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Context. Feed is the largest expense on a dairy farm, therefore improving feed efficiency is
important. Recording dry-matter intake (DMI) is a prerequisite for calculating feed efficiency.
Genetic variation of feed intake and feed efficiency varies across lactation stages and parities.
DMI is an expensive and difficult-to-measure trait. This raises the question of which time periods
during lactation would be most appropriate to measure DMI. Aims. The aim was to evaluate
whether sequence variants selected from genome-wide association studies (GWAS) for DMI recorded
at multiple lactation time periods and parities would increase the accuracy of genomic estimated
breeding values (GEBVs) for DMI and residual feed intake (RFI). Methods. Data of 2274 overseas
lactating cows were used for the GWAS to select sequence variants. GWAS was performed using
the average of the DMI phenotypes in a 30-day window of six different time periods across the
lactation. The most significant sequence variants were selected from the GWAS at each time period
for either first or later parities. GEBVs for DMI and RFI in Australian lactating cows were estimated
using BayesRC with 50 k single nucleotide polymorphisms (SNPs) and selected GWAS sequence
variants. Key results. There were differences in DMI genomic correlations and heritabilities
between first and later parities and within parity across lactation time periods. Compared with using
50 k single-nucleotide polymorphisms (SNPs) only, the accuracy of DMI GEBVs increased by up to
11% by using the 50 k SNPs plus the selected sequence variants. Compared with DMI, the increase
in accuracy for RFI was lower (by 6%) likely because the sequence variants were selected from
GWAS for DMI not RFI. The accuracies for DMI and RFI GEBVs were highest by using selected
sequence variants from the DMI GWAS in the mid- to late-lactation periods in later parity.
Conclusions. Our results showed that DMI phenotypes in late lactation time periods could capture
more genetic variation and increase genomic prediction accuracy through the use of custom genotype
panels in genomic selection. Implications. Collecting DMI at the optimal time period(s) of lactation
may help develop more accurate and cost-effective breeding values for feed efficiency in dairy cattle.

Keywords: BayesRC, DMI, days in milk, disentangling phenotypes, genomic accuracy, genomic
correlation, GWAS, hierarchical clustering, lactation time periods, RFI.

Introduction

Feed costs make up a large proportion of the variable and total costs on a dairy farm. 
Different ways to reduce feed costs have been widely adopted by the dairy industry. There 
is considerable interest in using genome-wide association studies (GWAS) with imputed 
DNA sequences to identify more predictive sequence variants to improve the accuracy of 
genomic prediction for dry-matter intake (DMI) and residual feed intake (RFI), as well 
as identify genes underpinning these economically important traits. The evidence in 
both cattle and sheep shows that the accuracy of genomic prediction from a standard 
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single-nucleotide polymorphism (SNP) chip can be improved 
by including more predictive variants from imputed sequence 
data (Brøndum et al. 2015; MacLeod et al. 2016; van den Berg 
et al. 2016; VanRaden et al. 2017; Moghaddar et al. 2019). The 
use of collated phenotypes and genotypes from research herds 
of different countries has been shown to increase statistical 
power of GWAS and improve accuracy of genomic prediction. 
For example, Bolormaa et al. (2022) reported that the predictive 
sequence variants from the meta-GWAS of overseas data 
combined with the 50 k SNP array data provided up to 10% 
increase in accuracy of genomic estimated breeding values 
(GEBVs) for RFI. 

Knowing the best parity and time during the lactation for 
recording feed-intake data as well as the duration of recording 
would be useful for planning feed-intake experiments of dairy 
cows to improve genetics of feed utilisation. Daily measure-
ment of feed intake throughout lactation could provide a 
highly accurate estimate of lactation performance and efficiency 
but is cumbersome and expensive to collect. Logistical and 
cost restraints have limited the availability of DMI records 
in Australian lactating cows (AUS) throughout the lactation 
period. Access to a larger amount of DMI records from 
overseas cows (OVE) through collaboration with the Efficient 
Dairy Genome Project (EDGP; an international database 
including research herds from Europe and North America) 
has provided an opportunity to have feed-intake records to 
cover the entire lactation period and multiple lactations. 
Because this dataset contains sporadic missing records across 
the lactation period, predicted records of DMI across lactation 
could be obtained using random regression modelling (RRM). 
For instance, Berry et al. (2014) used RRM to evaluate feed-
intake data of dairy cattle collated from nine international 
research partners. Bignardi et al. (2011) and Begli et al. 
(2016) used RRM for feed intake and RFI in F2 chicken 
populations, and both reported that RRM provided a reliable 
estimate of feeding behaviour records. Furthermore, to reduce 
the computational demand and use the more frequently 
observed records, the records of several days may be averaged. 
This is a good strategy when consecutive measurements are 
strongly correlated. 

