
SPECIAL ISSUE | PRIMER REVIEW 
https://doi.org/10.1071/CH23115 

History and fundamentals of molecular photochromism 
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ABSTRACT 

Photochromic molecules reversibly change their colour upon exposure to light. The increasing 
need for smart materials in the real world, coupled with progress in synthetic chemistry, fast 
spectroscopic techniques, and theoretical power in research laboratories, have seen research in 
organic photochromism accelerate over the past few decades. In this Primer Review, the topic of 
organic photochromism is introduced. The fundamental concepts and histories are given to 
contextualise this field. Moreover, key photochromic molecules and selected applications are 
showcased to provide the interested reader with an entry to this fascinating field of science and 
emerging technology.  

Keywords: molecular devices, nanotechnology, organic, photochemistry, photochromism, 
photoswitch, Primer Review, smart materials, switching. 

Introduction 

The exponential growth in research on photochromic molecules can be attributed to the 
increasing demand for stimuli-responsive molecular switches in organic electronics and smart 
materials. The development of dynamic systems incorporating molecular photoswitches has 
rapidly advanced our ability to control properties and functions. Photochromic molecules 
have been explored for a wide range of applications, including optoelectronic switches and 
data storage, biomolecules and biomimicry, imaging and detection, surface functionalisation, 
catalysis, ion sensing, and drug delivery and photopharmacology.1 Utilising light as a stimulus 
offers several advantages, including precise directional and wavelength control, the ability to 
probe closed systems and reduced risk of chemical contamination. 

Photochromism is the reversible change of a material between two different states in 
response to light.2 The term ‘photochromism’ is derived from the Greek words ‘phos’ 
(light) and ‘chroma’ (colour). Although these molecules exhibit distinct absorption 
spectra (Fig. 1), the photochemical change can also lead to various other changes in 
chemical and electronic properties, such as emission, dipole moment, dielectric field 
constant, refractive index, non-linear optics, energy transfer, redox properties, conduc-
tivity, molecular structure and reactivity. It is these property changes that make photo-
chromic materials appealing for light-responsive smart materials. 

The study of photochromism is an interdisciplinary field that encompasses concepts 
from organic chemistry, materials science and physics.1 Scientists from these disciplines 
investigate the design and synthesis of new photochromic compounds, tailor their 
properties, and characterise their photoresponsive behaviour using analytical techniques 
such as UV–Vis and time-resolved spectroscopy, X-ray crystallography, and theoretical 
calculations (including quantum chemistry and molecular dynamics simulations). 

This Primer Review aims to provide an overview of the fundamental principles of 
photochromism in organic molecules, discuss key performance factors to consider when 
selecting photochromes for smart materials, describe the main classes of photochromes 
and showcase selected applications that highlight the range of tasks accessible. This 
Primer Review will focus on areas of academic interest in the context of organic 
photochromic molecules. It is salient to note that photochromic molecules are used in 
phototransition lenses, which are a lucrative commercial product, with sales in billions of 
dollars per year globally. These commercial products rely on an inorganic photochromic 
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system consisting of silver halide crystals in a vitreous 
environment where light causes the electrons to move 
from the valence band to the conduction band.2 The aca-
demic pursuit of new systems is important to extend and to 
improve on the applications available to photochromic 
molecules. 

History of organic photochromism 

This historical account will cover principal organic com-
pounds used to investigate photochromism and main mech-
anistic insights until the discovery of the main photochromic 
families used in the literature. Fig. 2 illustrates the timeline 
of photochromism up until the early 21st century. 

In 1867, the formation of microscopic colourless crystals 
were reported when a solution of anthracene was exposed to 
sunlight and it noted that anthracene could be regenerated 
by heating the melt of the molecule (I).3 The essential role 
that light had in turning benzaldehydephenylhydrazone (II) 
red and its gradual reversal in the dark was noted in the late 
19th century.4 In 1899, the reversible colour change of 
2,3,4,4-tetrachloro-4H-naphthalen-1-one (III) and the anhy-
drous hydrochloride of benzo-1,8-naphthyridine was also 
demonstrated.5 This physical phenomenon was termed photo-
tropy5; however, this term is now used to describe the growth 
or alignment of organisms towards light. In the same year, the 
photochromism of osazones was also reported (IV).6 

After these early descriptions of photochromic phenomena, 
further studies in the early 20th century were associated with 
the synthesis of new molecules and exploring their interaction 
with radiation. The first review of this area described over 
200 photochromic molecules.7 However, there was very little 
commentary about the physical mechanism operating in these 
examples of photochromism. 

The discovery of other photochromes continued to be 
reported. Thus, it was noted that 2,2,4,6-tetraphenyl-1,2- 
dihydro-1,3,5-triazine (V) in the solid state becomes rose 
coloured when exposed to UV light and back to white in 
the dark8; however, the mechanism of the photochromism is 
still unknown.9 The synthesis and photochromism of fulgides 
was first described in a publication in 1905,10 and the ability 
to use a different wavelength of light to reverse the initial 
photochromic response was reported a couple of years later 
(VI).11 A solution of 10,10′-dihydroxy-diphenylanthryl-9,9′- 
amine decolourised to pale yellow under exposure to sun-
light, and returned to brown–red in the dark, in contrast to 
other molecules discovered around this time that colourised 
upon exposure to light (VII).12 The first in the family of 
photochromic salicylamides (VIII) was reported in 1909.13 

