(i.e. Minot ND, Wayland NY and West Lafayette IN for 
ME1; Crookston MN, Ithaca NY and Morris MN for ME2; 
and Brookings SD, Madison WI and Urbana IL for ME3; see 
Table S1). Using only the largest locations may create an 
upward bias in predictive ability due to the population size 
effect. On the other hand, in the predictions for the whole ME, 
both genotype × year and genotype × location will affect the 
predictive ability. Although year-to-year variability is random 
and years cannot be reproduced, an understanding of the 
stability of the predictions from year to year can be valuable 
in the decision process of choosing genotypes. Finally, we used 
overall predictions (instead of by ME) for the CV0LOC|M and 
CV0Y|ME scenarios. All of these models and strategies are 
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fully described in Table S2, and in all cases, predictive ability 
was evaluated as the correlation between predicted and 
observed genotypic values. 

A third prediction scenario was the use of different 
numbers of previous years to predict the current year. We 
use a sliding-window approach where we consider periods 
of 3, 5, 10, 15, and 20 years to predict the genotypic 
performance, moving one year at a time in the range 
between 1997 and 2021 (i.e. we use 1997, 1998 and 1999 
to predict the year 2000). We used a modification of Model 
1 to account for the year, location and interactions. A full 
description of this model is presented in Table S2. The 
predictive ability was evaluated as the correlation between 
predicted and observed genotypic values for each year. 

For all of the genomic predictions with cross-validations, a 
subset of 401 oat genotypes of the 5220 with 3034 high-
quality GBS-derived SNP markers (minor allele frequency 
>0.05 and missing data <20%) was used. Additionally, predic-
tions for specific MEs were only performed for ME1–ME3 
because ME4 consists of a single location and therefore no 
cross-validation schemes were evaluated for this ME. 

Genomic prediction model for variety decision tool 
We also predicted the performance of all 1180 genotypes for 
which marker information was available for the variety 
decision tool. Genotypes had a large range of phenotypic 
information available in the dataset, ranging from no 
phenotypic evaluation to evaluation in 53 environments. The 
GBLUPM model was used for this purpose in the asreml-r 
package of R statistical software. Prediction error variance 
(PEV), accuracy and reliability were estimated for each genotype 
following Gezan (2020). PEV was estimated as the squared 
standard error of the genotypic effects (ĝi) as follows: 

PEVðgbiÞ = SEðgbiÞ2 (2) 

Accuracy (h) was estimated as the correlation between true 
and predicted (CORðg,ĝÞÞ effects: sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

PEVðgbiÞh = CORðgi,gbiÞ = 1 − (3)
σ̂2 
g 

Reliability (r) was estimated as the squared accuracy: 

PEVðgbiÞ r = CORðgi,gbiÞ2 = 1 − (4)
σ̂2 

The variety decision tool has two goals: to serve farmers 
and to serve oat breeders in the Midwest US. The identifi-
cation of superior oat genotypes for each TPE can aid oat 
breeders in the identification of release candidates for a 
specific region or in the identification of parents for future 
crosses. On the other hand, by filtering the dataset to 
genotypes that have been released (i.e. varieties) and that 

are available for sale in the Midwest (surveyed in 
November 2020), the decision tool can aid farmers in the 
identification of superior varieties for their local environment. 
Therefore, both the top 10 genotypes and the top 10 varieties 
were identified for each TPE. The variety decision tool is hosted 
on a web server by the Practical Farmers of Iowa (https:// 
decide.practicalfarmers.org/). 

Results 

Phenotypic data summary 
This study evaluated 5220 genotypes for grain yield across 
59 locations in 25 years resulting in 665 location–year 
(environment) combinations. BLUEs for grain yield ranged 
from 74.9 to 798 g m−2 with a median of 416 g m−2 across 
locations (Table S1), and substantial GEI was found (Fig. 1). 

GEI characterisation 
Mega-environment delineation using GGE biplot analysis of 
grain yield BLUEs for each of the 59 locations explained 
58.7% of the observed phenotypic variation (Fig. 1a). Four 
MEs were identified based on the winning genotypes on the 
genotypic polygon (Fig. 1a, b). ME3a and ME3b had different 
winning genotypes but similar overall ranking of the 
genotypes and were merged into a single ME3 for further 
analysis. The percentage of the variance explained by the GEI 
was 1.85 times higher than the genotypic variance (Fig. 1c, d). 