Genetic variation for feed intake varies across lactation 
stages. Genetic correlations between DMI at different stages 
of lactation are less than unity (Li et al. 2018). Analysing 
marker associations over time may be an efficient approach 
to identify genetic markers for feed-intake and efficiency 
traits that are not controlled by major genes (QTL with 
large effects), such as DGAT1 in milk production traits (Grisart 
et al. 2002; Schennink et al. 2007; Berry et al. 2014). The 
highest variation in associated loci in milk production was 
reported for early and late lactation (Strucken et al. 2015). 
Considering different time periods over lactation for DMI 
might help detect some missing genetic variance that 
explains the observed phenotypic variation. Differences in 
genetic effects were not only found for different lactation 
stages but also between parities, particularly the first and 

later parities (Strucken et al. 2012). As first parity cows are 
still growing, we considered both first parity (1) and later 
(2+) parities in this study. 

Bayesian methods (e.g. BayesR and RC) have been widely 
used in genomic prediction studies in cattle and sheep species 
(Erbe et al. 2012; Bolormaa et al. 2013, 2017; Kemper et al. 
2015; MacLeod et al. 2016; van den Berg et al. 2017). 
BayesRC incorporates prior biological information by defining 
classes of variants likely to be enriched in causal mutations and 
this can increase the accuracy of genomic prediction compared 
with BayesR (MacLeod et al. 2016). 

Potentially, the addition of sequence variants associated 
with feed efficiency and dry-matter intake to custom SNP 
panels could help improve the accuracy of genomic prediction 
for these traits (Bolormaa et al. 2022). However, it is of 
interest to understand whether sequence variants identified 
by GWAS from a specific lactation time period could better 
increase the accuracy of genomic prediction in AUS cows 
compared with variants identified from the entire lactation 
period. This could help identify an optimal period in which 
to measure DMI and also the selected sequence variants could 
be used to enrich custom SNP panels for improved accuracy of 
genomic prediction. The main objective of our study was to 
select sequence variants from GWAS for DMI at various 
lactation time periods in an independent overseas cow dataset 
and then to evaluate their impact on the accuracy of GEBVs for 
DMI and RFI in Australian cows, for which DMI is recorded 
over a short period of time. 

Materials and methods

Phenotypes

We used Australian (AUS) cows only for genomic prediction 
analysis, while the overseas cows (OVE) were used for GWAS 
sequence variant discovery. In the GWAS, we used daily 
records of DMI of lactating Holstein cows from overseas 
research groups, including from United States of America 
(USA), Canada (CAN, two institutes), Denmark (DNK) and 
United Kingdom (GBR). We refer to the combined USA, 
CAN, DNK, and GBR data as the overseas dataset (OVE) and 
it comprised a total of 3392 cows with DMI records. Numbers 
of animals with DMI records in each overseas herd is given in 
Table 1. The AUS dataset consisted of 584 cows, including 124 
and 490 cows from first and later (2+) parities respectively. In 
total, 21 954 records of DMI from the National Centre for 
Dairy Research and Development (Ellinbank, Vic., Australia) 
were used in these data. Individual cow feed intakes were 
measured using an electronic feed recording system (Gallagher 
Animal Management Systems). The cows were fed compressed 
dairy cubes ad libitum and the cubes comprised approximately 
74% lucerne hay (Medicago sativa L.), 25% crushed barley 
(Hordeum vulgare L.) grain, and 1% mineral mix (Multicube 
Ltd). Collection of DMI occurred for 235 AUS cows between 
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Table 1. Number of animals with DMI records and genotypes in each
overseas herd and all herds.