The idea of thermochromism and the dependence of photo-
chromism on temperature was also introduced in 1909 
(VIII).14 In 1913, the photochromism of the stilbene deriva-
tive diacetyl-4,4′-diaminostilbene-2,2′-disulfonic acid (IX) 
was reported.15 In this case, the molecule switches between 
light yellow in sunlight and dark red in the dark, and the 
Group 1 and 2 salts are also photochromic. Around the 
same time, the unusual photochromic behaviour of cinna-
maldehyde semicarbazone (X) was also reported.16 Here, 
upon exposure of the compound to light and subsequent 
storage in the dark the compound becomes yellow, but re- 
exposure to light then bleaches the compound colourless. A 
few years later, it was reported that the cyano salts of 
triphenylmethane (XI) become coloured under exposure 
of UV light and return to colourless in the dark.17 In 
1921, the photochromism of napthylamino-camphor (XII) 
was observed from a colourless to a green solution upon 
exposure to light, which reverts back in the dark.18 

Mechanistically, triphenylmethane sulfonic acids were 
used to conclude that colourisation was a photochemical 
phenomenon as the relationship between light intensity 
and rate of colourisation offered insight into the chemical 
kinetics of the phenomenon (XIII).19 A review in 1929 
introduced the concept of photochemical fatigue based on 
their survey (XIV).7 

By the mid-20th century, photochromism was generally 
understood as a chemical transformation to a thermo-
dynamically metastable state. Many different mechanisms 
were starting to be proposed for the library of discovered 
photochromic molecules, but by the latter half of the century 
the scientific community was encouraged to build evidence 
correlating chemical constitution and photochromic mecha-
nism.20 In 1935, evidence was presented for an additional 
irreversible hydrolysis step in the photolysis mechanism of 
leucocyanides of triphenylmethane dyes.21 Colorimeter mea-
surements of solutions of the leucocyanides in ethanolic 
solutions evinced hydrolysis of the cyano to a carbinol in 
the presence of water. The cis–trans photoisomerisation of 
azobenzene was serendipitously discovered in 1937 when 
trying to determine its solubility by using photometric 
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Fig. 1. Photochromism is the reversible change of a material 
between two different states (A and B) in response to light, with 
each having its own distinct absorption spectrum.  
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Fig. 2. Timeline of photochromism 
from 1867 to 2016.   
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methods (XV).22 The majority of photochromic compounds 
studied now were discovered after 1950. 

Critical in the elucidation of photochemical reactions, 
including photochromism, was the pioneeering work in 
flash photolysis that resulted in the development of time- 
resolved ultrafast spectroscopy (XVI).23,24 In conjunction 
with the reported photochromism of bianthrones in 1950 
(XVII),25 the term ‘photochromism’ was also coined (XVII). 
In 1952, the photochromism of 1,3,3-trimethylindolino- 
napthospiropyran was published (XVIII).26 In 1960, it was 
reported that the compound hexaarylbiimidazole undergoes 
a rare homolytic cleavage of a C–N bond to give two triphe-
nylimidazolyl radicals (XIX).27 The prominence of photo-
chromism in the literature was cemented with the first 
conference on reversible photochemical processes at Duke 
University in Durham (XX). The described photochromism 
of dihydropyrenes was published in the mid-1960s (XXI).28 

The cis-hexamethylstilbene system (XXII) was shown to 
unambiguously photocyclise to hexamethyldihydrophenan-
threne in the mid-1960s.29 This study was pivotal towards 
the development of the diarylethene photochromic family. 
The dihydroazulene class of photochromic molecules was 
introduced in 1984 (XXIII).30 In 1988, it was demonstrated 
that replacement of the phenyl rings of a stilbene with 
heterocyclopentene derivatives, to give diarylethenes 
(XXIV), gave a molecule that switched between an open 
and closed form only by irradiation with an appropriate 
wavelength of light.31 The 2016 Nobel Prize32 in Chemistry 
(XXVII) recognised the importance of sterically overcrowded 
olefins discovered some 20 years prior (XXV),33 as chiropti-
cal molecular switches. 

Advances in spectroscopic and theoretical techniques in 
the late 20th and early 21st century has given the scientific 
community tools for the cogent understanding of photochro-
mism. This is best illustrated by the new class of photochromic 
molecules, donor–acceptor Stenhouse adducts (XXVI), intro-
duced in 2014.34 Stenhouse adducts are a testament to what 
has been learned about photochromic behaviour and the 
advances in scientific techniques. In a few short years, funda-
mental insights into their photochromic behaviour and poten-
tial applications have been demonstrated.35 

Principle of organic photochromism 

Photochromism is, in the majority of cases, a unimolecular 
photochemical reaction. Therefore, some basic photochemistry 
is required to study photochromic molecules. We will intro-
duce the topic below in this section and describe how it relates 
to photochromism. For a rigorous overview of molecular 

photochemistry, ‘Modern Molecular Photochemistry of 
Organic Molecules’ is a highly recommended text.36 The 
general paradigm for a photochemical process is shown in  
Scheme 1. 

The transformation from A to B requires a discrete 
amount of energy, E = hv, to overcome the potential energy 
barrier separating them. Here, molecule A absorbs at a 
particular wavelength and is promoted to an excited state, 
A*. This excited state then has the potential to transform 
into B. The process by which A* transforms into molecule B 
(box in Scheme 1) forms the basis of photophysical and 
photochemical processes. Some understanding of basic 
photophysical processes is required before we explore the 
photochemical processes further. 

