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ABSTRACT

Context. Genotyping-by-sequencing, the use of sequence reads to genotype single-nucleotide
polymorphisms (SNPs), has seen an increase in popularity as a tool for genomic prediction.
Oxford Nanopore Technologies (Nanopore) sequencing is an emerging technology that produces
long sequence reads in real-time. Recent studies have established the ability for low-coverage
Nanopore sequence data to be used for genomic prediction. However, the value proposition of
Nanopore sequencing for individuals could be improved if both genotyping and disease diagnosis
are achieved from a single sample. Aims. This study aimed to demonstrate that Nanopore
sequencing can be used for both rapid genotyping and as a disease diagnostic tool using the
same sample in livestock.Methods. Total DNA extracts from nasal swabs collected from 48 feedlot
cattle presenting with clinical signs of bovine respiratory disease (BRD) were sequenced using the
Nanopore PromethION sequencer. After 24 h of sequencing, genotypes were imputed and genomic
estimated breeding values (GEBVs) for four traits were derived using 641 163 SNPs and corresponding
SNP effects. These GEBVs were compared with GEBVs derived from SNP array genotypes and
calculated using the same SNP effects. Unmapped sequence reads were classified into taxa using
Kraken2 and compared with quantitative real-time polymerase chain reaction (qPCR) results for
five BRD-associated pathogens of interest. Key results. Sequence-derived genotypes for 46 of
the 48 animals were produced in 24 h and GEBV correlations ranged between 0.92 and 0.94 for
the four traits. Eleven different BRD-associated pathogens (two viruses and nine bacterial species)
were detected in the samples using Nanopore sequence data. A significant (P < 0.001) relationship
between Nanopore and qPCR results was observed for five overlapping species when a maximum
threshold cycle was used. Conclusions. The results of this study indicated that 46 cattle genomes
can be multiplexed and accurately genotyped for downstream genomic prediction by using a single
PromethION flow cell (ver. R9.4) in 24 h. This equates to a cost of AUD35.82 per sample for
consumables. The concordance between qPCR results and pathogen proportion estimates also
indicated that some pathogenic species, in particular bacterial species, can be accurately identified
from the same test. Implications. Using Nanopore sequencing, routine genotyping and disease
detection in livestock could be combined into one cost-competitive test with a rapid turnaround time.

Keywords: bovine respiratory disease, feedlot cattle, genomics, genomic selection, genotyping-by-
sequencing, Oxford Nanopore sequencing, pathogen diagnostics, rapid diagnostics.

Introduction

Genomic prediction relies on the accurate genotyping of thousands of single-nucleotide 
polymorphisms (SNPs) across the genome of interest. SNP-array genotyping is one method 
that has been extremely popular for genotyping in livestock production systems. SNP 
arrays use short oligonucleotides that share homology with regions of interest to genotype 
SNPs with 99.9% accuracy (Gardner et al. 2013). However, they are limited by their 
ability to genotype only SNPs and short insertions/deletions. SNP arrays are also able to 
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genotype a only set of pre-determined SNP markers of a 
particular targeted species, and do not have the ability to 
detect new sequences ad hoc. 

An alternative genotyping method that has gained 
popularity recently is genotyping-by-sequencing (GBS; Elshire 
et al. 2011). GBS uses genomic sequence reads produced by 
next-generation sequencing platforms, with Illumina being 
the most frequently used technology in published studies 
(Huang et al. 2010; Torkamaneh et al. 2016; Katsumura et al. 
2019). Sequence reads are aligned to a reference genome and 
reads overlapping SNP loci are used to call the SNP genotype. 
Two popular methods for GBS exist. The first is reduced 
representation genotyping-by-sequencing (rr-GBS; Elshire 
et al. 2011), which uses restriction enzymes to fragment 
DNA and thereby reduce the complexity of the genome for 
sequencing. This results in much greater sequencing depths 
at desirable loci from which SNP genotypes can be accurately 
called; however, this method has the potential to also introduce 
a number of different types of bias (Davey et al. 2013). The 
second method is referred to as skim-genotyping-by-sequencing 
(skim-GBS; Huang et al. 2009) and involves whole-genome 
sequencing of samples at very low coverage (less than 0.5×). 
After aligning reads to a reference genome, genotypes are 
called at loci with sufficient depth (this can be as low as 1× 
coverage) and the remaining loci with low or no coverage are 
imputed using SNP reference panels. This method is particu-
larly useful in organisms with high-quality SNP reference 
panels (Scheben et al. 2017). Both skim-GBS and rr-GBS have 
gained significant traction over the past decade for a number 
of applications in plants and animals. The cost of both 
methods has also decreased substantially over time (Poland 
and Rife 2012; Davey et al. 2013; De Donato et al. 2013; 
Torkamaneh et al. 2021), and the flexibility of both 
methods means that novel sequences and variants can be 
detected without the need to significantly alter the genotyping 
consumables. 

