Supplementary Material

Skewed paternity impacts genetic diversity in a small reintroduced population of western quolls (*Dasyurus geoffroii*)

Tessa P. Manning^{A,*}, Jeremy J. Austin^{A,B}, Katherine E. Moseby^{C,D} and Melissa A. Jensen^{A,C}

^ASchool of Biological Sciences, University of Adelaide, SA 5005, Australia

^BAustralian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, SA 5005, Australia

^CArid Recovery, Roxby Downs, SA 5725, Australia

^DCentre for Ecosystem Science, University of New South Wales, NSW 2052, Australia

*Correspondence to: Email: <u>tessa.manning@adelaide.edu.au</u>

Supplementary Table S1: Summary of the western quoll samples included in this study showing sample number, Arid Recovery name and microchip number, source locations, release year, and assigned parents.

ID in this study	Arid Recovery Sample Name	Sex	Microchip Number	Source Location	Release Year	Assigned Mother/Father
AR057	Sepia	F	94320346170	Julimar	2015	•
M1A	Billa Kalina	М	982000409588785	Dryandra	2018	
M3A	Coorlay	Μ	982000405918253	Dryandra	2018	
F3A	Andamooka	F	982000405918131	Dryandra	2018	
F4A	Oodnadatta	F	982000405918788	Dryandra	2018	
F5A	Moondiepitchnie	F	982000167753817	Dryandra	2018	
F6A	Koolymilka	F	982000409857561	Dryandra	2018	
F7A	Yarrawurta	F	982000409858283	Julimar	2018	
MXA	Jindoo	М	ABTC141991	Flinders Ranges	2015	
F8A	Curdimurka	F	982000190545089	Julimar	2018	
F9A	Muloorina	F	982000410285957	Julimar	2018	
F10A	Mulgaria	F	982000361920015	Julimar	2018	
M11A	Parakeelya	М	0007869C35	Flinders Ranges	2018	
M12A	Bopeechee	М	0007B0D7D7	Flinders Ranges	2018	
M13J	Bowie	М	0007839630	Born AR 2018	Born AR 2018	F4A/M1A
M14J	Sprocket	М	7ABFE37	Born AR 2018	Born AR 2018	F7A/M3A
M15J	Ace	М	7ACE403	Born AR 2018	Born AR 2018	F7A/M3A
F16J	Priscilla	F	7B04947	Born AR 2018	Born AR 2018	F7A/M3A
M17J	Pando	М	7ABFC58	Born AR 2018	Born AR 2018	F4A/M12A
F18J	Angelina	F	79D5831	Born AR 2018	Born AR 2018	F4A/M12A
M19J	Thanos	Μ	7B11969	Born AR 2018	Born AR 2018	F9A/M3A
F20J	Aretha	F	79D597D	Born AR 2018	Born AR 2018	F9A/M3A
F21J	Moondancer	F	79D5567	Born AR 2018	Born AR 2018	F9A/M3A
F22J	Chai	F	7B117FA	Born AR 2018	Born AR 2018	F7A/M3A
F23J	Sprinkle	Μ	7B00DB2	Born AR 2018	Born AR 2018	F7A/M3A
F24J	Summer	F	79D54D7	Born AR 2018	Born AR 2018	F6A/M1A
M25J	Michael Jackson	Μ	783C89C	Born AR 2018	Born AR 2018	F10A/M3A
F26J	Dot	F	7B04C5E	Born AR 2018	Born AR 2018	F10A/M3A
F27J	Tickle	F	7B04BED	Born AR 2018	Born AR 2018	F10A/M3A
F28J	Status	F	7B04CC4	Born AR 2018	Born AR 2018	F10A/M3A
F29J	Acacia	F	79D588F	Born AR 2018	Born AR 2018	F10A/M3A
M30J	Billy	М	7B0EC07	Born AR 2018	Born AR 2018	F10A/M3A
F31J	Siam	F	7B11A42	Born AR 2018	Born AR 2018	F6A/M1A
M32J	Bungarra	М	7B1144A	Born AR 2018	Born AR 2018	F6A/M1A
U33J	Unknown	Unknown	-	Born AR 2018	Born AR 2018	F4A/M12A
F34J	Kathy	F	7B11A2F	Born AR 2018	Born AR 2018	F6A/M1A
F35J	Callitris	F	7B04BB7	Born AR 2018	Born AR 2018	F9A/M3A

Supplementary Table S2: All locus-specific microsatellite forward and reverse primers obtained from Spencer et al. (2007) and used in this study, and the microsatellite repeat arrays and reported lengths