Genomic prediction with different cross-validation 
strategies 
The predictive ability for grain yield for un-phenotyped 
genotypes in the 10-fold CV1 strategy within MEs ranged 
from 0.45 (ME1) to 0.65 (ME3) with an overall (all MEs 
combined) predictive ability of 0.57 (Fig. 2, Table S3). When 
using CV0 for leave-one-location-out within ME with the 
GBLUPM modelling approach (CV0LOC|ME), ME2 and ME3 
had the highest predictive ability with an average of 0.55 
(range 0.20–0.89 for ME2 and 0.16–0.82 for ME3, Fig. 2), 
followed by ME1 with an average of 0.28 (range 0.15–0.51). 
When using the GBLUPG×E modelling approach in CV0 for leave-
one-location-out (CV0LOC|GEI), ME3 had the highest predictive 
ability with an average of 0.55 (range 0.14–0.87, Fig. 2), 
followed by ME2 with an average of 0.47 (range 0.23–0.85) 
and ME1 with an average of 0.36 (range 0.19–0.32). 

The predictive ability for CV0 for the leave-one-year-out 
model was 0.29 for ME1 (range 0.20–0.55, Fig. 2), 0.29 for 
ME2 (range 0.10–0.62) and 0.25 for ME3 (range 0.12–0.50) 
when predicting years within ME (CV0Y|ME, Fig. 2). When 
predicting for locations within MEs (CV0Y|LOC) we obtained 
higher predictive values with a wide range of variation: 
0.52 (0.10–0.83) for ME1, 0.51 (0.05–0.95) for ME2, and 
0.53 (0.20–0.96) for ME3. 
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Fig. 1. Genotype × environment interaction characterisation and mega-environment (ME) delineation for a historical 
dataset for grain yield of oat genotypes evaluated in 59 locations in nine states in the Midwest United States from 1997 
to 2021: (a) GGE biplot for grain yield showing grouping of the 59 locations into four MEs; (b) smoothed map of the four 
oat MEs for grain yield; (c) variance decomposition of the phenotypic variation for grain yield; (d) pie chart of the 
variance decomposition of the phenotypic variation for grain yield. 

Non-repeatable GEI and years 
When using the previous years to predict the next year, 
predictive abilities using 3, 5, 10, 15 and 20 years were similar 
in most cases. The overall predictive ability using the most 
recent 3 years was highest in 45% of the years and within 
20% of the highest predictive ability in 20% of the years 
(Fig. 3). The three most recent years had highest or within 
the highest predictive ability in 75% (65% highest, 10% not 
different) of the years for ME1, in 75% (50% highest, 25% not 
different) of the years for ME2, and in 80% (40% highest, 40% 
not different) of the years for ME3. The predictive ability 
using >3 years tended to be better when the general predictive 
ability was low, such as in 2005, 2013 and 2021, possibly 
associated with an unusual weather or stress year. 

Genomic prediction for the variety decision tool 
Although the accuracy and reliability of released varieties 
were higher than those of the advanced breeding lines or 

general genotypes, the actual predicted values were lower 
(Tables 1 and 2). None of the 10 genotypes differed >2% 
from the top-yielding genotype in the overall and ME2 
predictions of genotypes (Table 1); meanwhile, the first six 
or four genotypes were within 2% of the top-performing 
genotype in ME1 and ME2, respectively. On the other hand, 
there were six commercial varieties with <2% difference 
from the top-performing variety in the overall predictions, 
four in ME1, and two in ME2 and ME3 (Table 2). 

Discussion 

Genomic prediction success and strategies 
In oat, genomic prediction models have been used to assess 
prediction accuracy showing potential to improve disease 
resistance (Haikka et al. 2020a), seed quality (Campbell 
et al. 2021; Hu et al. 2021), grain yield (Haikka et al. 2020b), 
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Fig. 2. Predictive ability within and across mega-environments (MEs) for different cross-validation 
strategies for an oat dataset consisting of genotypes evaluated in 59 locations in the Midwest 
United States over 25 years. CV1 used a 10-fold cross-validation strategy for predicting the 
performance of genotypes that have not been evaluated in any environment within an ME 
(ME1–ME3) or overall. CV0LOC|M used leave-one-location-out with an average GBLUP modelling 
approach (GBLUPM) within each ME. CV0LOC|GEI used leave-one-location-out with a GEI GBLUP 
modelling approach (GBLUPG×E) within each ME. CV0Y|LOC used leave-one-year-out with a 
GBLUPM modelling approach within each location. CV0Y|ME used leave-one-year-out with a GBLUPM 
modelling approach within each ME. The predictive ability was estimated as the correlation between 
predicted and observed values. 