Oxford Nanopore Technologies (Nanopore) is a rapidly 
emerging third generation sequencing technology that produces 
long sequence reads. These longer reads, although being more 
error prone, can map more accurately and at higher rates to 
reference genomes, particularly across complex genomic 
regions (De Roeck et al. 2019; Amarasinghe et al. 2020). 
Nanopore offers a range of sequencing devices, including their 
portable Flongle, MinION and PromethION P2sequencers as 
well as their high-throughput GridION, PromethION P24 
and PromethION P48 sequencers. The PromethION sequencer 
is capable of producing up to 250 Gb of data (Oxford 
Nanopore Technologies 2022) from a single flow cell and 
can run either 2, 24 or 48 flow cells simultaneously. 

The portability and rapid turnaround time that Nanopore 
sequencing offers has led to applications in rapid diagnostics 
and epidemiology. Some examples of which include disease 
outbreaks, such as Zika (Faria et al. 2016), Ebola (Hoenen 
et al. 2016; Quick et al. 2016), African swine fever (O’Donnell 
et al. 2019) and COVID-19 (Barbé et al. 2022). However, the 

utility of Nanopore sequencing for GBS has not been thoroughly 
investigated. 

Previously, Lamb et al. (2022) established an imputation 
strategy for deriving accurate genomic estimated breeding 
values for cattle from Nanopore sequence data subsampled 
to ~0.1× sequencing coverage. Here, we aimed to implement 
this imputation strategy to derive genomic estimated breeding 
values for 48 feedlot cattle from a single PromethION flow 
cell, at a cost below AUD40 per sample for all consumables. 
We simultaneously tested the hypothesis that the same data 
could be used to accurately detect pathogens associated with 
bovine respiratory disease (BRD) by using non-bovine sequence 
reads and comparing these results to quantitative real-time PCR 
(qPCR) pathogen-detection assays. 

Materials and methods

Ethics

Nasal swabs from 60 feedlot cattle were collected under the 
animal ethics approval number 2022/AE000166. Tail hairs 
from two Droughtmaster heifers were also collected from 
The University of Queensland cattle research farm, under 
the ethics approval number SVS/301/18. 

Sample collection

Nasal swabs were taken from 60 feedlot cattle, each of which 
had presented with clinical signs associated with BRD. DNA 
extractions were performed using the Gentra® PureGene® 

DNA extraction kit (Qiagen) by using the supplied buccal 
cell extraction protocol. The DNA pellet was suspended in 
20 μL of DNA hydration solution. DNA concentrations were 
quantified using a Qubit™ dsDNA broad-range assay kit 
(Invitrogen) as per the manufacturer’s instructions. All samples 
were then diluted to a concentration of 20 ng/μL of  DNA  by  
using DNA hydration solution. Purity of the extracted DNA 
was determined with the NanoDrop ND1000 (Thermo Fisher 
Scientific) and the 48 samples with the highest 260:230 ratio 
were selected for sequencing. 

Sequencing

Sequencing libraries were prepared from 140 ng of DNA for 
each of the 48 samples by using the Nanopore Rapid Native 
barcoding kit for 96 samples (SQK-RBK110.96; Oxford Nanopore 
Technologies). The library was prepared as per the manufac-
turer’s instructions, with the exception of increasing both 
barcode incubation times from 2 min to 10 min. This was 
undertaken to allow more time for the rapid barcodes to ligate 
to the DNA sample and therefore increase the pore occupancy. 

The prepared library was then quantified on the Qubit and 
912 ng of DNA from the prepared library was loaded onto a 
PromethION R9.4.1 flow cell. The library was sequenced 
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for 24 h, and base calling was performed using Nanopore’s 
high-accuracy setting. 

SNP-array genotyping

DNA (400 ng) from each sample was used to genotype the 48 
sequenced feedlot animals on the 50K GGP TropBeef SNP 
array (Illumina). The 50 k SNP-array genotypes were then 
imputed to high density (700 k) by using FImpute (Sargolzaei 
et al. 2014), as described by Hayes et al. (2019). 

Nanopore genotyping and imputation

A bioinformatics pipeline was used to map reads, impute 
genotypes and calculate genomic estimated breeding values 
in real-time. Sequence reads were aligned to the Bos taurus 
reference genome ARS-UCD v1.2 (Rosen et al. 2020) by using  
Minmap2 (Li 2018) with the map-ont setting. Genotypes were 
called and imputed from the aligned reads using QUILT 
(Davies et al. 2021), with a reference panel of 15 000 408 
SNPs and 1208 animals from the 1000 Bull genomes project 
(Hayes and Daetwyler 2019). The 15 000 408 SNPs were 
subset from the original 48 208 338 SNPs in the 1000 Bull 
reference panel by using a minor allele-frequency filter of 
0.1, as described in (Lamb et al. 2022). GNU Parallel (Tange 
2018) was used to impute each chromosome on a single 
computer thread and Bcftools (Danecek et al. 2021) was 
then used to combine the imputed chromosomes. A subset 
of 641 163 SNPs with SNP effects was then subset out and 
used for genomic prediction. 