Amplicon ID	Primer Sequences	Repeat Array	Length (bp)
pDG1A1	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTTGCTTCTTGCTCCCTACAGC	AC ₁₀₋₂₂	183-207
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTTCACTCCTTCTGAGTTTATCACC		
pDG1H3	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGGATTGACACAATCAGAGTGG	GT ₂₁₋₃₃	169-191
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCAATTCCATCTTTATTGCATGC		
pDg5G4	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAGATTCCTTCAATGGCTATCCC	AC ₂₃₋₃₃	113-124
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTCCTGACATAGAGTGATGATGG		
pDG6D5	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTCCAGACAAATGCAACC	AC ₁₀₋₂₅	87-117
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTCTGAATTTACTGATAGTATCTTTG	<u>G</u>	
pDG7F3	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCAGTTCAGCTACAACTGCTTGG	GT ₁₅₋₂₇	102-136
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTTACATAGAGCATGAGCGACC		
3.1.2	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGGAAACTTCACAAGTGTCGA	AC ₁₄₋₂₃	160-178
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTAATGACTCATCTGTTGTTGG		
3.3.1	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGCCCTTGAGTCTTGAGATT	TG ₃₂₋₄₈	124-156
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCATACCACCCCAGGAGTTTC		
3.3.2	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATAGCAGAGACTCGATCC	CA ₁₀₋₃₀	131-171
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCCTTTATTACCTGGGAAG		
4.4.10	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATGCTAGATTTCACTCCC	GT ₁₇₋₂₇	219-229
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTCACATTTCTGGAACTG		
Sh6e	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATTCTAGAAGGGATAGCAAGC	AC ₁₈₋₃₁	143-169
	GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACACTCCATAGAAATGCACTG		

Supplementary Table S3: Unique combinations of Nextera P5 and P7 indexing sequences with the 5' and 3' Illumina tags.

ID	P5 sequence	P5 number	5' Illumina Tag	P7 sequence P7 number		3' Illumina Tag
M19J	AAGGCTAT	16	AATGATACGGCGACCACCGAGATCTA CACAAGGCTATTCGTCGGCAGCGTC	CTAGTACG	2	CAAGCAGAAGACGGCATACGAGATC TAGTACGGTCTCGTGGGCTCGG
F22J	AAGGCTAT	16	AATGATACGGCGACCACCGAGATCTA CACAAGGCTATTCGTCGGCAGCGTC	GCTCAGGA	4	CAAGCAGAAGACGGCATACGAGATG CTCAGGAGTCTCGTGGGCTCGG
M25J	AAGGCTAT	16	AATGATACGGCGACCACCGAGATCTA	CATGCCTA	6	
M15J	AAGGCTAT	16	AATGATACGGCGACCACCGAGATCTA	CCTCTCTG	8	
F18J	AAGGCTAT	16		CAGCCTCG	10	
F21J	AAGGCTAT	16		TCCTCTAC	12	
F24J	AAGGCTAT	16		CCTGAGAT	14	
M14J	AAGGCTAT	16		GTAGCTCC	16	
M17J	AAGGCTAT	16		AGGCTCCG	18	
F20J	AAGGCTAT	16		CTGCGCAT	20	
F23J	AAGGCTAT	16		CGCTCAGT	22	
F26J	AAGGCTAT	16		ACTGATCG	24	
F16J	AAGGCTAT	16		GACGTCGA	26	
F6A	GAGCCTTA	17		TCGCCTTA	1	
МХА	GAGCCTTA	17	AATGATACGGCGACCACCGAGATCTA	TTCTGCCT	3	
F27J	GAGCCTTA	17	AATGATACGGCGACCACCGAGATCTA	AGGAGTCC	5	CAAGCAGAAGACGGCATACGAGATA
M30J	GAGCCTTA	17	AATGATACGGCGACCACCGAGATCTA	GTAGAGAG	7	
M13J	GAGCCTTA	17	AATGATACGGCGACCACCGAGATCTA	AGCGTAGC	9	CAAGCAGAAGACGGCATACGAGATA
F4A	GAGCCTTA	17	AATGATACGGCGACCACCGAGATCTA	TGCCTCTT	11	
M11A	GAGCCTTA	17	AATGATACGGCGACCACCGAGATCTA	TCATGAGC	13	
F29J	GAGCCTTA	17		TAGCGAGT	15	
F10A	GAGCCTTA	17		TACTACGC	17	
F3A	GAGCCTTA	17		GCAGCGTA	19	
M12A	GAGCCTTA	17		GAGCGCTA	21	
F28J	GAGCCTTA	17		GTCTTAGG	23	
F31J	GAGCCTTA	17	AATGATACGGCGACCACCGAGATCTA	TAGCTGCA	25	
F5A	TTATGCGA	18	AATGATACGGCGACCACCGAGATCTA CACTTATGCGATCGTCGGCAGCGTC	CTAGTACG	2	CAAGCAGAAGACGGCATACGAGATC
F8A	TTATGCGA	18	AATGATACGGCGACCACCGAGATCTA CACTTATGCGATCGTCGGCAGCGTC	GCTCAGGA	4	CAAGCAGAAGACGGCATACGAGATG CTCAGGAGTCTCGTGGGCTCGG
M32J	TTATGCGA	18	AATGATACGGCGACCACCGAGATCTA CACTTATGCGATCGTCGGCAGCGTC	CATGCCTA	6	CAAGCAGAAGACGGCATACGAGATC ATGCCTAGTCTCGTGGGCTCGG
F35J	TTATGCGA	18	AATGATACGGCGACCACCGAGATCTA CACTTATGCGATCGTCGGCAGCGTC	CCTCTCTG	8	CAAGCAGAAGACGGCATACGAGATC CTCTCTGGTCTCGTGGGCTCGG
M1A	TTATGCGA	18	AATGATACGGCGACCACCGAGATCTA CACTTATGCGATCGTCGGCAGCGTC	CAGCCTCG	10	CAAGCAGAAGACGGCATACGAGATC AGCCTCGGTCTCGTGGGCTCGG
F7A	TTATGCGA	18	AATGATACGGCGACCACCGAGATCTA CACTTATGCGATCGTCGGCAGCGTC	TCCTCTAC	12	CAAGCAGAAGACGGCATACGAGATT CCTCTACGTCTCGTGGGGCTCGG

