## **Supplementary Material**

## Size evolution of Eu<sup>III</sup>–fulvic acid complexes with pH, metal, and fulvic acid concentrations: implications for modelling of metal–humic substances interactions

Yasmine Kouhail<sup>A,B,C</sup>, Pascal E. Reiller<sup>A</sup>, Laurent Vio<sup>A,D</sup> and Marc F. Benedetti<sup>B,\*</sup>

<sup>A</sup>Université Paris-Saclay, CEA, Service de Physico-Chimie (SCP), F-91191 Gif-sur-Yvette, France

<sup>B</sup>Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France

<sup>C</sup>Present address: Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung (INE), Hermann-von-Helmholtz Platz 1, D-76344 Eggenstein- Leopoldshafen, Germany

<sup>D</sup>Present address: CEA, DG/CEACAD/D3S/SPR/LANSE, Cadarache, Saint-Paul-lès-Durance Cedex, France

\*Correspondence to: Email: <u>benedetti@ipgp.fr</u>

The supplementary data contains one figure and one table. The figure shows the simulation of the proportion of  $Eu^{III}$  bound to a generic fulvic acid for  $C_{Eu^{III}}$  of 1 µM and 10 µM at pH 4, 6 and 7, using generic NICA–Donnan parameters. The table shows the hydrodynamic radii as function of  $C_{SRFA}$  for SRFA samples and  $Eu^{III}$ –SRFA complexes, for  $C_{Eu}$  of 1 and 10 µM, at pH 4, 6 and 7.



**Fig. S1.** Simulation of the proportion of  $Eu^{III}$  bound to a generic fulvic acid for  $C_{Eu^{III}}$  of 1  $\mu$ M (orange lines) and 10  $\mu$ M (green lines) at pH 4 (a), 6 (b), and 7 (c). Simulation of  $Eu^{III}$  distribution on S<sub>1</sub> sites (dashed lines) and S<sub>2</sub> sites (dotted lines) of SRFA. Solid lines are the sum of S<sub>1</sub> and S<sub>2</sub> sites. Generic NICA–Donnan parameters are given in Table 1.

**Table S1.** Hydrodynamic radii (R<sub>H</sub>) as function of  $C_{SRFA}$  for SRFA samples and Eu<sup>III</sup>–SRFA complexes, for  $C_{Eu}$  of 1 and 10  $\mu$ M, at pH 4, 6 and 7.

|      | C <sub>SRFA</sub>     | SRFA                                             | Eu <sub>1 µM</sub> -SRFA       | Eu <sub>10 µM</sub> -SRFA      |
|------|-----------------------|--------------------------------------------------|--------------------------------|--------------------------------|
|      | (mg L <sup>-1</sup> ) | $\mathbf{R}_{\mathbf{H}}\left(\mathbf{nm} ight)$ | $\mathbf{R}_{\mathbf{H}}$ (nm) | $\mathbf{R}_{\mathbf{H}}$ (nm) |
| рН 4 | 30                    | 0.91                                             | 0.92                           | 0.78                           |
|      | 50                    | 0.98                                             | 0.95                           | 0.86                           |
|      | 100                   | 0.98                                             | 0.88                           | 0.90                           |
|      | 300                   | 0.97                                             | 0.93                           | 0.98                           |
|      | 500                   | 0.92                                             | 0.91                           | 0.90                           |
| рН 6 | 30                    | 0.99                                             | 1.01                           | 0.80                           |
|      | 50                    | 0.97                                             | 0.98                           | 0.86                           |
|      | 100                   | 0.98                                             | 0.99                           | 0.91                           |
|      | 300                   | 0.98                                             | 0.97                           | 0.93                           |
|      | 500                   | 0.92                                             | 0.92                           | 0.89                           |
| рН 7 | 30                    | 1.01                                             | 0.99                           | 0.83                           |
|      | 50                    | 1.00                                             | 1.03                           | 0.88                           |
|      | 100                   | 0.98                                             | 1.00                           | 0.91                           |
|      | 300                   | 0.95                                             | 0.95                           | 0.93                           |
|      | 500                   | 0.88                                             | 0.90                           | 0.89                           |

 $\mathbf{R}_{\mathrm{H}}$  (nm)

Viscosity used for calculation is 0.00089 kg s<sup>-1</sup> m<sup>-1</sup>.