Herd ID Number of cows with DMI Number of total

First parity Later parity Total cows (genotyped)

USA 651 456 736 674

CANELORA 319 277 437 401

CANDRTC 289 245 364 352

DNK 773 587 816 439

GBR 941 799 1039 408

OVE 2973 2364 3392 2274

USA, United States of America; CANELORA, Elora in Canada Elora; CANDRTC,
DRTC in Canada; DNK, Denmark; GBR, United Kingdom; OVE, total overseas
lactating cows.

2011 and 2013 and is described in Macdonald et al. (2014)  and 
Pryce et al. (2015). Additional 349 AUS cows had DMI 
measurements taken between 2013 and 2017 as reported in 
Bolormaa et al. (2022). The phenotypes for DMI of OVE 
cows from USA, CAN (2 herds named ELORA and DRTC), 
DNK, and GBR were downloaded from the EDGP database in 
December 2019 (de Haas et al. 2012; Pryce et al. 2015; 
Manzanilla-Pech et al. 2021). The calculation of RFI pheno-
types for AUS cows are described in Bolormaa et al. (2022). 
Briefly, RFI for AUS was calculated on the basis of the 
average DMI over the 28-day experimental period as follows: 
RFI = DMI – (mean + contemporary group + DIM + 
Parity + ECM + MBW + ΔBW), where mean is the overall mean 
of DMI across the population, MBW is the mean bodyweight 
(BW), and ΔBW is the change in BW during the trial period, 
ECM is the energy-corrected milk; ECM, MBW, and ΔBW 
were fitted as covariates in the model; contemporary group 
(16 different cohort groups from trials run between 
November 2011 and November 2017), DIM at the beginning 
of the trial as a covariate, and parity (1, 2, 3, and 4+) were  
the systematic environmental effects fitted as fixed effects. 
Energy-corrected milk (kg/day) was calculated as described 
in Pryce et al. (2015): ECM  = 0.1 × milk (kg/day) + 5.2 × 
fat (kg/day) + 2.6 × protein (kg/day), where milk, fat, and 
protein are milk, protein, and fat yields respectively. 

The DMI and RFI phenotypes were removed if their 
standard deviations were smaller than −3.5, or greater than 
3.5 from the mean of the cows within each herd. Number 
of observed records in OVE and AUS datasets were 624 610 
and 21 954 respectively. Most cows had more than five 
records across parities (1+ parities). For GBR, we removed the 
data recorded before 2002, so that the data were recorded at 
the same time as for other overseas countries. Then the DMI 
records across the entire lactation for every animal from all 
five overseas herds were collated and used to predict missing 
daily DMI records by using a method described in the 
‘Statistical analyses’ section below. 

Genotypes

The genotypes of the 584 Australian cows were imputed to 
high-density (HD) genotypes (~600 k SNPs) by using the 
Fimpute software (Sargolzaei et al. 2014). The genotypes of 
the USA, CAN (ELORA and DRTC), and DNK cows were 
downloaded from the EDGP database, and the 50 k 
genotypes of GBR cows were part of the dataset used in the 
development of the 2015 EBVs for feed saved, as described 
by Pryce et al. (2015). The genotypes of cows from the 
different countries in the EDGP database were obtained 
from various chips, ranging in size from 55 647 to 777 961 
SNPs. The full details of the editing and imputation of 
genotypes up to WGS variants were described in Bolormaa 
et al. (2022). Briefly, sporadic missing genotypes within 
each herd were imputed using FImpute with a reference 
population of 2700 Australian animals that were genotyped 
directly with HD SNP. The imputation from HD SNPs to whole 
genome sequence (WGS) variants was performed using the 
Minimac3 algorithm (Das et al. 2016). The sequences of 
3090 Bos taurus cattle representing multiple breeds including 
Holsteins and crosses from across the world (Run 7 of the 
1000 Bull Genomes project; Hayes and Daetwyler 2019) 
were used as reference animals for imputing from HD to 
WGS. Minimac3 requires pre-phased genotypes in both the 
reference (WGS) and target sets. Pre-phasing was performed 
using the Eagle software (Loh et al. 2016). The genotypes on 
the B. taurus (BTA) X chromosome were not included in the 
subsequent analyses. 