Photochemical or photochromic processes compete with 
the photophysical processes for excited state deactivation. 
These photophysical processes are shown in the state 
diagram, Fig. 3. An electron can be promoted to an excited 
state from the ground state by absorbing light. This vertical 
transition is governed by the Franck–Condon (FC) principle, 
where the nuclear positions do not change during the 
excitation. A consequence of this structural distortion or 
non-equilibrium in nuclear positions is the molecule will 
adapt to the new electronic configuration by molecular 
motion. This excited electron is metastable and can relax by 
several methods. These methods are vibrational relaxation, 
internal conversion (IC), intersystem crossing (ISC), fluores-
cence and phosphorescence. IC is a non-radiative transition 
between energy levels of the same multiplicity, and ISC is a 
non-radiative transition between energy states of different 
multiplicity. Both IC and ISC involve an energy redistribution 
and are irreversible. Fluorescence and phosphorescence 

A
hv

A* B

Scheme 1. General mechanism for photochemical reaction.  
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Fig. 3. State diagram depicting photophysical and photochemical 
processes. Thick lines are electronic states and are arranged vertically 
by relative energy (i.e. S0 is singlet ground state) and horizontally by 
multiplicity (i.e. T1 is triplet first excited state). Vibrational states are 
shown by thin lines. Radiative processes are depicted by the numbers: 
(1) Absorption, (2) Fluorescence, and (3) Phosphorescence. Non- 
radiative processes are depicted by the numbers: (4) Vibrational 
relaxation, (5) Internal conversion, and (6) Intersystem crossing. 
The thick arrows depict the states at which photochemical reactions, 
i.e. photochromism, take place.  
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involve the emission of a photon as an electron transition to a 
lower energy state. The excited state level and lifetime are 
factors that determine photochemical transformation. The 
lowest energy states are associated with photochemical pro-
cesses as well as the relaxation processes. 

Knowledge of photoreaction pathways is crucial to under-
standing the bond making and breaking of photoexcited 
molecules. Potential energy surfaces (PESs) are employed 
to describe the process from reactant to photoproducts 
through relevant excited states. A simplified PES is illus-
trated in Fig. 4. Ultrafast spectroscopy techniques and theo-
retical calculations are used to characterise excited states 
and intermediates, shedding light on photoreaction path-
ways and the shapes of PESs. When compound A absorbs a 
photon to give the excited state A* at the FC region, the new 
electron density gained by the molecule after the photo-
excitation coincides with a change in nuclear positions to 
minimise the energy. The inertia in the ground state is 
conserved in the excited state, thereby opening new regions 
along the PES of the excited state.37 

The excited state molecule can have competing path-
ways, as described previously, and will be guided along 
the PES on a trajectory known as the minimum energy 
path (MEP). A central mechanism for photoreactions 
involves funnels such as an avoided crossing or a conical 
intersection (CoIn), which facilitate efficient non-radiative 
decay of the excited state species to a new electronic state, 
in this case, the ground electronic state.38,39 These funnels 
occur when two PESs approach similar energies, causing the 

breakdown of the Born–Oppenheimer adiabatic approxima-
tion and leading to a mixture of electronic and nuclear 
degrees of freedom. These funnels act as bottlenecks not 
only for the radiationless deactivation but also for chemical 
transformation.38 From these funnels, the molecule can 
relax back to either the new photoproduct B (reactive path-
way), or the starting compound A (non-reactive pathway). 

Performance factors 

Quantum yield 

The quantum yield (Φ) represents the probability that a 
molecule undergoes a certain photophysical and photo-
chemical process after the absorption of a photon. It mea-
sures the ratio between the number of reacted molecules 
(nx) and the number of absorbed photons (np). This can be 
represented by Eqn 1: 

n
n

( ) =x
x

p
(1)  

Quantum yields are measured using an actinometer and in 
general lie between 0 and 1. A quantum yield can be 
manipulated by synthetic modifications. Moreover, its 
value can also be affected by temperature, solvent and 
other environmental factors. The process by which the quan-
tum yield is defined needs to be explicit. For example, a 
photochemical reaction can be defined either by the con-
sumption of the reactant or by the formation of the product. 
However, the quantum yield for these processes will not be 
the same in many cases due to competing side reactions. 

Photostationary state (PSS) 

In a reversible photochemical reaction between two states, 
A and B, the PSS describes the ratio of B to A at a given 
wavelength. Competitive absorptions between the species A 
and B, and when the rates of formation and disappearance 
between each state become equal, exhaust the conversion at 
the given wavelength of light. The PSS is represented by  
Eqn 2: 

n
n

( ) =
( )
( )

B

A

A B A

B A B
(2)  

where nx are the mol amounts of each state, Φx→y are the 
quantum yields of photoisomerisation, and εx are the molar 
absorption coefficient of the states at the wavelength. 

Half-life 

The half-life (t1/2) for a photochromic compound is the time 
needed for thermal bleaching to half the absorbance of the 
coloured form at a specific wavelength during a cycle. This 
kinetic parameter can use pulsed or continuous irradiation 
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Radiative process

Non-radiative process

Photoreaction pathway

Fig. 4. Simplified potential energy (E) surface diagram of a photo-
chemical process (Q). The absorption of light (1) excites the molecule 
(A) from the ground state to an electronic excited state (A*) in the 
Franck–Condon region (2). Vibrational relaxation (3) and light emis-
sion (4) can reduce the energy level of the excited state. The nuclear 
wave packet can continue along the excited state PES (5). Along this 
trajectory, the wave packet can undergo internal conversion to the 
ground state by encountered funnels such as an avoided crossing (6) 
or conical intersection (7) to give the photoproduct (B or B′).  
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methods. The measurement of the kinetic rate constant 
for photochromic materials also quantifies the effects that 
temperature and solvent can have on this property. 