nutritional compounds and other metabolites (Brzozowski 
et al. 2022a, 2022b, 2023), and other quantitative traits 
(Asoro et al. 2011), as well as testing optimisation 
(González-Barrios et al. 2019). Our study has looked at other 
aspects of genomic prediction including the prediction 
for specific TPEs, and we have achieved relatively high 
predictive abilities of ~0.45–0.65 for new genotypes and 
0.15–0.89 for new environments for a trait as complex as 
grain yield. 

Deploying big data in genomic selection for 
predicting for the TPE 
Genotype × environment interactions create many challenges 
for breeding programs, some of which are easier to deal with 
than others (Piepho et al. 2008). Under GEI, the efficiency of 
the prediction relies on the representativity of the tested 
environments and how they are used for the construction of 

the training population (Haile et al. 2020; Atanda et al. 2022; 
Jarquin 2022). Genomic selection can take advantage of large 
historical datasets by connecting the phenotypic information 
from different genotypes through borrowing of information 
from relatives and thus controlling the sparsity (Bernardo 
2010; Dawson et al. 2013; Lado et al. 2016; Monteverde et al. 
2018) and producing higher predictive ability (Endelman 
et al. 2014; González-Barrios et al. 2019; Hoefler et al. 
2020; Atanda et al. 2021a, 2021b). Therefore, the use of big 
data consisting of large historical datasets where individual 
genotypes, or their relatives, have been evaluated can substan-
tially improve the identification of superior individuals that 
will perform better in the TPE. 

Large MET historical datasets have their own constraints 
(i.e. sparsity and breeding structure) that need to be addressed 
in order to make efficient use of the available databases. How 
best to handle the level of sparsity is an ongoing area of 
research given that genotypes are not missing at random in 
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Fig. 3. Predictive ability using previous 3, 5, 10, 15 or 20 years to predict the current year across (overall) or within mega-
environments (ME1, ME2, ME3) for an oat dataset where genotypes were evaluated in 59 locations in the Midwest United 
States over 25 years: (a) overall predictions, and predictions for (b) ME1, (c) ME2 and (d) ME3. 

the dataset because poorer performing genotypes are dropped 
every year (Aguate et al. 2019; Hartung and Piepho 2021; 
Wang et al. 2023). Other relevant limitations for the use of 
large datasets are due to the complexity of the data, the 
statistical models, and the requirement of great computational 
power (Atanda et al. 2021b). This study utilised a highly 
unbalanced dataset from several different METs across 
25 years to investigate the use of a mixed model approach in 
characterising GEI, identifying MEs associated with the TPEs, 
and determining the potential of genomic selection of grain 
yield. Overall, the results obtained in the study show the 
high predictive abilities of large-scale historical data in 
genomic prediction. 

The management of GEI and information leverage is 
determined by the size and overlap of the ME and TPE 
areas. MEs can be defined based on the breeding program 
necessities, adopting different spatial scales (i.e. at a regional 
scale, González-Barrios et al. 2019; country-wide scale, 
Crespo-Herrera et al. 2021; or worldwide, Braun et al. 1997). 

We used defined MEs by providing a broad idea of the GEI in 
the Midwest region of the United States. Although the TPE 
might be smaller or larger than the MEs, using the ME 
definition can be beneficial. For example, the use of informa-
tion from other locations can still aid in the prediction for 
TPEs that are smaller than the MEs by increasing the 
number of evaluations in environments with low GEI. On 
the other hand, in the case where the TPEs are larger than 
the MEs or go beyond the limits of a single ME, the use 
ME units will allow, for example, tailoring of the MET 
evaluations to account for the variation that exists between 
MEs in the TPE, and the breeder will need to decide on the 
release strategies for this case. Furthermore, this work is 
focused on the use of the groups of locations defined as a 
TPE instead of predicting locations per se. The shift from a 
specific location to a TPE is grounded in the fact that 
performance of farmers' fields will rarely coincide with the 
evaluations that breeders perform in research stations; 
therefore, a focus on predicting individual locations might 
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Table 1. List of top 10 ranked genotypes from a genomic prediction model for grain yield using all available information from an oat dataset 
consisting of genotypes evaluated in 59 locations in nine states of the Midwest United States over 25 years. 