The 50 k SNP-array genotypes were correlated against the 
imputed Nanopore-derived genotypes for 40 878 overlapping 
SNP loci. The genotyping error rate, defined as the number of 
genotype errors divided by the total number of genotype calls 
was also calculated. 

The overlapping 40 878 SNPs were also used to investigate 
whether systematic errors were present in the Nanopore 
genotypes. The Nanopore genotyping error rate was used to 
estimate the number of errors expected at each locus by 
chance across the 48 samples. Systematic errors were then 
defined as loci where genotyping errors were observed at a 
particular locus in a significant number of samples (P < 0.05). 

Genomic estimated breeding values

A subset of 641 163 SNPs from the 15 000 408 SNPs imputed 
were used to calculate genomic estimated breeding values 
(GEBVs) for the following four traits: heifer puberty score, 
bodyweight, body condition score and hip height, as described 
in Lamb et al. (2021). SNP  effects for these 641 163 were 
previously calculated from the Northern Genomics project data 
in Hayes et al. (2019). The imputed SNP-array genotypes were 
also used to calculate GEBVs by using the same SNP effects and 
all 641 163 SNPs. Linear regressions were used to compare the 
SNP array GEBVs to the Nanopore GEBVs and the correlation 
and regression coefficients were reported. 

The effect of genotyping accuracy and sequencing coverage 
on GEBV accuracy was investigated using linear models. 
Sequencing coverage and genotyping accuracy were fitted 
separately for each trait, by using the model 

y ∼ X + e 

where y is a vector of the absolute difference between SNP-
array GEBV and Nanopore-derived GEBV for each animal 
and X is a vector of either sequencing coverage or genotyping 
accuracy for each animal, and e is the error term. Both vectors 
had dimensions 1 × 46 (total number of animals minus the 
two failed animals). Sequencing coverage was defined as 
the total mapped data for each sample divided by the size 
for the B. taurus reference genome (2.7 Gbp). Genotyping 
accuracy for each animal was defined as the correlation 
between SNP-array genotypes and Nanopore genotypes for 
the 40 878 overlapping SNP loci. 

Pathogen detection

Reads that did not align to the B. taurus reference genome 
(ARS-UCD v1.2) were run through Kraken2 (Lu et al. 2022), 
by using a database of all complete genomes in RefSeq for the 
bacterial, viral and archaeal domains, as well as all plasmid 
sequences and the B. taurus reference genome. Bracken (Lu 
et al. 2017) was then used to estimate the abundance of 
pathogens in each sample. A number of BRD-associated pathogens 
are opportunistic and otherwise ubiquitous in the bovine 
upper respiratory tract; therefore, unmapped sequence 
reads from two tail-hair samples from Droughtmaster 
heifers sequenced to 0.5× coverage in Lamb et al. (2021) 
were used as negative controls. By using tail hair as a negative 
control, the absence of BRD pathogens could be ensured. The 
same approach was used to estimate the metagenomic species 
abundance in these two samples as the 48 feedlot samples. 

A multiplex qPCR was also used to test for the presence of 
viral genetic material for bovine alphaherpesvirus 1 (BoHV-1) 
and bacterial genetic material for Mannheimia haemolytica, 
Pasteurella multocida, Histophilus somni, and Mycoplasma 
bovis in these samples (Table S1–S3 available as 
Supplementary material). The qPCR assay for the detection 
of BoHV-1 was performed in a multiplex assay as described 
previously by Horwood and Mahony (2011). The bacterial 
qPCR was also performed as a multiplex reaction with primer 
and probe concentrations of 0.2 μM. Both assays were 
performed using the QuantiTect Multiplex RT-PCR Kit 
(Qiagen) with omission of the QuantiTect Multiplex RT mix 
(enzyme) for the bacterial assay. The Qiagen Rotor-Gene® 

Q machine was used to perform the viral assay by using 
conditions as previously described (Horwood and Mahony 
2011). The bacterial assay was conducted on the CFX96 
Touch Real-Time PCR Detection System (Bio-Rad) by using 
the following amplification parameters: enzyme activation 
at 95°C for 15 min and 40 cycles of denaturation at 94°C 
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for 60 s and annealing/extension at 60°C for 90 s, with the 
machine set to acquire fluorescence on the VIC, ROX, FAM 
and Cy5 channels. Samples were considered positive if the 
threshold cycle (Ct) value was <35. 

Abundance estimates from Braken and Ct values from the 
qPCR were compared for the five overlapping BRD pathogens. 
Linear models were also used to evaluate the relationship 
between the Ct value and the abundance estimates, by 
using the following equation: 

Ct ∼ A + e 

where Ct is a vector of the qPCR Ct value for each pathogen in 
each sample and A is a vector of abundance estimates 
derived from the unmapped Nanopore reads, and e is the 
error term. Linear models with A were run with and 
without taking into account the ratio of host to non-host 
reads. Initially, A was defined as the abundance estimate 
derived from the unmapped Nanopore reads, i.e. not taking 
into account the ratio of host to non-host data. A was later 
redefined as being the abundance estimate divided by the 
sequencing coverage of the sample, to take into account the 
proportion of host to non-host reads. 