Statistical analyses

In this study, AUS cows with all available records of DMI 
across lactation were used in the genomic prediction analysis. 
The OVE cows were not used in the genomic prediction, but 
they were used as an independent population to predict their 
missing records of DMI (please see the details in the next 
section), and to generate phenotypes across the entire 
lactation. The DMI phenotypes during specific time periods 
were then used to identify the predictive sequence variants 
from WGS GWAS. This process was not feasible for AUS 
dataset where there were too few DMI records across the 
entire lactation period. 

Random regression for prediction of missing DMI
The missing daily records for DMI in the OVE cows were 

predicted using the following RRM: 

y = μ + HYS + herd:parity:polðDIM, –6Þ + polðage, –2Þ 
+ parity:polðDIM, 2Þ:animal + ideðanimalÞ + e (1) 

where y is a vector of phenotypic values for DMI, μ is overall 
mean across populations, HYS is herd-year season of calving, 
herd.parity.pol(DIM, −6) is a sixth-order orthogonal polynomial 
regression on DIM (5–306 DIM) that was fitted as nested in the 
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particular parity, and herd, poly(age, −2) is age of cows at 
calving fitted as a second-order orthogonal polynomial. The 
parity.pol(DIM, 2).animal, ide(animal) and e are random 
effects, second-order orthogonal polynomial regression on 
DIM to the trait (intercept, linear, and quadratic) nested 
within each parity, animal permanent environmental effect 
and residuals respectfully. All records of the OVE cows from 
each of five herds (four countries) for each parity were 
categorised into the following four different stages of 
lactation: ≤30 days in milk (DIM), 31–100 DIM, 101–200 
DIM; and >200 DIM) for estimating the residual variance 
components and to capture the effect of lactation period. If 
a particular class in the OVE cows had fewer than 1000 
test-day records, then it was merged to the adjacent stage. 
The residuals were assumed to be independent across stages. 

Identifying different time periods across lactation
Genetic heterogeneity of DMI exists across lactation period 

(Berry et al. 2014). Disentangling the DMI phenotypes at 
different time periods of lactation may enable better detec-
tion of specific causal variants affecting feed intake and 
efficiency at the particular time periods. For identifying the 
different time periods across lactation, we used hierarchical 
clustering algorithm in the base package of R, based on the 
pair-wise correlations of EBVs for DMI. For this analysis, we 
used the actual or predicted records of 10 ≤ DIM < 290 for 
each parity. Thus, instead of daily records, we used the 

average of records from 10-day-interval across the lactation, 
starting at 10 DIM to 290 DIM (i.e. avoiding the very early and 
very late DIM due to a lack of real observations for these days). 
This resulted in 28 traits (=280 DIM divided by 10). Also, the 
records within each dataset (five herds of four OVE countries) 
were standardised ((x-mean)/s.d.) to avoid any potential 
differences in measurement scales, and then were merged 
to form one OVE dataset. Then the EBVs for each of 28 traits 
were calculated using the linear regression model, with 
pedigree using ASReml program (Gilmour et al. 2009): 

y ∼ μ + parity + DIM + HYS + polðage, –2Þ + animal, (2) 

where animal is a random genetic effect of animal, and all the 
other factors are as defined in Model 1. A dendrogram was 
drawn on the basis of the pair-wise correlations of EBVs among 
28 traits by using hierarchical clustering (Supplementary 
material Fig. S1). We used these EBVs only to make 
decisions on which of these 28 traits (n = 28) formed separate 
independent branches (groups). 

For each parity, we selected six ‘time periods’ that showed 
the most differentiation across lactation, which were the 
upper branches (groups) on the dendrogram (Fig. S1). Each 
of the six lactation time periods selected from upper branch 
on the dendrogram covered 30 consecutive lactation days 
(please see the six selected time periods in Table 2). Once 
we identified which DIM from 10 up to 280 DIM to allocate 
to one of six lactation time-periods from the dendrogram, the 

Table 2. Number of observed records in each time period for each parity in overseas (OVE) and Australian (AUS) cows.