PCR		18	AATGATACGGCGACCACCGAGATCTA			CAAGCAGAAGACGGCATACGAGATC
NEG	NEG		CACTTATGCGATCGTCGGCAGCGTC	CCTGAGAT	14	CTGAGATGTCTCGTGGGCTCGG
53.41	TTATCCCA	10	AATGATACGGCGACCACCGAGATCTA	CTACCTCC	10	CAAGCAGAAGACGGCATACGAGATG
F34J	TIAIGCGA	18	CACTTATGCGATCGTCGGCAGCGTC	GTAGCICC	16	TAGCTCCGTCTCGTGGGCTCGG
40057	TTATCCCA	18	AATGATACGGCGACCACCGAGATCTA	ACCETCCC	10	CAAGCAGAAGACGGCATACGAGATA
ARU57	ARUS/ ITATGCGA		CACTTATGCGATCGTCGGCAGCGTC	AGGUILLG	18	GGCTCCGGTCTCGTGGGCTCGG
M3A TTATGCG/	TTATCCCA	10	AATGATACGGCGACCACCGAGATCTA	CTCCCCAT	20	CAAGCAGAAGACGGCATACGAGATC
	TIAIGCGA	18	CACTTATGCGATCGTCGGCAGCGTC	CIGCGCAI	20	TGCGCATGTCTCGTGGGCTCGG
F9A TTA	TTATCCCA	18	AATGATACGGCGACCACCGAGATCTA	CGCTCAGT	22	CAAGCAGAAGACGGCATACGAGATC
	TIAIGCGA		CACTTATGCGATCGTCGGCAGCGTC		22	GCTCAGTGTCTCGTGGGCTCGG
U33J T	TTATCCCA	18	AATGATACGGCGACCACCGAGATCTA	ACTGATCG	24	CAAGCAGAAGACGGCATACGAGATA
	TIAIGCGA		CACTTATGCGATCGTCGGCAGCGTC		24	CTGATCGGTCTCGTGGGCTCGG
PCR NEG	TTATGCGA	18	AATGATACGGCGACCACCGAGATCTA	GACGTCGA	20	CAAGCAGAAGACGGCATACGAGATG
			CACTTATGCGATCGTCGGCAGCGTC		20	ACGTCGAGTCTCGTGGGCTCGG

Supplementary Table S4: Number of alleles (N_A ,), observed heterozygosity (H_O), expected heterozygosity (H_E) and probability of deviation from Hardy Weinberg Equilibrium for each locus used in analysis. Note that three loci differed significantly from HWE expectations.

Locus	Number individuals genotyped	N _A	DF	ChiSq	Ho	H _E	Probability	Significance
sh6e	37	9	36	41.5	0.865	0.850	0.245	ns
pdg7f3	37	9	36	67.2	0.486	0.597	0.001	**
pdg6d5	37	7	21	85.4	0.757	0.735	0.000	***
pdg5g4	37	5	10	18.4	0.703	0.697	0.049	*
pdg1h3	37	8	28	29.5	0.946	0.819	0.389	ns
pdg1a1	37	9	36	40.1	0.811	0.743	0.292	ns
4.4.10	37	6	15	22.2	0.595	0.710	0.104	ns
3.3.2	37	10	45	50.5	0.838	0.795	0.267	ns
3.3.1	37	9	36	50.6	0.919	0.853	0.054	ns
3.1.2	37	7	21	30.7	0.703	0.718	0.080	ns

ns Not Significant, * P < 0.05, ** P < 0.01, *** P < 0.001

Supplementary Figure S1: Female home range map showing release locations (stars) and 100% minimum convex polygons (polygons) based on radio tracking data for six weeks. Source: Arid Recovery unpublished data

Supplementary Figure S2: Male home range map showing release locations (stars) and 100% minimum convex polygons (polygons) based on radio tracking data for six weeks. Source: Arid Recovery unpublished data