Fatigue 

The limit to the number of photochromic cycles is termed 
fatigue. Although the photochromic process is non- 
destructive, during the photochromic reaction, undesirable 
side reactions and oxidation can occur. Even extremely low- 
yielding side reactions lead to significant loss of the photo-
chromic species as the number of colouration–decolouration 
cycles increases. 

Main classes of photoswitches 

There are two general types of photochromes: T-type and 
P-type. T-type photochromes have a low potential energy 
barrier between B and A, Scheme 1, resulting in the meta-
stable state B spontaneously reverting to state A. In contrast, 
P-type photochromes have a high potential energy barrier in 
both reaction directions, and the conversion between the 
two stable states can only be initiated with light. These two 
types can be further subdivided into positive or negative 
photochromes. In positive photochromic systems, molecule 
A is colourless and converts into the coloured state B. 
Conversely, negative photochromes exist as a coloured 
state A that converts into the colourless state B. 

The literature describes numerous families of photo-
chromes, each with distinct characteristics that influence 
their suitability for various smart materials. The following 
descriptions will focus on selected photochrome families 
and briefly discuss their photoswitching mechanism. 

Spiropyrans 

Spiropyrans (SPs) are a class of T-type photochromes that 
undergo a colour change from a colourless SP form to a 
metastable merocyanine (MC) form (Fig. 5a). This transfor-
mation occurs when the central Cspiro–O bond is cleaved, a 
process that is triggered by UV light. The colour exhibited 
by the MC form is a result of the conjugation pathway 
extending throughout the entire molecule. In contrast, the 
conjugation in the SP form is interrupted by the central 
tetrahedral Cspiro atom. In the SP form, the indoline and 
chromene ring moieties are connected by the Cspiro carbon 
in an orthogonal manner.40,41 A related class of SPs are 
spirooxazines (SPOs, Fig. 5a), which introduces a nitrogen 
atom in the ethylene bridge. SPOs show improved fatigue 
over SP and were also used in early generation photochro-
mic lenses.41 

The photoisomerisation of SP to MC can be thought of as 
a two-step process. The first step involves the cleavage of the 
Cspiro–O bond to form the cis-MC, with the second step being 

either rotation to form the trans-MC or ring-closing to 
reform the SP.41 The MC can exist in either the quinoidal 
or zwitterionic state, depending on substitution and solvent 
conditions. Substitution of the chromene ring with an 
electron-withdrawing group, such as nitro, elongates the 
Cspiro–O bond, reducing the barrier to ring-opening and 
enabling access to the triplet excited state by n–π* transi-
tions, facilitating formation of the MC.40,42 Such a substitu-
tion also enhances the ring-opening quantum yield, and 
stabilises the open MC state through resonance contribu-
tions. Switching can occur either by a singlet (Fig. 5b) or 
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Fig. 5. (a) Photoswitching of the spiropyran (SP) to merocyanine 
(MC). Indoline moiety highlighted in pink, chromene in black. PES 
diagrams for the switching of SP to MC on the (b) singlet and (c) 
triplet manifold. Reproduced from Kortekaas and Browne (2019) 42 

with permission from the Royal Society of Chemistry.  
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triplet manifold (Fig. 5c), with the triplet being the more 
efficient. In both cases, excitation to ‘Species X’ can result 
either in relaxation by pericyclic rearrangement to reform 
the SP or following of the reaction coordinate to reach MC 
isomers. From the cis-MC, rotation around the π–π* surface 
to form the more thermally stable trans-MC by non-radiative 
relaxation can occur. The triplet manifold involves ISC 
between the singlet SP excited state to the triplet SP excited 
state, with subsequent non-radiative relaxation through the 
triplet states to MC.40,42 

Dihydropyrenes 

Dihydropyrenes (DHPs) are a class of negative T-type photo-
chromes, with the green coloured form being thermally 
stable. They switch between the more conjugated and 
coloured DHP and colourless cyclophanediene (CPD) forms 
by cleavage of the central transannular bond (Fig. 6a). 

DHPs typically have poor quantum yields, owing to 
inefficient cleavage of the transannular bond. However, 
the quantum yield can be improved by synthetic modifica-
tions.45 The mechanism of switching for DHPs is complex, 
with many excited states (e.g. 2Ag, 1Bu and 1Au) available to 
be populated upon irradiation (Fig. 6b). This, in turn, is 
partially responsible for the inefficient quantum yields 
often seen with DHPs. Three singlet states are accessible to 
the excited DHP, the locally excited (LE, 1Au), zwitterionic 
(Z, 1Bu) and biradical (B, 2Ag) states. Each state has a 
unique reaction and decay pathway, with the LE and Z states 
able to decay back to the ground-state DHP. Excitation to 
the Z state and partial relaxation crosses with the LE state. 
From here, the excited DHP can undergo radiative decay to 
the CPD state or non-radiative decay to the DHP. Excitation 
to the B state facilitates a crossover to the CPD relaxation 
pathway by a conical intersection, with efficient IC. The B 
excited state is higher in energy compared to the LE and Z 
excited states, contributing to the inefficient overall conver-
sion from DHP into CPD. A single decay pathway via the 
biradical intermediate exists for reversion from the CPD to 
DHP form.43 This potential energy profile has recently been 
revised using spin-flip time-dependent density functional 
theory (SF-TD-DFT) compared to the complete active 
space self-consistent field (CASSCF) treatment (Fig. 6c). 
Although the overall mechanism is similar, the main photo-
chemical funnel responsible for the DHP to CPD isomerisa-
tion involves the zwitterion state (S2(11Bu)) rather than the 
energically less accessible three-electron–three-centre bond 
funnel.44 