Time period IDA DIM start DIM end Number of daysB OVE cows AUS cows

First parity Later parity First parity Later parity

NumberC NumberD NumberC NumberD NumberC NumberD

0_1 7 9 3 5917 0 7231 7231

1_3 10 39 30 43 329 32 522 52 608 38 243 47

4_5 40 59 20 29 112 21 970 33 355 24 218 2 665

6_8 60 89 30 43 710 33 013 47 847 34 601 814 4983

9_10 90 109 20 25 037 18 287 26 807 18 581 1845 5017

11_13 110 139 30 27 990 18 586 30 357 18 927 1440 4506

14_16 140 169 30 26 523 17 180 28 251 17 195 190 875

17_19 170 199 30 23 802 14 805 26 635 16 267 16 665

20_21 200 209 10 7360 4517 8377 5050 178

21_23 210 239 30 22 611 13 872 25 344 15 569 696

24_25 240 249 10 7141 4244 7754 4664 15

25_27 250 279 30 19 260 11 281 20 054 11 534

27_31 280 303 24 13 903 0 14 295 14 295

OVE refers to cows from USA, CANELOR, CANDRTC, DNK, and GBR herds and acronyms for these herds are described in Table 1.
ANumber of real observed records for time periods: records in the regular and italic font styles together in OVE cows are used in the random regression analysis to
predict the missing values, but OVE cows with records at time periods in regular font style are used in the GWAS.
BLength of each time period (in days).
CNumber of records of the cows with only phenotypes.
DNumber of records of the cows with both phenotypes and genotypes.
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means of 30-DIM-phenotypes at the corresponding lactation 
time period were calculated for each parity, standardised 
within each herd, and then were merged among all five herds 
into one phenotype for use in the DMI GWAS of different time 
points of lactation. The phenotypes at each 30-day ‘time period’ 
were treated as a new trait (‘y’ variable) for a DMI GWAS 
(described below). In total, 14 traits (two parities × six time 
periods and plus, two parities × across the full lactation 
period for comparison) were analysed for GWAS. The number 
of observed records for time period in the OVE and AUS data 
are shown in Table 2. 

Genome-wide association studies
The WGS GWAS for 14 traits were performed using only 

the OVE dataset. The 14 traits were the DMI phenotypes 
of the different lactation time periods for each parity 
(6 × 2 = 12 traits) and DMI phenotypes across the full 
lactation (lactation-wise, 7–279 DIM) for each parity 
(1 × 2 = 2 traits). The mixed model used for the GWAS 
fitted each sequence variant as a covariate, one at a time, 
and tested for an association with each trait, as follows: 

y = 1nμ + Xb + siαi + g + e, 

where y is the vector of observed phenotypic values of the 
animals, 1n is an n × 1 vector of 1s (n = number of animals with 
phenotypes), μ is the overall mean, X is a design matrix 
relating observations to the corresponding fixed effect 
(dataset), b is a vector of systematic environmental effects 
(HYS and poly(age, −2), in this case), si is a vector of geno-
types (coded as 0, 1, and 2) for each animal at the ith variant, 
αi is the covariate effect of the corresponding variant, g is a 
vector of GEBV ∼Nð0,Gσ2Þ, where σ2 is the genetic variance g g 
and G is the genomic relationship matrix constructed from HD 
SNPs, and e is residual error. The analysis was performed 
using the GCTA software (Yang et al. 2011). 

Selecting the most significant GWAS variants
In total, 31 380 025 WGS autosomal variants were used to 

perform each GWAS. We pre-filtered the imputed sequence 
variants (Minimac3 R2 > 0.4) for imputation quality on 
OVE cows’ genotypes and applied a minor allele frequency 
(MAF), which are important factors to reduce the level of 
false positives in the GWAS. Bolormaa et al. (2019) showed 
that the Minimac3 R2 statistic is a good proxy for empirical 
imputation accuracy for use in filtering poorly imputed variants. 
According to their study, a Minimac3 R2 value greater than 
0.4 corresponded to an empirical imputation accuracy of 
≥0.87 (measured as the correlation between real and imputed 
genotypes). Approximately 60% of the 31 380 025 variants 
(18 921 317) had a Minimac R2 value greater than 0.4 in the 
OVE imputed WGS dataset. About 96% of these 18 921 317 
variants in the OVE cow dataset overlapped with the variants 
(R2 > 0.4) in the AUS cow WGS dataset. The sequence variants 
were removed if imputation R2 was ≤0.4 in both the OVE and 

