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Abstract. The unexpected discovery of oil in Triassic sedimentary rocks of the Phoenix South 1 well on Australia’s

North West Shelf (NWS) has catalysed exploration interest in pre-Jurassic plays in the region. Subsequent neighbouring
wells Roc 1–2, Phoenix South 2–3 and Dorado 1–3 drilled between 2015 and 2019 penetrated gas and/or oil columns, with
the Dorado field containing one of the largest oil resources found in Australia in three decades. This study aims to

understand the source of the oils and gases of the greater Phoenix area, Bedout Sub-basin using a multiparameter
geochemical approach. Isotopic analyses combined with biomarker data confirm that these fluids represent a new Triassic
petroleum system on the NWS unrelated to the Lower Triassic Hovea Member petroleum system of the Perth Basin. The

Bedout Sub-basin fluids were generated from source rocks deposited in paralic environments with mixed type II/III
kerogen, with lagoonal organofacies exhibiting excellent liquids potential. The Roc 1–2 gases and the Phoenix South 1 oil
are likely sourced proximally by Lower–Middle Triassic TR10–TR15 sequences. Loss of gas within the Phoenix South 1

fluid due to potential trap breach has resulted in the formation of in-place oil. These discoveries are testament to new
hydrocarbon plays within the Lower–Middle Triassic succession on the NWS.
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Introduction

In 2014, the surprise discovery of oil in Phoenix South 1 on

Australia’s North West Shelf (NWS) heralded the Bedout Sub-
basin as a new oil province in Australia (Fig. 1a). TheDorado oil
field, discovered in 2018 and located about 40 km south of

Phoenix South 1, is one of the largest oil resources found in
Australia in decades (Weller and Amiribesheli 2018; Cockerill
2020) and confirms the magnitude of the resources in the

Bedout Sub-basin. However, whether these discoveries repre-
sent a new oil province is challenged by the presence of gas in
the Greater Phoenix area wells, Roc 1–2, Phoenix South 2–3 and
Dorado 1–3.

To better assess the potential for finding similar plays
elsewhere on the margin, it is essential to understand the source
of the oils and gases in the greater Phoenix area, which is

accomplished using a geochemical approach. Analyses of fluids
provide information on the source rock they derive from,
including kerogen type, age and maturity at the time of hydro-

carbon generation. Oil–gas–source correlations using isotopic
and molecular data provide insights into the most likely source
rock from which the fluids of the Bedout Sub-basin derive.

Samples and methods

The oils, natural gas and rock samples analysed in this study for

bulk isotopic and biomarker compositions are listed in Table 1.
The Phoenix South 1 oils were recovered from the Middle Tri-
assic Barret Member between TR15.0_SB and TR16.0_SB,

whereas the Roc 1–2 gases and condensates were taken from the
Lower to Middle Triassic Caley Member between TR10.0_SB
and TR15.0_SB (Thompson et al. 2018; Rollet et al. 2019)

(Fig. 1b). The methods and data have been reported in Grosjean
et al. (2019a, 2019b, 2019c, 2020a). At the time of this study,
fluids from the recently drilled Dorado wells were not yet
available for analysis but will be included in further work.

Oil and gas geochemistry of Bedout Sub-basin fluids

Roc 1–2 both encountered rich gas condensates with
condensate-to-gas ratios of 50.5 and 55.8 bbl/mmscf, respec-

tively. While methane is the dominant component of these
natural gases (Grosjean et al. 2019b), they are considered wet
gases with C1/(C1–C5) of 82.8%, where wet gases are defined by

this ratio as being ,98% (Tissot and Welte 1984).
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Fig. 1. (a) Regional map of the Roebuck Basin showing main structural elements, petroleum wells and hydrocarbon fields and discoveries. (b) Permian–

Triassic tectono-stratigraphic chart of the Bedout Sub-basin based on the nomenclature afterMarshall and Lang (2013) and the Geologic Timescale 2016 (Ogg

et al. 2016) showing oil and gas discoveries and formation names by Santos Ltd (Thompson et al. 2019; Thompson 2020).
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Table 1. Bulk properties and relevant geochemical ratios for petroleum fluids and rocks analysed during this study

Gases

Sample

no.

Sample

ID

GeoMark

ID

Well Top

depth

(mRT)

Base

depth

(mRT)

Sample

type

Sequence Sampling

details

C1/(C1–

C5)%A

d13C

methane

(%)B

d13C

ethane

(%)B

d13C

propane

(%)B

d13C

n-butane

(%)B

d13C

n-pentane

(%)B

dD

methane

(%)C

2709628 20179095 Roc 1 4403.5 Gas TD within

lower

TR10

MDT. Ex-

MPSR

2602

82.8 –43.9 –31.15 –27.82 –27.26 –26.77 –180.2

2635995 20179005 Roc 2 4292.4 4325.5 Gas TD within

lower

TR10

DST 1.