Diarylethenes 

Diarylethenes (DAEs) are modified stilbene derivatives that 
switch between open and closed isomers. The most common 
modifications include the introduction of thiophenes in 
place for the aryl rings and perfluorocyclopentene moieties 
on the bridging ethene.46 In the coloured, closed form, the 
conjugation extends over the entire molecule, with conjuga-
tion localised over each aryl moiety in the open form 
(Fig. 7a). They are a class of P-type photochromes, and 
hence have a high thermal stability and fatigue resistance.46 

The parent DAE can adopt either a parallel or anti-parallel 
conformation (Fig. 7b), with the anti-parallel conformer 
being able to switch to the closed cyclohexadiene (CHD) 
form. Due to the thermal stability of the open and closed 
isomers of DAEs, they are prime candidates in optical data 
storage.46 

This switching action occurs by a 6π electrocyclic 
rearrangement. The anti-parallel conformation allows the 
photochemically promoted conrotatory rotation, according 
to Woodward–Hoffman rules, inhibited in the parallel 
conformer.48 

Irradiation results in the negotiation of singlet energy 
states before relaxing to the CHD form (Fig. 7c). The energy 
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of the DAE and CHD forms are similar, giving the CHD its 
characteristic thermal stability. Numerous conical intersec-
tions between the ground and excited states exist, with CI3 
providing the pathway between the ring-opened and -closed 
minima on the ground state curve, characterised by three 
weakly coupled electrons and an allyl-type electron.47 

Donor–acceptor Stenhouse adducts 

Donor–acceptor Stenhouse adducts (DASAs), similar to 
DHPs, are negative T-type photochromes. Several iterations 
of DASAs have been synthesised with the 1st generation49 

featuring a zwitterionic decolourised state and the 2nd gen-
eration having a neutral decolourised state (Fig. 8a).50 The 
pKa of the N substituent is crucial in determining whether 
the closed DASA adopts a neutral or zwitterionic deco-
lourised isomer. In 2nd generation DASAs, the R groups of 
the N substituent are cyclised, lowering the pKa and favour-
ing the neutral closed form. The photochromic response of 

the DASAs is dependent on the nature of the donor and 
acceptor groups as well as the polarity of the medium.35 

Irradiation of the open DASA promotes photoisomerisation 
of the C2–C3 double bond from the Z geometry to the E, 
directed by the H-bonding interactions of the adjacent 
hydroxy group with the ketone of the bis-ester ring. 
Subsequent isomerisation, followed by a thermal conrotatory 
4π rearrangement and proton transfer, furnishes the closed 
DASA, with the rearrangement being the key ring-closing step 
(Fig. 8b). Photoswitching from the conjugated, open DASA to 
the closed cyclopentenone breaks the conjugation of the 
push–pull structure. This results in the loss of the red-shifted 
π–π* absorption band, and as such bi-directional photoswitch-
ing has proved problematic. Reversion to the open DASA 
would require a cyclopentenone with LUMO density over 
the C1–C5 bond, a feature not found in these DASAs.35 

Fulgides 

Fulgides are a class of P-type photochromes, and are deri-
vatives of 1,3-butadiene-2,3-dicarboxylic acid. This class of 
compounds switches between a 1,3,5-hexatriene and cyclo-
hexadiene structure (Fig. 9a). The exo-methylene carbon 
must have at least one aromatic substituent to form the 
hexatriene and facilitate the 6π electrocyclic rearrangement 
to form the cyclohexadiene. 

The inclusion of a heterocyclic aromatic substituent, typ-
ically furan, thermally stabilises the closed cyclohexadiene 
structure. The open isomer can exist in either the thermally 
stable E form or the Z form. Irradiation with UV light can 
promote either isomerisation of the E form to the Z form or 
the electrocyclic ring-closing, which is geometrically 
allowed only from the E form (Fig. 9b). UV irradiation 
also promotes the ring-opening of the cyclohexadiene to 
the hexatriene. Hence, the photostationary state comprised 
all three forms in various ratios, depending on the solvent 
and structure of the fulgide. Irradiation of the closed form 
with visible light exclusively promotes the ring-opening to 
the hexatriene open structure.51 Recent theoretical and 
spectroscopic investigation of the photochromic mechanism 
of the E form fulgide show competing CI that enable IC to 
the ground state that can induce either ring-closure or the 
E–Z isomerisation process.52,53 

Azobenzenes 

Azobenzenes are a class of T-type photochrome composed of 
two phenyl rings linked by an azo bond. They undergo cis– 
trans isomerism upon irradiation with UV light, with the trans 
isomer being the thermally stable isomer (Fig. 10a).54 

The half-life of the cis isomer is dependent on the substi-
tution pattern of the aromatic rings. Steric modification of 
the azobenzene framework can increase the half-life of the 
cis form, a result of the increased energetic barrier to iso-
merisation to the trans form. Azobenzenes display a high 
fatigue resistance and high quantum yield, owing to the 
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clean and efficient switching process of the isomerisation. 
Additionally, there is a pronounced conformational change 
upon switching, which can provide an additional output 
mechanism that may be relevant to applications. 