Genotype Ranking BLUP (g m−2) PEV Accuracy (h) Reliability (r) Genotype Ranking BLUP (g m−2) PEV Accuracy (h) Reliability (r) 

Overall ME1 

WIX10627.3 1 531 491 0.69 0.47 SD111922 1 554 178 0.90 0.81 

SD150012 2 531 200 0.89 0.78 SD111946 2 553 178 0.90 0.81 

SD150081 3 528 263 0.85 0.72 SD111931 3 552 178 0.90 0.81 

MN11139 4 526 146 0.92 0.84 SD111939 4 552 176 0.90 0.81 

MN11140 5 526 152 0.91 0.84 SD081108 5 550 172 0.90 0.81 

SD120640 6 525 170 0.90 0.82 HAYDEN 6 549 175 0.90 0.81 

WIX10679.1 7 524 336 0.80 0.64 SD111753 7 535 245 0.86 0.74 

SD150112 8 524 308 0.82 0.67 SD111736 8 534 245 0.86 0.74 

MN11231 9 523 165 0.91 0.82 NATTY 9 530 246 0.86 0.74 

MNBT1021.1 10 523 156 0.91 0.83 SD081107 10 530 230 0.87 0.75 

ME2 ME3 

SD081577 1 512 226 0.87 0.76 SD120638 1 488 221 0.87 0.76 

SD081563 2 509 225 0.87 0.76 SD120640 2 482 223 0.87 0.76 

MN05119 3 508 224 0.87 0.76 IL10.9867 3 480 228 0.87 0.75 

MN11211 4 507 381 0.77 0.59 SD150112 4 478 323 0.81 0.65 

MN10209 5 506 289 0.83 0.69 SD150012 5 477 247 0.86 0.73 

OA1250.2 6 506 352 0.79 0.62 SD150081 6 476 331 0.80 0.64 

MN06108 7 503 442 0.72 0.52 WIX10627.3 7 474 603 0.59 0.35 

MN07204 8 503 292 0.83 0.69 SD141130 8 474 296 0.83 0.68 

WIX10199.6 9 502 454 0.72 0.51 MN11140 9 474 185 0.89 0.80 

SD081949 10 502 243 0.86 0.74 WIX10679.1 10 474 371 0.78 0.60 

Genotype name, ranking, predicted value for grain yield (best linear unbiased prediction, BLUP), predictor error variance (PEV), accuracy (h) and reliability (r) are shown for 
each genotype. Predictions are across all environments (Overall model), and for mega-environments ME1, ME2 and ME3. 

not be useful for the goal of the breeding program unless it is 
used as an intermediate step in the prediction process. We 
were able to predict all MEs with a high level of predictive 
ability. Furthermore, we tested a situation where GEI 
within MEs was not modelled (CV0LOC|M) and a situation 
where GEI within ME was modelled using a variance– 
covariance matrix that accounts for genetic correlations 
between locations (CV0LOC|GEI). The use of the known 
correlation structure did not improve the predictive ability 
reported in other studies (Lado et al. 2016). There could be 
multiple reasons for this, including the level of GEI within 
the ME, an artifact due to the population size, or the level 
of unbalance in the population (Bassi et al. 2016; Lado 
et al. 2018; Berro et al. 2019), or just the fact that specific 
location-to-location GEI becomes less relevant when the 
number of locations is very large. Although the mean 
predictive ability did not improve with modelling the GEI, 
the variability in the predictive ability for each location 
decreased with the GBLUPG×E model. Arguments can be 
made that the correlation between environments cannot be 
known for new locations or for farmers’ fields, and 
therefore, they should not be used in the prediction models. 