Sample No

1.50

82.8 –44.9 –32.60 –29.07 –28.52 –28.01 –171.6

Oils and condensates

Sample

no.

Sample

ID

GeoMark

ID

Well Top

depth

(mRT)

Base

depth

(mRT)

Sample

type

Sequence Sampling

details

API

gravity

(8)

S (wt.%) Pr/PhD C19/C23E Tet/C23F d13C oil

(%)B
d13C

sats

(%)B

d13C

aros

(%)B

VREQ-

5

2673490 20179025 AU1173 Phoenix

South 1

ST2

4232.5 Oil TD within

TR15

MDT. Ex-

MPSR

2248

48.1 0.03 4.03 3.94 2.02 –29.4 –30.2 –27.7 n.d.

2673491 20179026 AU1174 Phoenix

South 1

ST2

4232.5 Oil TD within

TR15

MDT. Ex-

MPSR

2082

49.3 0.01 4.13 3.76 1.97 –29.5 –30.1 –27.6 0.98

4273714 20209014 AU1258 Roc 2 4322.02 Condensate TD within

lower

TR10

MDT. Ex

MPSR

3348

42.8 0.04 2.53 2.69 1.28 –27.8 –29.6 –26.6 1.15

4273715 20209015 AU1259 Roc 2 4294.5 4325.5 Condensate TD within

lower

TR10

DST 1.

Sample No

1.51

52.3 0.08 2.61 3.70 1.72 –27.3 –30.0 –26.6 1.15

4273716 20209016 AU1260 Roc 1 4395.5 4406.0 Condensate TD within

lower

TR10

MDT. Ex

MPSR

2645

43.3 0.02 2.53 4.27 1.47 –27.8 –29.9 –27.1 1.17
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Source rocks

Sample

no.

Sample

ID

GeoMark

ID

Well Top

depth

(mRT)

Base

depth

(mRT)

Sample

type

Sequence TOC

(wt.%)

S2 (mg

HC/g

rock)

HI (mg

HC/g

TOC)

Pr/PhD C19/C23E Tet/C23F d13C

EOM

(%)B

d13C

sats

(%)B

d13C

aros

(%)B

VREQ-

5

2808563 20190033 XAU0144 Roc 2 4350.46 Core TD within

lower

TR10

23.12 98.27 425 5.99 5.40 10.91 –25.1 –29.8 –24.5 0.78

2808566 20190036 XAU0145 Roc 2 4365.12 Core TD within

lower

TR10

2.8 7.97 284 3.68 1.14 4.69 –29.0 –32.5 –28.2 0.81

2808567 20190037 XAU0146 Roc 2 4366.25 Core TD within

lower

TR10

4.86 16.74 345 4.84 4.87 9.44 –27.8 –31.2 –26.6 n.d.

2808572 20190042 XAU0147 Roc 2 4370.23 Core TD within

lower

TR10

16.86 72.66 431 6.81 4.38 8.66 –26.1 –30.7 –25.2 0.81

2808573 20190043 XAU0148 Roc 2 4370.73 Core TD within

lower

TR10

12.62 51.19 406 5.77 4.12 9.70 –27.5 –30.9 –26.6 n.d.

2808580 20190050 XAU0149 Roc 2 4388.3 Core TD within

lower

TR10

2.82 7.04 249 5.24 1.89 6.04 –28.8 –32.3 –27.7 n.d.

AC1/(C1–C5)%¼methane/(methaneþ ethaneþ propaneþ i-butaneþ n-butaneþ i-pentaneþ n-pentane)�100; BCarbon isotopic values (d13C) are reported relative to Vienna Peedee Belemnite (VPDB);
CDeuterium isotopic values (dD) are reported relative to VSMOW; DPr/Ph¼ pristane/phytane; EC19/C23¼C19 tricyclic terpane/C23 tricyclic terpane;

FTet/C23¼Tetracyclic terpane/C23 tricyclic terpane;

n.d.¼ not determined.