AUS cow datasets. The variants were removed if their MAF 
was ≤0.008 in the OVE dataset (to ensure that a minimum 
of 25 alleles per variant were segregating in the dataset). 
This resulted in 14.04 million sequence variants, which were 
available for further analysis. Each of the 14 individual trait 
GWAS for DMI was performed on the basis of dataset at 
each lactation time period for each parity. Before selecting 
the top significant sequence variants in windows along each 
chromosome, we removed the sequence variants that were 
overlapped with 50 k and HD SNP sets and retained the 
variants that had MAF of more than 0.05 in the WGS 
genotypes of AUS cows. MAF threshold of 0.05 were chosen 
to ensure that a minimum of 50 alleles are segregating in AUS 
cow population. To avoid selecting a large number of variants 
in strong linkage disequilibrium (LD), the five most significant 
variants with P-values of <0.001 from each of 14 GWAS were 
selected from within each 100-kb window along each 
chromosome and sliding by 50 kb to the next window. The 
reason we selected five variants is that we know that the 
causal variants in sequence GWAS are not always most 
significant variants. We chose P < 0.001 because the data 
set is relatively small and polygenic traits are affected by 
many hundreds to thousands of variants with small effects 
that will have not highly significant P-values. Additionally, 
overall power of WGS GWAS for DMI was weak due to the 
small size of the datasets. Then we made the following 17 
lists of sequence variants for 14 single-trait GWAS: 

12 sets: p:1_3, p:6_8, p:11_13, p:17_19, p:21_23, and p:25_27 
for the six different time periods in the first (1) and later (2) 
parities (where P = 1, 2)). 
Two sets (full lactation (lactation-wise) for the first and later 
parities (P = 1, 2)): p:lactw. 
Three combined set of sequence variants from two GWAS of 
each of two consecutive time periods at early (E), mid- (M), 
and late (L) lactation for later parity: 2:E, 2:M, and 2:L. 

Genomic prediction
In genomic prediction analysis, we used only AUS cows 

and DMI and RFI records across parities (i.e. not phenotypes 
at different lactation time periods). 

BayesR and BayesRC for genomic prediction. The 
Bayesian (RC and R) approach (Erbe et al. 2012; Kemper 
et al. 2015; MacLeod et al. 2016) was used for the genomic 
prediction of DMI and RFI that was performed using only 
the AUS dataset. The SNP effects were fitted as a mixture of four 
normal distributions, each with a mean of zero and variance: 
σ21 = 0, σ22 = 0.0001σ2 

g , σ32 = 0.001σg 2, and  σ24 = 0.01σg 2, where  
σ2 is the additive genetic variance. BayesR was used withg 

50 k and HD SNP genotypes of AUS cows. The BayesR method 
was used to predict GEBVs using 50 k and HD genotypes of 
AUS cows. The BayesRC method was tested with 50 k and 
selected sequence variants because it allows for different 
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categories of variants that may be differently enriched for 
QTL. Thus, the most significant variants from the WGS GWAS 
of the independent population (OVE cows) were allocated in a 
separate class from 50 k SNP, allowing the possibility of 
different mixture distribution of SNP effects in each of these 
two classes. Phenotypes were pre-corrected for the fixed effects 
as described in Bolormaa et al. (2022). These residuals were 
then used as phenotypes in the BayesR and RC analyses, which 
were run with the five parallel Gibbs sampling chains. Gibbs 
sampling was used to sample from the posterior distributions 
of the parameters including SNP effects with 20 000 iterations 
of burn-in followed by 40 000 iterations. BayesR and RC 
analyses were conducted for each validation set (please see 
details in the next section). 

Validation and reference populations. Only the AUS cows 
were used in the reference and validation populations for both 
RFI and DMI. Validation animals were selected by splitting 
the data into four-fold random cross-validations, where we 
avoided including paternal half-sib families to be in both 
the reference and validation sets. Any remaining animals 
were retained in the reference sets. For the four-fold cross-
validation, few animals with unknown sires were retained 
in the reference set and the remaining individuals were split 
into four sets by allocating all offspring of randomly selected 
sires into one of the four datasets. Thus, the analysis was 
performed four times by using one of each data fold in turn 
as a validation group and the other three folds used in the 
reference population (i.e. three folds plus the remaining 
cows from above). There were 115 AUS cows (s.d. = 6) in 
each of the cross-validation populations. 