However, if the focus remains on the overall predictions 
within MEs, modelling the correlation is just another 
modelling tool that can be deployed, especially when large 
historical datasets are used where the estimation of those 
correlations might be more relevant. Another opportunity 
to improve predictions when no previous information is 
available is by incorporating environmental covariates 
explaining the genotypic performance in the ME (Bustos-Korts 
et al. 2016; van Eeuwijk et al. 2016; Monteverde et al. 2019; 
Neyhart et al. 2022; Rebollo et al. 2023). An advantage of 
the use of environmental covariates is that they may help to 
fine-tune the limits and boundaries of the ME through 
the definition of growing zones and modelling the crop 
growth (Heslot et al. 2013; Bustos-Korts et al. 2016, 2021; 
Monteverde et al. 2019). Although we did not use environ-
mental covariates in this study, high–medium predictive 
abilities were obtained. However, we believe that the future 
use of environmental covariates could improve the predictive 
ability of these models and help in the delineation of MEs. 

Although we obtained high levels of predictive ability for 
all MEs, the performance of genotypes was easier to predict in 
some MEs than in others. For example, ME1 had consistently 
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Table 2. List of top 10 ranked commercially available varieties (as of November 2020) from a genomic prediction model for grain yield using all 
available information from an oat dataset consisting of genotypes evaluated in 59 locations in nine states of the Midwest United States over 25 years. 

Genotype Ranking BLUP (g m−2) PEV Accuracy (h) Reliability (r) Genotype Ranking BLUP (g m−2) PEV Accuracy (h) Reliability (r) 

Overall ME1 

DEON 1 488 68 0.96 0.93 AAC ROSKENS 1 501 313 0.81 0.66 

CDC MINSTREL 2 486 177 0.90 0.81 CDC MINSTREL 2 499 187 0.89 0.80 

ESKER2020 3 483 89 0.95 0.90 AC PINNACLE 3 499 181 0.90 0.81 

AC PINNACLE 4 481 167 0.91 0.82 AAC BULLET 4 498 333 0.80 0.64 

HAYDEN 5 479 62 0.97 0.93 NEWBURG 5 486 121 0.93 0.87 

NATTY 6 479 78 0.96 0.92 SOURIS 6 483 120 0.93 0.87 

AAC ROSKENS 7 477 219 0.87 0.76 DEON 7 482 168 0.90 0.82 

RON 8 469 83 0.95 0.91 AAC OAKLIN 8 482 306 0.82 0.67 

GOLIATH 9 468 79 0.96 0.91 AAC ALMONTE 9 481 305 0.82 0.67 

NEWBURG 10 467 61 0.97 0.93 HAYDEN 10 480 117 0.93 0.87 

ME2 ME3 

HAYDEN 1 549 175 0.90 0.81 ESKER2020 1 436 116 0.94 0.88 

NATTY 2 530 246 0.86 0.74 DEON 2 430 82 0.96 0.91 

EXCEL 3 515 253 0.85 0.73 NATTY 3 425 98 0.95 0.89 

HORSEPOWER 4 512 222 0.87 0.76 HAYDEN 4 415 76 0.96 0.92 

SOURIS 5 507 152 0.91 0.84 GOLIATH 5 415 97 0.95 0.90 

NEWBURG 6 506 183 0.90 0.80 RON 6 413 106 0.94 0.89 

GOLIATH 7 504 201 0.89 0.78 CDC MINSTREL 7 408 201 0.89 0.78 

SHELBY427 8 502 228 0.87 0.75 BETAGENE 8 407 96 0.95 0.90 

ROCKFORD 9 502 258 0.85 0.72 SHELBY427 9 404 66 0.96 0.93 

CORRAL 10 501 361 0.78 0.61 EXCEL 10 404 102 0.94 0.89 

Genotype name, ranking, predicted value for grain yield (best linear unbiased prediction, BLUP), predictor error variance (PEV), accuracy (h) and reliability (r) are shown for 
each genotype. Predictions across all environments (Overall model), and for mega-environments ME1, ME2 and ME3. 

low predictive ability (i.e. <0.4); this was expected because 
the number of locations within the ME was only five. This ME 
was the only one that benefited from modelling the genetic 
correlations among locations using the GBLUPG×E model, 
where predictive ability increased from 0.27 to 0.36. This is 
also an artifact of the low number of locations, where the 
specific pairwise correlations have a larger impact than in the 
case of the other MEs with dozens of locations, where specific 
location-to-location interactions are overall less relevant. 