Results

Nanopore sequencing

After 24 h of sequencing, 25.02 Gbp of data were produced 
with an N50 of 6.52 kbp. The mean sequencing coverage 
was 0.13× ± 0.069× (Fig. 1a) with respect to the bovine 
genome (ARS-UCD v1.2). However, two samples (Barcode 
38 and Barcode 43) yielded only 0.001× and 0.0004× 
sequencing coverage respectively, and were subsequently 
excluded from further analysis. For the remaining samples, 
the mean number of reads unaligned per sample was 18 
481 ± 7399 (mean ± s.d.). 

Genotyping

After imputation, genotype correlations between the 50 k GGP 
TropBeef SNP array-derived and the imputed Nanopore-
derived genotypes were calculated. The average correlation 
between the 40 878 overlapping SNPs was 0.93 ± 0.039 
(Fig. 1b). The genotype error rate across all samples was 
3.4%. Of all SNP loci, 6.9% had at least one error, of which 
1.3% had two incorrectly called alleles, while 98.7% had 

Fig. 1. Summary statistics for each sample after 24 h of sequencing on a single PromethION flow cell. Barcodes 38 and 43 did not yield
enough data for analysis. (a) Sequencing coverage of each barcoded sample relative to the Bos taurus reference genome, ARS-UCD v1.2.
(b) Genotype correlations for each sample at 40 878 SNPs overlapping between the 50 k TropBeef GGP array- and theNanopore sequence-
imputed genotypes. The average correlation across the 46 samples was 0.96 ± 0.034 dashed line).
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only a single incorrectly called allele. In addition, sequencing 
coverage was found to have a significant (P < 0.05) effect on 
the genotyping correlation, and the two were positively 
correlated (0.57). 

Potential systematic errors were also identified at 
2628 loci (6.4% of the 40 878 SNPs); that is, they were 
incorrectly called in eight or more of the 46 samples 
(Supplementary material Fig. S1), the probability of which 
was less than 0.02% by chance. Removing these 2628 SNP 
loci from the 40 878 overlapping SNP loci increased the 
average genotype correlation to 0.96 ± 0.034. A principal-
component analysis (PCA) containing the 46 feedlot animals 
and the 1208 animals in the imputation reference panel 
indicated that the feedlot animals were not genetically 

diverse from the reference animals, and therefore these 
systematic errors were not likely to be a result of divergent 
populations (Fig. S2). 

GEBVs

GEBV correlations between the imputed Nanopore prediction 
and the SNP array predictions were 0.93, 0.92, 0.94 and 0.95 
for bodyweight, hip height, heifer puberty score and body 
condition score respectively (Fig. 2a). The regression 
coefficient for SNP array-derived GEBV on the Nanopore-
derived GEBV for the four traits was 0.96 for bodyweight, 
0.98 for hip height (Fig. 2b), 0.85 for heifer puberty and 
0.83 for body condition score, indicating very little bias. 

Fig. 2. Accuracy of genomic estimated breeding values (GEBVs) derived from Oxford Nanopore Technologies
(Nanopore) sequence data as compared to GEBVs derived from low-density SNP-array genotypes imputed to high
density. (a) Correlations between the Nanopore-derived GEBVs and GEBVs derived from low-density SNP-array
genotypes imputed to high density. The solid black line represents the correlation limit, and the dashed black line
represents a correlation of 0.9. Error bars indicate the 95% confidence interval. (b) Regression of GEBVs for hip height
derived from imputed low-density SNP-array genotypes on GEBVs for hip height derived from imputed Nanopore
sequence data (solid black line). The dashed line represents the ideal case where the GEBVs are identical and unbiased,
i.e. regression coefficient is equal to 1. (c) Re-ranking of animals within heifer puberty quintiles between the Nanopore-
derived GEBVs and the GEBVs derived from the imputed low-density SNP-array genotypes.
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Animals were split into quintiles on the basis of GEBVs for 
each of the four traits. Some minor re-ranking of animals 
between the two genotyping methods was observed (Fig. 2c), 
particularly for the middle quintiles (animals ranked between 
the 20th percentile and 80th percentile). For animals in the 
top and bottom 20%, 26.5% (n = 19) were re-ranked on 
average across the four traits. This was significantly less 
than the 51.3% (n = 27) of animals that were re-ranked on 
in the middle quintiles. This suggests animals of high and 
low genetic merit can be more accurately ranked from the 
remaining animals, than for animals of average genetic merit. 

Both sequencing coverage and genotyping accuracy had a 
significant (P < 0.05) negative effect on the absolute deviation 
of GEBVs between the SNP array and Nanopore method for 
bodyweight and body condition score. For hip height and 
heifer puberty score, neither sequencing coverage nor geno-
typing accuracy had a significant (P > 0.05) effect on GEBV 
accuracy. 