The parent azobenzene has two absorption bands in the 
UV-vis region, the first being an n–π* symmetry-forbidden 
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transition in the visible region and the second a more intense 
π–π* transition in the UV region. Based on these transitions, 
azobenzenes can be classified into three classes. The 
azobenzene-type class shows two absorption bands, similar to 
the parent. Distortion of the planarity of the azobenzene elon-
gates the n–π* transition wavelength. The aminoazobenzenes 
feature substitution at the 4 position with strongly electron- 
donating groups. This results in a bathochromic shift of the 
absorption maximum of the π–π* band into the blue region of 
the spectrum, preserving the original n–π* transition. The 
pseudo-stilbene type azobenzenes have an additional substitu-
tion at the 4′ position with strongly electron-withdrawing 
substituents. This results in the reversal of the order of the 
absorption bands, and both occur in the visible region. 
Additionally, due to the asymmetric electron distribution, 
pseudo-stilbenes can display non-linear optical properties. 

The isomerisation pathway for the azobenzene has been 
described to take place by either a torsion around the central 
double bond, inversion of the phenyl rings or a hula-twist.56 

The isomerisation of azobenzenes takes place in the order of 
picoseconds to femtoseconds. The E isomer resides in a singlet 
S0 ground state, with the isomerisation process occurring by 
either an S0 → S1 or S0 → S2 transition, exhibiting anti-Kasha 
wavelength-dependent photochemistry (Fig. 10b).55 If photo-
chemical excitation through the n–π* transition to the S1 state 
occurs, the excited species decays back to the S0 state via 
either a reactive or non-reactive conical intersection. 
Relaxation via the reactive conical intersection gives rise to 
the isomerisation product, whereas relaxation via the non- 
reactive conical intersection results in the retention of the 
original geometry. Photochemical excitation by the π–π* 
transition to the S2 state results in a myriad of pathways 
being available for relaxation. The excited molecule traverses 
through conical intersections between the S2 and S1 states and 
the subsequent S1–S0 conical intersections, before arriving at 
either the photoisomerisation product or the original state. 
The n–π* excitation pathway has a greater proportion of 
productive conical intersections, and so quantum yields via 
this route are greater.55,57 

Dihydroazulenes 

Dihydroazulenes (DHAs) are T-type photochromes that 
switch between the closed, colourless DHA form and the 
open, coloured vinylheptafulvene (VHF) upon irradiation 
with UV light (Fig. 11a). The VHF adopts a cis conformation 
upon initial opening, isomerising to the more energetically 
favourable trans form.58 

The absorption maxima and thermochromic properties 
can be tuned, with significant electronic differences between 
isomers. Switching of the DHA proceeds by a 10π electro- 
retrocyclisation, followed by cis–trans isomerism to the 
VHF. The reaction proceeds with a high quantum yield, 
with the back reaction being slow showing a strong correla-
tion with solvent. Electron-withdrawing substituents in 

positions 1 or 3 are required for photochromism, with the 
absorption red-shifted with these groups in these positions. 
Substitution of the five-membered ring with electron- 
donating substituents results in a blue-shift of absorption 
features. Conversely, substitution of the seven-membered 
ring with the same substituents has an opposite effect on 
the absorption spectrum. The thermal ring-closing of the 
VHF can lead to two forms of the DHA, depending on the 
conformation of the transition state. 

The 10π retrocyclisation is promoted by the excitation of 
the DHA from the S0 ground state to the S1 excited state. 
Relaxation through this reaction coordinate coincides with a 
conical intersection, leading to the VHF ground state. 
Furthermore, this conical intersection has a VHF-like geome-
try, accounting for the efficient quantum yield of the photo-
chemical reaction (Fig. 11b). All excited states lead to the 
ground state with VHF geometry, further amplifying the quan-
tum yield of ring-opening. A much steeper photochemical 
barrier from VHF to DHA exists, hence the photochemical 
reaction is essentially ‘one-way’ from DHA to VHF.59,60 

Overcrowded alkenes 

Overcrowded alkenes are P-type photochromes, with the 
switching originating from torsion around a central 
stilbene-like alkene bond.61 An intrinsic inversion in helicity 
follows cis–trans isomerism of this central stilbene moiety 
and gives the overcrowded alkenes their photochromic 
switching action (Fig. 12a). The inherent axial chirality of 
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the overcrowded alkenes prevents inversion of chirality to the 
original state. Overcrowded alkenes comprised a symmetrical 
bottom stator and asymmetric rotor. The steric crowding 

around the alkene not only gives these compounds their 
name but prevents rotation around the central alkene linkage 
and imparts the chirality and helicity to the molecule. 
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Careful substitution of the stator with electron-donating 
and withdrawing substituents, as well as changing the iden-
tity of X and Y along the central axis, can tune the barrier to 
isomerisation and hence the effective wavelength.62 The 
rotor rotates around the stator in a unidirectional, clockwise 
fashion. Switching takes place on microsecond timescales, 
owing to the complex negotiation of states. Initial excitation 
with UV light promotes the alkene A (Fig. 12b) from the 
ground state to the excited state, overcoming the significant 
energy barrier to thermal cis–trans isomerism on account of 
the steric crowding (Fig. 12c). This initial isomerisation step 
gives rise to a metastable form B (Fig. 12b) via a conical 
intersection of the excited and ground states (Fig. 12c). The 
species B then undergoes a spontaneous thermal helix inver-
sion to form the more stable form C (Fig. 12b, c). In this step, 
a ‘puckering’ of the stator prompts the adoption of a more 
sterically favoured conformation, akin to the flapping of 
butterfly wings. Additional irradiation with UV light 
prompts another cis–trans isomerism event, with the forma-
tion of the corresponding metastable state D (Fig. 12b), 
before another ‘flap’ converts this state into the original 
conformer A. A and C, and B and D have identical energies, 
a consequence of the symmetrical stator.63 

Selected applications of photoswitches 

The applications, and the development, of new smart mate-
rials with photochromic molecules is vast. Incorporating all, 
or even the majority, of these into a single Primer Review is 

not justifiable. However, a few selected applications will be 
discussed below to allow the reader to gain an understand-
ing of the diversity of photochromic molecules. A common 
theme emerging from applications of photochromic mole-
cules is their interaction with secondary systems to perform 
a task to achieve an outcome. Complex multi-molecule sys-
tems will continue to inspire future research with these 
illuminating molecules. 