Non-repeatable GEI and years 
Year-to-year variation is known to explain an important 
part of the GEI variation in METs and, more importantly, 
for being nonreproducible. Furthermore, because many 
plant breeding programs rely on the evaluation of individuals 
in a small sample of years, genotypes with positive genotype × 
year interactions in testing years can be advanced when 
they would not necessarily have a superior performance in 
average years for the region. Therefore, datasets with more 
years may reduce the bias associated with the unbalance 
in METs, improve the variance component estimation 

(Aguate et al. 2019; Hartung and Piepho 2021), and 
improve the actual genotypic predictions (Oakey et al. 2016). 
Our results suggest that increasing the number of years 
beyond the last 3 years will not improve the predictive ability 
of the upcoming unknown year. This could be partially 
explained by the higher connectivity in the genotypic pool 
between consecutive years. Some years had a low predictive 
ability regardless of the set of years used in the prediction 
model. These are years with unusual weather patterns and 
some abiotic stresses. The odd performance in those years 
will be very difficult to predict regardless of the amount of 
previous information we use or have available. ME1 had 
20% of years with a predictive ability <0.1, whereas ME3 
had only 5% of years with low predictive ability. This can 
be partially explained by the population size and the 
frequency of climatic stresses present in the ME. 

We also evaluated the predictive ability for specific years 
within the ME (CV0Y|ME) and for specific years within 
locations (CV0Y|LOC). The predictions for specific locations 
were higher (0.20–0.90) than the predictions for the whole 
ME (0.10–0.60). Multiple factors can explain these findings. 
The locations used to test the year-to-year variability had 
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more data points and specifically more years than the average 
location in any given ME. Additionally, predictions for 
specific locations might not be as relevant as predictions for 
the ME, as previously discussed. Finally, predictions for the 
ME include both genotype × year and genotype × location 
interactions, and although in many cases genotype × year 
interactions are larger than genotype × location, in our case, 
they were of the same magnitude. Although in a breeding 
program we are not able to replicate a year or predict the 
type of year that will come next, evaluation of the predictions 
is relevant for understanding the stability in the predictions 
that can be expected from year to year in real future 
evaluations. 

Variety decision tools and prospects 
To the best of our knowledge, ours is the first study to deliver a 
variety decision tool for farmers in the Midwestern United 
States based on the farm’s location. There is a limited list of 
genotypes that are relevant to farmers, and those are genotypes 
that have been released as a cultivar and are currently 
commercially available. These genotypes are usually connected 
in METs because they were tested as advanced breeding lines 
and, later, most probably continued to be tested in regional 
trials. However, because there is no unified variety testing 
system in the United States, the list of varieties to be tested 
in each state is tailored and therefore differs from the lists 
to be tested in other states. The reports are then usually 
provided on a location-by-location basis, or in some cases, a 
state-wide recommendation is provided. How years are dealt 
in those reports is also state-specific but most of the states do 
not report any information beyond 3 years of data. This 
reporting system creates difficulties at several levels. For 
example, it is hard for farmers to decide which data to rely 
on for selecting the best performing varieties for their specific 
farm. This is especially challenging for farmers close to state 
borders or far from the specific, sparse testing locations for 
their state. Furthermore, there is no reason for limiting the 
flow of information across state borders. The use of MEs to 
delineate TPEs and the grouping of locations improves the 
accuracy of predictions and allows the distribution of resources 
in a more efficient way than by location-state evaluation sheets. 
This helps to create more efficient delivery of higher quality 
information to farmers. Finally, being able to include the 
information from advanced breeding lines is also key to 
improving the prediction of the future released varieties. 
This can be seen, for example, in the higher accuracy and 
reliability values for varieties than for advanced breeding 
genotypes, which may not have as many relatives in the 
dataset. This is also reflected in the mean differences between 
experimental genotypes and varieties, where varieties are >2% 
apart. This decision tool is being created as a first exploratory 
strategy. It represents an improvement over state reports, but 
further development would improve the predictions. For 
example, a very simple strategy was used to delineate the 

borders of the MEs, but environmental covariates could be 
used to refine these delineations further following the work 
of Rebollo et al. (2023)  and Bustos-Korts et al. (2021). 
Additionally, environmental covariates could be used to 
improve the actual predictions. In summary, the strategy 
used in this study will assist in developing a tool for 
selecting the top-ranking genotypes in specific locations,  
using a zip-code-based system in the Midwest region, via the 
deployment of the genomic selection model in each TPE. 
Similar strategies could be expanded to other crops in any 
region around the world. 

Supplementary material 

Supplementary material is available online. 
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