Abundance estimates

Across the 46 feedlot samples sequenced and genotyped, 86 
unique bacteria were detected from the unmapped Nanopore 
sequence reads. Across these samples Clostridium botulinum, 
Francisella halioticida, Escherichia coli, H. somni and 
Mannheimia pernigra were the five most abundant species 
in the unmapped reads (Table 1). Together C. botulinum and 
F. halioticida made up 88.9% of the unmapped reads. In the 
negative-control samples, C. botulinum was again the most 
abundant bacterial/viral species at 98.5% of the unmapped 
reads. It was also the only species of the five most abundant 
species in the BRD samples to overlap with the negative 
controls; however, it was in significantly (P < 0.05)greater 
abundance. No BRD-associated pathogens were detected in 
either of the two negative-control samples. 

After removing reads belonging to C. botulinum and 
F. halioticida, 20.1% of the remaining reads could be classified 

Table 1. Top five overall most abundant species identified in the BRD
nasal swabs and negative-control tail-hair samples using Kraken2.

Species BRD samples Negative controls
(mean ± s.d.) (%) (Rep1, Rep2) (%)

Clostridium botulinum 70.6 ± 7.5 98.8, 98.0

Francisella halioticida 17.6 ± 4.1 –

Escherichia coli 5.6 ± 9.0 –

Histophilus somni 1.6 ± 2.9 –

Mannheimia pernigra 1.0 ± 1.8 –

Bacillus cereus 0.02 ± 0.08 0.6, 0.2

Pantoea eucrina – 0.8, –

Pantoea anthophila – 0.2, –

Stenotrophomonas maltophilia – – , 0.2

A dash indicates that the species is not present in the sample/samples.

as belonging to a BRD-related pathogen. The most abundant 
of which was H. somni, followed closely by Mannheimia 
species and then Moraxella species (Fig. 3). Across the 46 
samples, an average of 4.0 ± 1.2 pathogenic BRD-related 
bacterial species were detected per sample. On top of the 
two negative controls, two other samples (Barcodes 26 and 
33) had no BRD-related pathogens in the unmapped reads. 

Ungulate erythroparvovirus 1 (identified in Barcodes 10 
and 18) and BoHV-1 (identified in Barcodes 18 and 32) 
were the only viruses detected in the unmapped reads of 
the BRD nasal swabs. No viruses were detected in the 
unmapped reads of the two negative-control samples. 

Overlap between qPCR and Nanopore
abundance estimates

The number of overlapping pathogens detected between the 
qPCR results and Nanopore reads was also compared. When 
the original maximum Ct threshold of 35 was used to filter 
the qPCR results, significantly more pathogens were detected 
using qPCR than by the Nanopore reads (Fig. 4a). However, 
when a maximum Ct threshold of 30 was introduced, greater 
concordance between the qPCR and Nanopore results was 
observed (Fig. 4b). 

From the linear models, a significant (P < 0.05) relation-
ship between Ct value and the proportion of pathogen in 
the unmapped reads was observed. However, when taking 
into account the sequencing coverage of each sample, the 
relationship was no longer significant (P > 0.05). The linear 
models were also run with and without the Ct threshold 
of 30. When no maximum Ct threshold was used in the linear 
model, there was no significant relationship between the Ct 

value and the proportion of pathogen; however, when the 
Ct threshold was used, the relationship was significant 
(P < 0.001). 

Comparison of the cost of Nanopore and
SNP-array genotyping

In the current study, DNA extracts from the 48 animals were 
submitted to a commercial service provider for SNP geno-
typing with the GGP TropBeef SNP Chip at a cost of 
AUD50.00 per sample (total cost AUD2400, excluding local 
taxes). This cost includes the labour component required to 
complete the genotyping of the samples. It should also be 
noted that commercial service providers charge additional 
costs for sample extraction that were not considered in the 
current study because purified DNA was provided for the 
analysis. The results for the genotyping were provided 16 days 
after the submission of the samples. 

Table 2 shows the breakdown of the costs associated with 
the approach used in the current study for Nanopore-
genotyping-by-sequencing (Nanopore-GBS). On the basis of 
the direct costs associated with this project, the cost per 
sample was estimated to be AUD35.82 (Table 2). While current 
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Fig. 3. Correlation matrix-based hierarchical clustering of the samples based on the proportion of unmapped reads belonging to different
bovine respiratory disease related non-host species after Clostridium botulinum and Francisella halioticida sequence reads were removed.

Nanopore barcoding permits up to 96 samples barcoded and 
analysed in a single experiment, for the purposes of Nanopore-
GBS, 72 is currently considered the highest feasible number. 
This is based on the size of the bovine genome, permitting the 
generation of sufficient data to impute and accurately genotype 
cattle, from a single flow cell, reliably. If 72 animals were 
barcoded and sequenced on a single flow cell, the cost per 
sample was estimated to be AUD26.91. However, if we assume 
that the same mean coverage is required for accurate 
genotyping, an additional 9.3 Gbp of data would be needed. 
We estimate this would take a further 24–48 h of sequencing 
on the basis of the rate of pore degradation observed in this 
study, making the total sequencing time 48–72 h. 