Data storage 

Photochromic compounds have garnered interest in logic or 
information processing applications.64 In these applications, 
the molecule’s function relies on an optically detectable 
output, such as absorption or emission, triggered by an 
external light stimulus. The integration of a fulgimide into 
an all-photonic molecule-based D flip-flop demonstrated 
that complex logic behaviour could be achieved by utilising 
the fluorescence of the closed form as the output state of the 
device (Fig. 13a).65 A D flip-flop is a data storage element 
commonly used in silicon circuitry to store and synchronise 
data (Fig. 13b). In this system, the data input (D) 
was provided by 1064 nm IR light from a Nd:YAG laser, 
whereas the clock input (Clk) was 532 nm light generated by 
a second-harmonic-generating (SHG) crystal. A third- 
harmonic-generating (THG) crystal produced 355 nm light. 
The output of the device (Q) was determined by the fluores-
cence emitted by the closed form of the fulgimide (Fig. 13c). 
Since the 1064 nm input does not trigger a photochromic 
response, Qn = Qn+1. Irradiation at 532 nm results in the 
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open isomer and Qn+1 is set to 0 (Qn+1 = 0). By using both 
the 1064 nm (D) and 532 nm (Clk) light through the THG 
crystal, the device receives 355 nm UV light, which induces 
the closed isomer and fluorescence output, setting Qn+1 to 
1 (Qn+1 = 1). 

Phytopharmacology 

Photochromic compounds have found applications as light- 
activated antimicrobial agents. In this approach, a photochro-
mic molecule is coupled with a bioactive molecule.66 Upon 
irradiation, the new molecule switches to its more active 
form, enabling the therapeutic effect (Fig. 14a). This spatial 
and temporal control using light allows for precise treatment. 
The proof of concept for a photoswitchable antibiotic was 
reported in 2013,67 and since then, the field has seen immense 
growth. Photoswitchable azobenzenes, coupled with a bacte-
ricide diaminopyrimidine, have demonstrated control over 
bacterial activity using green and violet light to activate and 
deactivate the antibacterial agent (Fig. 14b). Notably, 
irradiation of the compound (X�Cl) with red light resulted 
in an eight-fold difference in bacterial activity, with low- 
energy wavelengths being crucial for real-world therapy 
because of higher tissue penetration.68 Upon light irradiation, 
the trans-to-cis isomerisation of the azobenzene dissolves the 
inactive aggregates formed in the solution, leading to an 
increase in the molecule’s potency against bacteria (Fig. 14c). 

Molecular machines 

The field of research focusing on machines and devices at 
the molecular scale driven by light to power their functions 
is of significant interest.69,70 Molecular machine-based 
devices are designed with specific tasks in mind, such as 
actuation and molecular cargo transport. A recent study 
reported a light-driven acetyl transporter utilising a modi-
fied overcrowded alkene (Fig. 15).71 In this system, the 
upper part of the molecule acts as an arm or crane, capable 
of picking up an acetyl group from the lower part by the 
thiol reacting with the acetyl group at the A site of the 
molecule. Light is then employed to trigger the rotation of 
the molecule. Subsequently, the acetyl group is either 
released or reacted with the opposite amine side of the 
lower part of the molecule. The intramolecular reaction 
was monitored using 1H NMR and UV–Vis spectroscopy. 

Gas adsorbent 

Photochromic molecules have been incorporated into 
metal–organic frameworks (MOFs) to enhance the function-
ality of these nanoporous materials.72 The photoswitch 
can be integrated into the framework, as a bridge, side 
group or as a guest (Fig. 16a). The concept of incorporating 
a photoswitch into a MOF was first explored in 2011 with 
the synthesis of a photoresponsive [Zn2(NDC)2] (CAU-5), 
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which featured azobenzene protruding into the pores.73 

A more recent example reported a photoresponsive 
azobenzene-modified UiO-type MOF. These MOFs were 
further modified with tetraethylenepentaamine with amine 
active sites suitable for CO2 absorption.74 The cis–trans 
photoisomerisation of the azobenzene moiety was able to 

modify the amine active sites responsible for the CO2 
absorption capacity (Fig. 16b). Irradiation of the MOF 
with visible light triggers the trans–cis isomerisation, lead-
ing to the release of up to 45.6% of the bound CO2 from 
tetraethylenepentaamine. The photoresponsive MOFs also 
exhibited selectivity for CO2 over CH4 and N2. Irradiation 
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with UV light triggered the cis–trans isomerisation and con-
sequent uptake of gas in the structure. 

