International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents	Volume	12	Number 1	2003	
Editorial	(iii)				
Notice to Authors	(v)–(viii)				
Detection of non-linearities in the dependence burn area on fuel age and climatic variables <i>Frederic Paik Schoenberg</i> , <i>Roger Peng</i> , <i>Zhijun Huang and Philip Rundel</i>	e of 1–6	wildfin appear provid and the fire ris for wil	re burn area and ecc to have thresholds. ed that fuel age and at fuel moisture and k seems to differ litt ldfires and those that is implications for th	cological variables Fire risk appears temperature exce precipitation are s le between conditi are extreme. Such	relationships between a are not linear: they to be nearly constant ed a given threshold, ufficiently low. Wild- ons that are sufficient an interpretation has langer and fire hazard
Ponderosa pine mortality following fire in northern Arizona <i>Charles W. McHugh and Thomas E. Kolb</i>	7–22	and pr damag indepe after fr site wi larger by inte that di	escribed burn, a logi ge by fire (scorch + endent variables accu- ire. Tree mortality af th small trees, but the trees. We conclude t eraction between cro	istic regression mo consumption) and urately predicted t fter fire decreased e opposite pattern o hat tree mortality own damage and b	Torests after wildfires odel using total crown bole char severity as ree mortality 3 years as dbh increased on a occurred on sites with is strongly influenced ole char severity, and fferent-sized trees can
Fire ecology of Mexican pines and a fire management proposal <i>Dante Arturo Rodríguez-Trejo and</i> <i>Peter Z. Fulé</i>	23–37	stand-to long-to anthro should while Thoug	thinning fire regime erm historical patter pogenic fires. The in l be balanced in a ho seeking alternative	. Current fire regin ns due to a combi teraction of fire wi listic ecosystem m economic options maximizes ecolo	pted to a predictable, mes often differ from nation of natural and th other resource uses anagement approach, s for rural residents. ogical and economic upacts.
Assessing canopy fuel stratum characteristics fire prone fuel types of western North Americ <i>Miguel G. Cruz, Martin E. Alexander and</i> <i>Ronald H. Wakimoto</i>		ior of of foliage of can for sor	crown fires. Linking e weight allometric e opy fuel load, canop ne fuel types in wes leveloped to estimat	an extensive fores equations, we deten by bulk density an tern North Americ	tain extent the behav- st stand database with rmine the distribution d canopy base height a. Regression models from common stand
Power of the fire—a thermodynamic analysis <i>Ralph M. Nelson, Jr.</i>	5 51–65	power dynam erratic the adi In this adiaba to equa Atmos	of the wind, P_w , u nics. He suggested the wildfire behavior, abatic rise of warm paper, Byram's ana tic rise and neutral se al about half of Byram	sing wildfire case the P_f/P_w ratio as a but his theory for parcels in a neutral lysis is repeated w stability removed. " m's P_f —because of	er of the fire, P_f , and studies and thermo- a possible indicator of P_f was restricted to lly stable atmosphere. with the restrictions of The new P_f is shown of entrainment effects. nent at heights above

Flame characteristics, temperature–time curves, and rate of spread in fires propagating in a bed of <i>Pinus pinaster</i> needles <i>José M. C. Mendes-Lopes, João M. P. Ventura and</i> <i>José M. P. Amaral</i> 67–84	An extensive set of experiments was carried out in order to collect data in beds of <i>Pinus pinaster</i> needles to validate surface fire prop- agation models. The experiments were performed in a dedicated wind tunnel where wind velocity, fuel moisture content and slope were varied. Information on flame geometry (i.e. flame height, flame length and flame angle) and rate of spread was obtained from video recordings. Temperature was measured by six thermocouples at different heights above the fuel bed. The results obtained pro- vide a good database for the assessment of surface fire propagation models.	
Modeling potential erosion due to the Cerro GrandeFire with a GIS-based implementation of theRevised Universal Soil Loss EquationJay D. Miller, John W. Nyhan andStephen R. Yool85–100	A geographic information system (GIS) based implementation of the Revised Universal Soil Loss Equation (RUSLE) was used to model pre- and post-fire soil loss conditions due to the Cerro Grande fire (6–31 May 2000). Spatial data were derived for all RUSLE factors from satellite data, existing databases, and plot-level field data. It is estimated that average post-fire erosion rates with annual average rainfall conditions may increase by more than a factor of 100 in some subwatersheds, depending on the extent and severity of the fire.	
A review of radiant heat flux models used in bushfire applications A. L. Sullivan, P. F. Ellis and I. K. Knight 101–110	Radiant heat flux (RHF) models based on the Stefan-Boltzmann equation of radiative heat transfer require a number of assumptions about the nature of bushfire flame fronts in order to make them prac- tical for wildland fire applications. These assumptions are examined in detail and the common implementation of bushfire flame front as an isothermal rectangular emitting surface with an emissivity of unity (i.e. an 'opaque box') is compared with the measurements of RHF emitted by a stationary propane-fuelled artificial bushfire flame front.	
Wildland firefighter load carriage: effects on transittime and physiological responses during simulatedescape to safety zoneB. C. Ruby, G. W. Leadbetter III, D. W. Armstrongand S. E. Gaskill111–116	The hypothesis that transit time would be significantly impaired during load carriage was investigated. Data presented demonstrate that load carriage can impair transit time during a simulated escape to safety zone by nearly 25%. These data also demonstrate that transit time is inversely related to aerobic fitness regardless of load carriage and gender and further emphasize the need for rigorous fitness standards for fireline employees.	