Discussion

Here we used high-throughput Nanopore sequencing on a 
PromethION P24 to genotype 46 feedlot cattle to calculate 
GEBVs and demonstrate the scalability of Nanopore-GBS. 
A key advantage of sequence-derived genotyping is the potential 
to characterise the DNA of other species present in the sample 
extracts being analysed. As the population used in this study 

was cattle undergoing treatment for BRD at the time of 
sampling, this provided the opportunity to explore the potential 
for simultaneous detection of pathogens while genotyping the 
host of interest. Sequencing reads corresponding to bacterial 
species were readily identified in the dataset that did not align 
to the bovine genome. Previous studies have shown that the 
microbiome of the bovine upper respiratory tract consists of a 
multitude of bacterial species that are considered commensal, 
pathogenic and/or opportunistically pathogenic (Chai et al. 
2022). Further subsampling of the sequencing reads of 
those bacterial species previously associated with BRD 
confirmed the presence of some of these bacteria, including 
H. somni, M. bovis and M. haemolytica. 

A potential advantage of combining host genotyping and 
microbiome analyses is the potential for monitoring of 
specific microbiome ‘traits’ of interest. As an example, the 
current study population was cattle affected by BRD and were 
undergoing treatment for the disease through the administra-
tion of antimicrobials. With the identification of antimicrobial 
resistance as a global issue in human health, there is increased 
scrutiny on the use of these drugs in animals, particularly 
in food-producing animals (Patel et al. 2020; Emes et al. 
2022). While continued use of therapeutic antimicrobials is 
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Fig. 4. Comparison between the number of pathogens of interest identified by quantitative real-time PCR (qPCR) and the unmapped
Oxford Nanopore Technology (Nanopore) reads for two different scenarios. (a) The difference between the number of pathogens of
interest detected by qPCR and the unmapped Nanopore reads with no maximum critical threshold (Ct) used. (b) The difference
between the number of pathogens of interest detected by qPCR and the unmapped Nanopore reads with a maximum Ct cut-off of 30.

Table 2. Estimated costs associated with Nanopore-genotyping-by-sequencing in the current study and a theoretical study with 72 animals.

Procedure

Sample acquisition

Sample processing

Sample extraction

DNA quantification

Library construction

Flow cellA

Total

Cost per animal (AUD)

Current study (n = 48, Theoretical study (n = 72,
sequencing time = 24 h) sequencing time = 72 h)

Not considered Not considered

Not considered Not considered

2.78 2.78

1.2 1.2

5.12 5.12

26.72 17.81

35.82 26.91

Details of consumables

PureGene® DNA extraction kit (Qiagen)

Qubit dsDNA BR assay kit (Thermo Fisher Scientific)

Rapid Native barcoding kit for 96 samples (Nanopore)

R9.4 Flow cell (Nanopore)

All values are shown in Australian dollars and labour costs have been excluded.
AFlow-cell cost is based on the Nanopore price when purchasing 96 PromethION flow cells.
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essential to maintain animal health and welfare, com-
bining monitoring for antimicrobial-resistance genes with 
Nanopore-GBS has the potential to improve antimicrobial 
stewardship. Freeman et al. (2022) previously demonstrated 
that this is possible with Nanopore sequencing by identify-
ing antimicrobial-resistance genes for seven classes of 
antimicrobials in samples from the bovine upper respiratory 
tract. However, a key difference in our approach was the 
absence of host depletion so as to generate sufficient data to 
genotype the host. However, further research is necessary to 
better understand the best ratio between host and microbiome 
data capture when fully developed Nanopore-GBS has the 
potential to identify the most effective treatment for 
chronically affected animals. 

Cost

By multiplexing 48 animals on a single sequencing run, we 
demonstrated that the cost/animal of Nanopore-GBS is 
currently ~AUD35.82 per animal for cattle (even though only 
46 animals were successfully genotyped). The largest cost for 
Nanopore-GBS remains the flow cell, which makes up almost 
75% of the cost. An important point to note is that in this 
study, samples were sequenced only for 24 h, so as to demon-
strate a rapid genotype turnaround time. However, Nanopore 
flow cells are designed to run for up to 96 h. Therefore, it is 
reasonable to assume that with a longer sequencing run, more 
data would be available, and therefore more samples could be 
multiplexed on a single flow cell. Given current flow-cell 
outputs, we estimate 72 animals per flow cell to be the 
reliable limit for a 72-h run. Buying the flow cells in bulk 
has further potential to save costs (approximately AUD5 per 
animal), although this comes at a significant upfront cost 
and therefore is likely to be feasible only for commercial 
genotyping service providers. 

