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Abstract. Australia contains rich natural gas resources, but many of Australia’s currently producing and undeveloped
gas fields contain relatively high CO2 contents; if not captured and stored, the venting of co-produced CO2 could hinder
efforts to meet Australia’s emission reduction targets. The most mature technology for isolating produced CO2 from the

atmosphere is by containing it in deep sedimentary formations (e.g. saline aquifers or depleted oil and gas reservoirs). The
effectiveness of this approach is dependent on factors such as reservoir capacity, the presence of low-permeability seals
that physically impede vertical migration of injected CO2, the chemical reactivity of both reservoir and seal minerals, the

risk for leakage, and a gas-entrapping structure. An alternative and attractive mechanism for permanent storage of CO2 is
geochemical or mineral trapping, which involves long-term reactions of CO2 with host rocks and the formation of stable
carbonate minerals that fill the porosity of the host rock reservoir. Natural mineral carbonation is most efficient in mafic

and ultramafic igneous rocks, due to their high reactivity with CO2. Here we review the outcomes from a series of recent
pilot projects in Iceland and the United States that have demonstrated high potential for rapid, permanent storage of CO2 in
basalt reservoirs, and explore the practicalities of geochemical trapping of CO2 in deeply buried basaltic volcanoes and
lava fields, which are found in many basins along the southern (e.g. Gippsland Basin) and northwestern (e.g. Browse

Basin) Australian margins, often in close proximity to natural gas fields with high CO2 content.
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Introduction

Australia contains abundant natural gas resources and is a
leading global exporter of liquified natural gas (LNG)
(Geoscience Australia 2019). Many of Australia’s producing

and undeveloped natural gas fields contain relatively high CO2

contents, with particularly high values (.20%) reported from
wells and fields in the Otway, Cooper-Eromanga, Gippsland,
Bonaparte, and Carnarvon basins (Boreham et al. 2001). For

some producing fields, most notably Gorgon (,7–27% CO2:
Maftei et al. 2013), CO2 is separated and injected into deep
saline aquifers (Michael et al. 2010). In many fields, however,

reservoir CO2 is not captured but directly released to the
atmosphere, contributing significantly to national greenhouse
gas emissions. The Ichthys Field in the Browse Basin contains

high CO2 contents in the Brewster (8%) and Plover (17%)
reservoirs, and it is anticipated that,96Mt of reservoir CO2will
be emitted over the 40-year lifetime of the Ichthys LNG project

(INPEX 2010).

The most mature technology for the long-term carbon capture

and storage (CCS) is underground sequestration of supercritical
CO2 in sedimentary rock formations such as deep saline aquifers
or depleted hydrocarbon reservoirs deep enough (typically 1 kmor

deeper) for the CO2 to remain in a supercritical state (Bunch et al.
2014; National Academies of Sciences Engineering andMedicine
2019). The critical requirements for CCS in sedimentary forma-
tions are (i) a thick reservoir (usually sandstone or carbonate) with

sufficient porosity and permeability to contain large volumes of
CO2 at commercially meaningful injection rates, (ii) an overlying
thick seal (usually shale) with sufficiently high capillary entry

pressure and low permeability to retain the injected CO2 over
geological timescales, and (iii) a gas-trapping structure that, due to
gas buoyancy, concentrates large volumes of CO2 and prevent its

migration and leakage (Dempsey et al. 2015; National Academies
of Sciences Engineering and Medicine 2019). Additional impor-
tant geological considerations include the absence of permeable

faults and fractures through the seal and favourable stresses and
pore pressures to avoid reservoir or seal fracturing during injection
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(Nicol et al. 2017; National Academies of Sciences Engineering

andMedicine 2019). The combined underground storage capacity
in saline aquifers and depleted hydrocarbon reservoirs is estimated
between 5000 and 25 000 Gt CO2 (Kelemen et al. 2019).

Carbon mineralisation in igneous rocks

An alternative option for the secure, long-term underground
storage of CO2 is carbon mineralisation in mafic and ultramafic
igneous rocks, which could potentially host up to 60 000 000 Gt
CO2 (Kelemen et al. 2019). Carbon mineralisation involves the

formation of stable carbonate minerals (e.g. calcite, magnesite,
dolomite) through the reaction of CO2 (gas, liquid, dissolved in
water or supercritical) with rocks that are rich in calcium or

magnesium (Wolff-Boenisch and Galeczka 2018). Mg-rich,
Ca-bearing rocks include ultramafic peridotites and mafic
basalts, which contain highly reactiveminerals including olivine

and pyroxene (National Academies of Sciences Engineering and
Medicine 2019). Whilst in situ carbon mineralisation in sand-
stone reservoirs can occur over timescales of thousands of years,

peridotites and basalts may mineralise and sequester 90% of the
injected CO2 in a few months to decades (Fig. 1a; National
Academies of Sciences Engineering and Medicine 2019).