The Phoenix South 1 oils and Roc 1–2 condensates are light

fluids (API gravity 43–498), low in sulfur (S¼ 0.01–0.08 wt.%)
and non-biodegraded. The low gas-to-oil ratios in the range
1691–1764 scf/bbl for the Phoenix South 1 oils are inconsistent

with anAPI. 458, implying that the oils are undersaturatedwith
respect to gas (Murray and He 2020). Based on vitrinite reflec-
tance equivalent (VREQ-5) data derived from a proprietary

combination of aromatic hydrocarbons analysed by GC/MS-
MS QQQ at GeoMark Research, the Roc 1–2 condensates are
more thermally mature (mean VREQ-5¼ 1.16%) than the
Phoenix South 1 oils (VREQ-5¼ 0.98%) generated at peak oil

maturity. The pristane-to-phytane (Pr/Ph) ratios of the Phoenix
South 1 oils and Roc 1–2 condensates are in excess of 2.5
(Table 1), indicative of a suboxic/oxic depositional environment

for the source rock. Terpanes and steranes distributions reveal
mixed marine-terrestrial inputs to the organic matter and a
clastic source rock. There is no increased abundance of C33

alkylcyclohexane in these fluids, a biomarker diagnostic for the
end-Permian mass extinction event and prevalent in Lower
Triassic-sourced Perth Basin oils (Grosjean et al. 2011 and
references therein). The low relative amount of retene, a poly-

aromatic compound likely derived from Araucariacae conifers
that evolved during the Jurassic (Alexander et al. 1988), is in
agreement with a pre-Jurassic age. The carbon isotopic compo-

sition (d13C) of the saturated hydrocarbon fractions ranges from
–30.2 to –29.6%, which is within the range of values observed
globally for crude oils derived from Triassic source rocks

(Andrusevich et al. 1998).
An effective tool for understanding the potential source of

gases and oils is to compare the compound-specific isotopic

analyses of linear alkanes of the fluids with those of the source
rocks fromwhich they may be derived. Carbon isotopic values of
alkanes for the fluids in the greater Phoenix area wells fall
between the Lower–Middle Jurassic fluids from the Browse

Basin, the Jurassic fluids from the Beagle Sub-basin, the Permian
fluids of the Perth Basin and the Lower Triassic fluids of the Perth
Basin (Fig. 2a). Linear alkanes of the Phoenix South 1 oils are on

average 1.5% more depleted in 13C than the Roc 1–2 conden-
sates, which is in agreement with a lower thermal maturity
(Clayton and Bjorøy 1994). The alkane carbon isotopic profiles

of the Roc 2 gas/condensate pair follow a smooth continuum
inferring cogeneration by the same source rock at the same
maturity (Boreham et al. 2001).

Source rock geochemical characteristics

Based on the stratigraphic emplacement of the oil and gas dis-

coveries within Lower to Middle Triassic reservoirs between
TR10.0_SB and TR17.0_SB (Fig. 1b), Lower toMiddle Triassic
rocks were investigated for their hydrocarbon source potential

using publicly available Rock-Eval pyrolysis data to identify the
most suitable candidates for oil to source correlations. Sedi-
ments between TR10.0_SB and TR15.0_SB were deposited in a

fluvial-deltaic environment with occasional minor marine
influences (Abbott et al. 2019; Rollet et al. 2019). In the Bedout
Sub-basin, sedimentary rocks that have available geochemical
data have amean total organic carbon (TOC) content of 3.1wt.%

and a mean genetic potential S1 þ S2 of 9.4 mg hydrocarbons
(HC)/g rock, exhibiting good to excellent hydrocarbon-

generating potential. With a mean hydrogen index (HI) of

229 mg HC/g TOC, these source rocks consist mainly of mixed
type II/III kerogens and organofacies D/E in the kerogen clas-
sification by Pepper and Corvi (1995), capable of generating

both oil and gas. However, about one-fifth of the rocks analysed
within the Caley Member in Roc 2 stand out as excellent oil-
prone source rocks having TOC. 4 wt.% (up to 23.2 wt.%) and

HI . 300 mg HC/g TOC (Rollet et al. 2019; Grosjean et al.

2019a). Caley Member shales are enriched in the maceral lip-
tinite, an oil-prone source rock organic component. Liptinite in
these shales consists of a mixture of algal-derived lamalginite,

marine plankton tasmanitids, brackish–freshwater algae
Botryococcus-related telalginite and the land–plant maceral
sporinite (Fig. 3a–c) (Ranasinghe and Crosdale 2019). The

combination of terrestrial and freshwater/marine algal macerals
suggests a deltaic to lagoonal environment, which is supported
by detailed sedimentological, ichnological and palynological

observations on Roc 2 cores (Allgöwer and Lignum 2019).
Pyrolysis products from pyrolysis–gas chromatography are
dominated by n-alkenes/n-alkanes pairs extending to long chain
lengths, reflecting a prevailing algal contribution and confirm-

ing the oil-prone nature of the kerogen (Fig. 3d). The high
abundance of aromatic and phenolic compounds among the
pyrolysis products indicates a significant land–plant contribu-

tion (Larter 1985; Mahlstedt and Horsfield 2019). Bulk kinetics
show a narrow activation energy (Ea) distribution (Fig. 3e)
consistent with the cracking ofmixed aquatic–terrestrial organic

matter and petroleum generation occurring between 1458C and
2108C for a geologic heating rate of 3 K/Ma.