As a whole, these results have demonstrated that the cost of 
Nanopore-GBS is approaching that of more established geno-
typing methods for cattle, such as low-density SNP-array 
genotyping (AUD35–50) and Illumina reduced-representation 
GBS (AUD30–80; Elshire et al. 2011; De Donato et al. 2013). 
A yet to be exploited advantage of Nanopore-GBS is the 
relationship between host genome size and per sample cost. 
This could see the cost of Nanopore-GBS decrease significantly 
for species with smaller genomes (e.g. chicken and some crops 
and aquaculture species) because more samples can be multi-
plexed on a single flow cell. For species that currently do not 
use commercial high-throughput genotyping, the cost may be 
even more competitive, as those species lack the economies of 
scale that result in the cost-competitive bovine SNP array. 

GEBVs and imputation accuracies

We previously demonstrated that at least 0.05× sequencing 
coverage is required for accurate GEBVs from Nanopore-GBS 
(Lamb et al. 2022). Greater than 0.05× sequencing coverage 

was achieved for 46 of the 48 samples (95.8%) in this study by 
using Nanopore sequencing, while SNP-array genotyping was 
successful for all 48 samples and the average call rate was 
99.7% ± 0.0007. The two samples that did not reach 0.05× 
sequencing coverage after 24 h had less than 0.001× 
coverage, which was insufficient for imputation. As these 
samples were successfully genotyped on the SNP array, it is 
suspected that significant differences in the length of DNA 
molecules of these two samples led to the loss of DNA. During 
the magnetic bead clean-up in the library preparation, short 
DNA fragments are disproportionately washed out, as they 
do not bind to the beads as efficiently. Conversely, longer 
DNA is more difficult to elute from the beads and therefore 
can also cause DNA losses. Pulse-field gel electrophoresis 
could be used in the future to accurately test the DNA length 
of samples before sequencing; however, this adds both cost 
and time to Nanopore-GBS. Nonetheless, the DNA length of 
the two samples that did not reach 0.05× sequencing coverage 
should be investigated in the future. 

These types of sequencing failures are not unusual with 
Nanopore sequencing and significant variability among 
sequencing yields from similar libraries is common (Tyler 
et al. 2018; Lamb et al. 2021). For Nanopore-GBS to become 
a competitive method of commercial genotyping in agricul-
ture, consistent sequencing yields must be achievable such 
that 0.05× can be robustly produced for every sample when 
multiplexing is used. Automation of DNA extraction and 
library preparation hold significant potential to help achieve 
this; so too does Nanopore’s barcode balancing feature, which 
allows particular barcodes to be enriched or depleted in real-
time during a sequencing run (Oxford Nanopore Technologies 
2022). Currently this innovation is available only as a beta 
release on the PromethION, but barcode balancing could be 
used to better equalise sequencing coverages across multi-
plexed samples. In theory, barcode balancing would not 
change the required DNA input and would decrease the 
required sequencing time by prioritising the sequencing 
of under-represented samples. Ideally, with the help of 
automated DNA extraction and library preparation to increase 
the reproducibility of sequencing libraries, DNA quantification 
prior to sequencing would not be necessary. This would remove 
the most labour-intensive steps of Nanopore-GBS. 

The high genotype correlations between overlapping SNPs 
in the 50 k TropBeef GGP array and the imputed Nanopore 
genotypes, similar to those reported by Teng et al. (2022), 
indicated that up to 46 (95.8%) animals can be accurately 
genotyped on a single flow cell. This is further supported 
by the correlations between GEBVs derived from the 50 k 
TropBeef GGP array and GEBVs from Nanopore-GBS, which 
were all over 0.9 for the four traits examined in this study. 

The regression coefficient of the SNP array-derived GEBV 
on Nanopore-GBS-derived GEBV indicated some modest bias 
in the Nanopore-GBS-derived GEBVs for heifer puberty and 
body condition score. However, it is important to note that 
the imputation of SNP genotypes from low density to high 
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density or sequence density is also not 100% accurate; 
therefore, perfect correlations and bias estimates were not 
expected. In fact, by using 0.5× sequencing coverage, we 
previously demonstrated that Nanopore-GBS may be more 
accurate than is imputing low-density genotypes to high 
density in crossbred beef cattle populations, such as those 
in northern Australia (Lamb et al. 2022). This previous 
study also demonstrated that at 0.1× sequencing coverage, 
Nanopore-GBS had the same GEBV accuracy as did low-
density genotypes that were imputed up to high density. This 
implies that when compared with the true breeding values, 
the Nanopore-GBS GEBVs derived here may in fact have the 
same accuracy as do the low-density SNP-array GEBVs, while 
also providing the added benefit of pathogen detection, all of 
which can be provided for a similar price. 

A possible explanation for the observed bias in the GEBVs 
for some of the traits may be the presence of systematic errors 
in the imputed Nanopore-GBS genotypes. Cytosine methylation 
in mammals and homopolymer, heteropolymer and trinu-
cleotide repeats are known weaknesses of Nanopore sequenc-
ing (Delahaye and Nicolas 2021) and may contribute to these 
systematic errors. Another possible explanation is that the 
imputation reference panel does not contain accurate haplotypes 
at these loci for this particular population of animals, although the 
PCA plot suggests that the breeds sampled in our study are 
adequately represented in the reference panel. 