The rate of carbon mineralisation is influenced by factors

including the available CO2 dissolved in solution, temperature
and variations in pH, with low pH promoting mineral dissolution
and high pH accelerating carbonate precipitation (Kelemen et al.

2019). Olivine (Mg2SiO4), which is the major mineral in perido-
tite, has amongst the highest reaction rates with CO2-bearing
aqueous fluids, whilst plagioclase feldspar (the major constituent

of basalts) has somewhat lower reaction rates, meaning that CO2

mineralisation may be expected to occur more rapidly in perido-
tites than basalts (Fig. 1b; Kelemen et al. 2019; Seyyedi et al.
2020). However, an exception may occur where basalts contain

amorphous glass horizons, which are thought to provide excep-
tionally good reactants for carbonmineralisation (National Acad-
emies of Sciences Engineering and Medicine 2019). Glass forms

whenbasalt cools very quickly and is often abundant in submarine
lavas and hyaloclastite breccias (National Academies of Sciences
Engineering and Medicine 2019).

Basaltic rocks are extremely abundant; most of the ocean floor
(comprising,70%ofEarth’s surface) and.5%of the continents
is basaltic, with extensive flood basalt fields present in central
India, Siberia, the United States, and Canada (Snæbjörnsdóttir

et al. 2020).Counter tomanypetroleumgeologists and engineers’
assumptions, volcanic rocks often have high porosity and
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Fig. 1. (a) Comparison of CO2-trappingmechanisms over timewhen injecting pure supercritical CO2 into sedimentary basins (left) and water-dissolved CO2

for mineralisation (right). Modified after Snæbjörnsdóttir et al. (2020). (b) Reactions rates of in situ mineralisation of CO2 in peridotites, basalts and

sedimentary rocks. Modified after Kelemen et al. (2019).
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permeability (Fig. 2), particularly when fractured (Massiot et al.
2017; Kelemen et al. 2019; Bischoff et al. 2020; Millett et al.
2020). Two recent pilot projects have demonstrated the potential

for CO2 storage through carbonate mineralisation in basalt
reservoirs. In the Wallula project in Washington State, 977 tons
of pure CO2 was injected into high-permeability basalt flow tops

at depths between 882 and 887 m over 3 weeks in August 2013
(McGrail et al. 2017). Whilst it is not yet known what proportion
of injected CO2 has formed carbonate minerals and how much
remains within pore fluids, drill core from the injection zone

indicates high rates of basalt dissolution and CO2 mineralisation,
consistent with laboratory experiments (National Academies of
Sciences Engineering and Medicine 2019).

In addition, during phase I of the CarbFix project in Iceland,
,200 tCO2 (co-produced with SO2 in geothermal fluids) was
injected into highly permeable, fractured basalts with ,10%

porosity at a depth of 500 m (ambient temperature ,20–508C).
Because CO2 is not supercritical at this depth, CO2 and H2O
were separately injected with proportions adjusted to ensure

complete solubility of CO2 into aqueous fluid at the target depth
(National Academies of Sciences Engineering and Medicine
2019). Quantification of mineral carbonisation using reactive
and non-reactive tracers and isotopes has demonstrated rapid

mineralisation of the injected CO2, with .95% of the injected
gas mineralised within 2 years (Snæbjörnsdóttir et al. 2020).
Following the success of CarbFix phase I, the project has

considerably upscaled, injecting 10–20 ktCO2/year into basaltic
reservoirs at a depth of ,1500 m (ambient temperature
,2508C), with tracer results continuing to indicate nearly

complete loss of carbon along a ,2000 m flow path (National
Academies of Sciences Engineering and Medicine 2019).

Despite the success of these projects, a number of uncertainties

remain, including determining the precise mineral assemblage
(including alteration phases) that are reacting in the reservoirs, the
passivation of reactive mineral surfaces over time, the potential
clogging of pore space, and the spatial distribution of carbonate

mineral precipitation versus dissolution (National Academies of
Sciences Engineering and Medicine 2019). Today, the cost of
storing CO2 in basalts is estimated to be US$20–30/tCO2 as

compared to ,US$20 for storage in sedimentary reservoirs
(Kelemen et al. 2019). However, if the technology can be further
proven, storage in basaltic reservoirs may become a preferred

choice in volcanic provinces (Kelemen et al. 2019).

Buried basaltic sequences in Australian basins

Buried basalt lava flows and volcanoes are commonly found at

depths amenable to dissolved and/or supercritical CO2 injection
(i.e. .1 km) in many Australian sedimentary basins. These
include the Browse and Carnarvon basins along the North West

Shelf (Holford et al. 2013), and the Bight, Otway, Bass, and
Gippsland basins along the southern Australian margin (Holford
et al. 2012; Meeuws et al. 2016; Reynolds et al. 2017, 2018;

Watson et al. 2019) and in the Eromanga Basin in central
Australia (Hardman et al. 2019). In some of these basins, buried
basaltic sequences are located in close proximity to gas-bearing
reservoirs with high CO2 content (Holford et al. 2012).