Catalysis 

Catalysis is employed to efficiently increase the rate of 
chemical reactions and create functional molecules. 
Photoswitches are used to enhance, and in some cases con-
trol, the selectivity of chemical reactions (Fig. 17a).75,76 It is 
important to note that this area is conceptually different 
from photocatalysis, which is also light mediated.77 One of 
the first examples of using photoswitchable catalysis 
described a five-fold increase in the rate of hydrolysis 
of p-nitrophenyl acetate when an azobenzene-capped 
β-cyclodextrin was photoisomerised from the trans to the 
cis form using UV light.78 In this case, the trans–cis isomer-
isation resulted in a change in the cavity space with 
enhanced binding and a more favourable geometry for the 
hydrolysis reaction (Fig. 17a). A functional photoswitchable 
catalyst based on the DTE photochrome has been shown to 
be an ideal scaffold for activating and deactivating catalytic 
behaviour due to its photochemical electrocyclisation. An N- 
heterocyclic carbene (NHC) modified with a DTE core was 
reported to promote the transesterification of allyl alcohol 
and vinyl acetate, as well as the amidation of ethyl acetate, 
in its open form (Fig. 17b).79 Photoconversion of the catalyst 
to its closed form using UV irradiation exhibited a ten-fold 
decrease in catalytic activity. The changes in catalytic activ-
ity were ascribed to a decrease in the electron-donating 
ability of the NHC when the DTE is in its closed form. 

Interconversion between the open and closed isomers 
using visible and UV light was able to attenuate the conver-
sion of single reactions. NMR spectroscopic 13C labelling 
studies showed that upon UV irradiation and photocyclisa-
tion, the closed NHC–DTE catalyst formed a less-active alco-
hol adduct. Building on from this study, a photochromic 
DAE-annulated NHC–RhI complex was shown to act as a 
light-tunable catalyst for alkene and alkyne hydroborations 
(Fig. 17c).80 Exposure of the catalyst to UV light closes the 
DTE moiety, leading to a decrease in the electron-donating 
ability of the NHC. The subsequent decrease in electron 
density of the Rh catalyst centre results in attenuated cata-
lytic activity of up to an order of magnitude. The inhibition 
of the rate-determining reductive elimination step was pos-
tulated as the reason for the observed reduced activity of the 
catalyst. 

Molecular electronics 

Photoswitching and studying the changes in junction trans-
port and phenomena when a photochromic molecule is 
sandwiched between two electrodes are pivotal for the devel-
opment of molecular optoelectronic devices (Fig. 18a).81 

Molecular photoswitches have been extensively studied at 
the single-molecule level and using self-assembled mono-
layers. One of the first reported experiments involved the 
charge transport at the single-molecule level of a DTE mole-
cule with modified sulfanythienyl contact groups, using the 
mechanically controllable break-junction (MCBJ) technique 
(Fig. 18b).82 The results showed an increase in resistance 
when the single-molecule junctions of the closed form of the 
DTE were irradiated with visible light, which was correlated 
with the opening of the molecule. However, attempts to 
switch the molecule back to the closed form using UV light 
were not successful, which was attributed to the quenching 
of the excited state by the gold electrodes. More recently, 
charge transport experiments using scanning tunneling 
microscope–break-junctions (STM-BJs) were conducted on 
several DHPs with alkynylpyridyl substituents. The results 
demonstrated that the single-molecule conductance 
depended on the substitution pattern on the DHP (either at 
the 2,7 or 4,9 positions), as well as the applied bias 
(Fig. 18c).83 Although the alkynyl-modified DHPs did not 
exhibit photochromic properties, the use of visible light to 
switch a DHP with direct pyridyl anchor groups to the CPD 
isomer resulted in a significant decrease in conductance, 
consistent with studies conducted using mechanically con-
trolled break junctions (Fig. 18d).84 

Conclusion 

The phenomenon of photochromism has captivated scien-
tists for over 150 years. What started as curious observations 
of materials changing colour when exposed to light has 
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Fig. 16. (a) Representation of the different modes to incorporate 
photoswitches into MOFs (left to right), in the framework, as a side 
group or as a guest. (b) A photoresponsive azobenzene-modified 
UiO-type MOF for CO2 absorption. Figure reproduced from Jiang 
et al. (2019) 74 with permission from the Royal Society of Chemistry.  
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evolved into a well-developed field, where a combination of 
chemical synthesis, time-resolved spectroscopy and theory 
has provided a deep understanding of photochromism and 
enabled the rational design of photochromes for various 
material applications. Although several organic photochro-
mic molecules have been extensively studied, there is still an 
incredible range of applications waiting to be explored using 
photochrome-based materials. 

The future challenges for organic photochromic mole-
cules serve as both inspiration and motivation for research-
ers pursuing real-world material applications. The transition 
from laboratory-based research systems to commercial 
materials will require input from future scientists and engi-
neers. However, there are still economical and practical 
challenges that need to be overcome. The function and 

performance of photochromic molecules must be fine- 
tuned to meet the requirements of commercial materials. 
Key performance issues that still need attention include 
chemical degradation affecting performance lifetime, as 
well as the lack of control over colouration and bleaching 
rates and efficiency. 

While modifying current photochromes will provide the 
fundamental models needed for progress in the field, the 
discovery of new and exciting types of photochromic 
molecules will expand the potential of photochromic appli-
cations. With the rapid progress in spectroscopic and theo-
retical techniques, as well as the versatile nature of synthetic 
chemistry, these obstacles can be overcome. The next gen-
eration of photochromic molecules and research is focused 
on investigating how these molecules interact with their 

Fig. 17. (a) Representation of a photoswitchable catalyst where the catalytic activity or outcome can be tuned with light. The catalyst can be 
attenuated by the integrated photoswitch to change its catalytic properties. (b) An NHC–DTE catalyst for the transesterification and amidation. 
(c) An organometallic NHC–DTE complex catalyst for hydroboration of alkenes.    
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surrounding environment. This is evident in the advance-
ments in photopharmacology and molecular machines. By 
creating complex dynamic systems, we hope to see an influx 
of real-world applications that will brighten the future of 
photochromic materials. 
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