When comparing the ranking of animals between the SNP 
array-derived GEBVs and Nanopore-GBS-derived GEBVs, a 
significant amount of re-ranking occurred for animals closest 
to the mean. However, the Nanopore-GBS-derived GEBVs 
could accurately distinguish the top- and bottom-performing 
animals. This indicates that Nanopore-GBS could be used to 
rapidly segregate animals into groups on the basis of genetic 
merit, particularly where the exact rank of intermediate/ 
average animals is not required. This would be useful parti-
cularly for commercial breeders, where the breeding objective 
is to improve the herds’ overall genetics. 

Pathogen detection

Two viruses were detected in 2 of the 46 samples and at much 
lower proportions than for the detected bacterial species. 
The low abundance of viruses can be partially attributed to 
sequencing libraries being constructed using total DNA 
extracts, thus biasing detection towards viruses with DNA 
genomes, such as the two detected BoHV-1 and ungulate 
parvovirus. However, the majority of the viruses associated 
with BRD have RNA genomes (Ng et al. 2015; Zhang et al. 
2019) and therefore these viruses are undetectable with-
out a complementary DNA-synthesis step in the sample-
preparation protocol. DNA extraction method also has an 
effect on the representation of species in metagenomic studies 
(Wesolowska-Andersen et al. 2014; Angelakis et al. 2016; 
Sui et al. 2020) and may have influenced the representation 
of viruses in the samples. 

When evaluating the sensitivity of Nanopore sequencing to 
detect BRD-associated pathogens, the relationship between 
qPCR Ct value and Nanopore sequence-based abundance 
estimates indicated that unmapped Nanopore reads alone, i.e. 
without host depletion, can be used to detect BRD-associated 
pathogens. However, in the current study this approach did 
not have the sensitivity of qPCR and therefore enabled only 
the detection of pathogens with high titres as indicated by 
Ct values of <30. For example, BoHV-1 was detected in 15 
of the 48 samples using qPCR. Of the 15 positive samples, 
only two had Ct values of <20 (Barcode 18 and Barcode 32), 
suggesting that these were present in high titres. These two 
samples were the only samples identified as containing BoHV-1 
DNA using the Nanopore unmapped reads. The remaining 13 
samples had an average Ct value of 32 ± 2.38, indicating a low 
viral titre and therefore likely explaining the inability to detect 
the virus in these samples. 

Consequently, without host depletion it may be difficult to 
detect the full repertoire of viruses in animals at the start or 
end of the infection cycle. Future development of Nanopore 
technology may improve the breadth of how sequencing 
data from a single experiment can be utilised. Currently, 
adaptive sequencing can be used to increase the frequency of 
sequence reads associated with microbiomes, as demonstrated 
by Ong et al. (2022). The recently released Nanopore approach 
of barcode balancing could enable more robust multiplexing of 
complex samples. Combining these two approaches, if feasible, 
could enable the most value to be derived from the sequencing 
of a sample by giving a robust Nanopore-GBS and an associated 
microbiome when it is of interest. We believe this could be 
achieved by sequencing the host genome to approximately 
0.1× coverage by using barcode balancing, then switching to 
host-depletion by adaptive sampling to detect pathogens. 

On the basis of the results in this study, we suggest that the 
capacity of Nanopore-GBS to capture both host and non-host 
genomic information has a number of other applications for 
various sample types. For instance, saliva or faecal samples 
could be used for a combination of genotyping the host 
animal, characterising its microbiome and studying grazing 
patterns on the basis of species of flora detected. However, 
each sample type and application would face unique challenges, 
such as determining the optimal DNA extraction method as well 
as the most appropriate enrichment/depletion technique and 
analysis pipeline to ensure accurate representation of all 
species in the sample of interest. 

Conclusions

Here we have demonstrated that up to 46 cattle can be geno-
typed in under 24 h by using the Nanopore PromethION 
sequencer. The resulting genotypes have a genotype correlation 
greater than 0.93 when compared with SNP-array genotypes 
and GEBVs calculated using these Nanopore genotypes could 
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be used to accurately identify animals with the highest and 
lowest genetic merit in the study population. Sequence data 
from the same experiment could also be used to test for the 
presence of various pathogens when present at high titres. 
However, host sequence depletion, bioinformatically, is likely 
to be necessary to accurately detect pathogens in acutely 
infected animals. By multiplexing 48 animals, we have also 
demonstrated that the price-point of Nanopore-GBS is 
AUD35.82 per animal, excluding labour for accurate SNP 
genotyping and pathogen detection. This cost is likely to 
decline further as the technologies and analytical methods 
for Nanopore-GBS are refined. 

Supplementary material

Supplementary material is available online. 
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