Well-preserved basaltic submarine volcanoes are common
within the Miocene Torquay Group of the Bass Basin (Holford
et al. 2017; Reynolds et al. 2018), with a large (,5 km diameter)

volcano overlying the Yolla Gas Field, where reservoir fluids
contain ,17–20% CO2 (Holford et al. 2012; Watson et al.

2019). Core from the volcanic section penetrated by the nearby

Bass-1 well, which penetrated the flank of a Miocene volcano,
contains clast-supported conglomerate of dark grey microvesi-
cular basalt interpreted to represent reworked hyaloclastite and
volcaniclastic material, whilst log data and thin sections from

the Tasmania Devil-1 well, which penetrated the crest of a
volcano, indicate the presence of fine grained crystalline basaltic
material interpreted as pillow lavas (Watson et al. 2019).

Volcanic rocks have been intersected by many wells in the
hangingwall of the basin-bounding Rosedale Fault System in the

(a) (b)

Fig. 2. (a) Hand sample and (b) plain-polarised thin section of a trachybasalt crystal-rich lapilli tuff from Banks Peninsula volcanic complex, New Zealand.

The rock mineral assemblage comprises olivine (ol) and feldspar (felds) immersed in a glassy matrix altered to palagonite (pal), which is a typical product of

devitrification of basaltic magmas. The primary porosity (47%) and permeability (800 mD) are controlled by an intense degree of material fragmentation that

forms intergranular pores (int) associated with high vesicles content (ves) and quenching fractures (frac). Secondary processes of mineral alteration creates

dissolution pathways (dis), interconnecting primary pores.
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northern Gippsland Basin, where numerous gas accumulations

with high-CO2 content (some exceeding 30%) occur (O’Brien
et al. 2008; Holford et al. 2012). The majority of these volcanic
rocks are Campanian-age basalts that have been subject to various

degrees of alteration (Holford et al. 2012). In some cases (and in
spite of the alteration), these basalts provide the top seals to
underlying gas accumulations, most notably at the Kipper field

where a 328 m gross gas column (,10% CO2) within Golden
Beach Group sandstones is sealed by ,98 m of volcanic rocks,
interpreted to be basaltic lava flows (Sloan et al. 1992;O’Halloran
and Johnstone 2001). Volcanic rocks also act as seals at Remora-1

(oil) and Tuna-4 (oil and gas) (Holford et al. 2012). Petrological
and petrophysical studies of these rocks have been limited, though
cuttings and sample descriptions indicate that they comprise fine-

grained basaltic lavas and tuffs (McPhail 2000). However, our
analysis of borehole image logs acquired through volcanic
sequences in theManta-2A, Basker-2, andBasker-5wells demon-

strates an abundance of conductive fractures (Fig. 3), raising the
possibility of significant fracture-related permeability.

Hardman et al. (2019) have recently described a province of
Jurassic extrusive and intrusive rocks within the Eromanga

Basin, overlying the Nappamerri Trough of the Cooper Basin,
where the highest CO2 contents (up to 40%) in gas samples are
found (Boreham et al. 2001). 3D seismic interpretation coupled

with log analyses indicates the presence of multiple mafic
monogenetic volcanoes that extend into tabular basalt lava
flows (Hardman et al. 2019). The Lambda-1 well intersected

283m of basalt directly underlying the Lower Jurassic Birkhead
Formation, with the upper 33 m comprising heavily weathered,
fractured, and vesicular facies, and the remaining 250 m com-

prising fresh and crystalline rock (Hardman et al. 2019). In other
parts of the province, basalts have been extensively altered;
Kappa-1 intersected a 120 m succession of mostly fine-grained
basalt with evidence for extensive chlorite replacement of

ferromagnesian minerals (Hardman et al. 2019).

Conclusions

Given the promising results from both experimental studies and
pilot projects, and the close proximity of basaltic sequences to

many high-CO2 content gas fields in onshore and offshore
Australia, we propose that the possibility of storing CO2 through
in situ carbon mineralisation in buried volcanic rocks in sedi-

mentary basins merits further consideration. In addition to the
aforementioned uncertainties related to CO2–rock–fluid inter-
actions, further challenges specific to sedimentary basins

include defining the first-order stratigraphic and permeability
architecture of buried volcanic sequences in order to identify
potential reservoir facies (e.g. Bischoff et al. 2021), quantifying
the hydraulic and petrophysical properties of buried basaltic

volcanoes and lava flows, and defining their petrological char-
acteristics and diagenetic histories.
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