With VREQ-5 in the range 0.78–0.81%, the Caley Member

source rocks analysed in Roc 2 are not as thermallymature as the
fluids. Biomarker distributions are consistent with a mixed
marine to terrestrial clastic depositional environment. The
carbon isotopic compositions of C14–C32 linear alkanes show

values between –29 and –38% (Grosjean et al. 2020b), with
alkanes isotopic profiles nested in between those of the Lower
Triassic Perth Basin oils and the Jurassic-sourced fluids of the

Browse Basin, similar to the fluids in Roc 1–2 and Phoenix
South 1 (Fig. 2b).

With a mean TOC content of 1.4 wt.% and HI in the range

33–331 mg HC/g TOC in wells of the Bedout Sub-basin, fluvio-
deltaic sedimentary rocks between TR15.0_SB and TR16.0_SB
are not as organic-rich as the sequence below but the organic
matter consists of mixed type II/III kerogen adequately capable

of generating oil and gas (Rollet et al. 2019).

A new Triassic petroleum system

Biomarker and isotopic data of the Bedout Sub-basin fluids
analysed in this study suggest sourcing from a clastic source rock

consistent with a Triassic age and deposition under suboxic/oxic
conditions with mixed marine and terrestrial organic matter
inputs. The fluid geochemistry in Phoenix South 1 and Roc 1–2

indicates that they represent a new Triassic petroleum system on
the western margin of Australia unrelated to the Lower Triassic
petroleum system of the Perth Basin. The inferred depositional
environment for the source rock is in agreement with derivation

from type II/III fluvio-deltaic to lagoonal source rocks present in
the Bedout Sub-basin between TR10.0_SB and TR16.0_SB
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Fig. 2. Carbon isotopic compositions of C1–C5 gaseous hydrocarbons and C7–C32 n-alkanes of (a) fluids from the Bedout Sub-basin (red), Browse Basin

sourced by Lower–Middle Jurassic source rocks (orange), Beagle Sub-basin (blue), Perth Basin sourced by Permian source rocks (brown), Lower Triassic

source rocks (pink) and (b) of source rocks from the Caley Member in Roc 2 (purple) (data from Grosjean et al. 2020b).
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(Rollet et al. 2019). Caley Member source rocks from the Roc 2

well are too immature to have generated the Phoenix South 1 and
Roc 1–2 fluids but exhibit carbon isotopic ratios and biomarker
distributions correlating broadly with those of the fluids. Sedi-

mentary packages between TR10.0_SB and TR16.0_SB extend
to the northwest of the Phoenix South and Roc wells, where they
are anticipated to reside in fully mature generative kitchens and

provide the effective source of the recovered fluids. The dif-
ference in thermal maturity between the Phoenix South 1 oil
reservoired in the Barret Member (VREQ-5¼ 0.98%) and the
Roc 1–2 condensates (mean VREQ-5¼ 1.16%) in the deeper

Caley Member reservoir suggests derivation from discrete
source pods of similar character but of different thermal matu-
rities with the occurrence of stacked source/reservoir pairs

separated by intraformational seals (Thompson 2020). This
scenario is supported by the presence of a regionally continuous,
fine-grainedHoveMember providing a top and lateral seal to the

Roc and Phoenix South discoveries (Thompson 2020).
The finding of both oil and rich gas condensates in wells of

the greater Phoenix area is consistent with hydrogen-rich source
rocks of D/E facies. Significantly, D/E sourced fluids are the

most susceptible to phase separation as the generationwindow is
close to saturation pressure, which can lead to dual-phase (oil
and gas) accumulations (He and Murray 2019). The fluid phase

is also controlled by processes such as spill-fill, leakage and in-
reservoir alteration (Murray and He 2020). The Phoenix South 1
oil accumulation is undersaturated with respect to gas, which

suggests that loss of gas has enriched the remaining fluid in
heavy hydrocarbons resulting in the formation of oil. Supple-
mentary work on the Dorado fluids will further improve the

understanding of this significant new petroleum system on the
NWS of Australia.
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