Accuracy of GEBVs. For each validation population (AUS), 
the empirical accuracy of genomic prediction was calculated 
as the correlation between GEBVs and the corrected phenotypes. 
Then, the correlation was divided by the square root of the 
genomic heritability of the trait (h2) in the AUS dataset. 
The h2 was estimated using phenotypes of all 584 AUS 
cows as the proportion of the phenotypic variance that was 
explained by the 50 k SNPs (h2 = 0.34 for DMI and 0.20 for 
RFI). The accuracies of GEBVs were averaged across four 
validation sets × the five parallel Gibbs sampling chains run 
for each trait. The accuracies were weighted by the number 
of records in each validation set. The accuracy of the 
predicted GEBVs with two classes (top sequences and 50 k 
SNP) was compared with the accuracy of GEBVs predicted 
by using only either the 50 k or HD SNP genotypes. 

Results

To determine the relevance of using the variants selected from 
the GWAS within specific time periods during lactation, we 
used the independent OVE dataset as the discovery population. 
The number of cows with DMI records was 2973 and 2364 for 
first and late parities respectively (Table 1). The means of the 
predicted daily records across the lactations are shown in 
Fig. 1a. In the majority of OVE herds, DMI increased sharply 
up to ~50 DIM, and then the increment of the increase of DMI 
slowed to its peak at over 100 DIM, and then slowly decreased 
till the end of lactation. For GBR, DMI peaked earlier at ~80 
DIM. The mean DMI across lactations was lowest for the GBR 
and highest for the USA and ELORA herd. The means of 
the predicted daily records in OVE cows were lower for 

Fig. 1. (a) The mean predicted daily records of dry-matter intake (DMI) in each herd across parities, and (b) the mean predicted daily
records of DMI in overseas cows for first and later parities.
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first-parity than for cows of later parity (parities 2+), but the 
overall trend across lactation was similar (Fig. 1b). A sudden 
reduction in DMI around the end of lactation in the USA data 
shows a lack of enough real DMI records for the RRM analysis. 
The correlation between predicted and observed phenotypes 
for DMI in OVE dataset was 0.84. 

The number of OVE cows used in the GWAS was 1958 and 
1598 for first and later parities respectively. The overall 
power of each WGS GWAS was weak (Fig. S2) due to the small 
size of the OVE datasets, and the total number of variants 
across the entire WGS with a P-value of <0.001 (P < 10−3) 
varied from 6144 to 8945 (Supplementary material Table S1). 
We, therefore, applied this rather lenient threshold to select 
the most significant five variants (P < 10−3) within every 
100-kb window, with a sliding window of 50 kb to 
generate subsets of sequence variants for genomic prediction. 
This led to 1460–2222 sequence variants for the lactation 

time periods, which did not overlap with both 50 k and HD 
SNP sets and had MAF of more than 0.05 in the AUS cow 
WGS genotypes (Table S1). 

Table 3 shows the genomic heritabilities (h2) at six  
different time periods for each parity group (OVE cows). 
The h2 estimates for DMI were all similar (0.31–0.36) in 
first-parity cows. The h2 estimates in multiparous cows were 
~0.20 and started to increase towards the late lactation-time 
periods, up to 0.32. The standard errors (s.e.) of h2 were 
similar and ranged from 0.041 to 0.048. The higher h2 in 
first parity is probably due to a larger dataset size (360 more 
cows than for later parity (2+ parity group)). 

Fig. 2 shows correlation estimates for DMI between six 
different lactation time periods within and across first (1:) 
and later (2:) parities. These correlations were calculated 
based on 14 million SNP effects from each GWAS, which were 
performed using the phenotypes of overseas cows at six 

Table 3. Genomic heritabilities (h2) at six different selected time periods of lactation for each parity group in the overseas cows.

Time-point ID DIM start DIM end First parity Later parity

Number Number Vg Ve h2 h2_s.e. Number Number Vg Ve h2 h2_s.e.
of SNPsA of cows of SNPsA of cows

1_3 10 39 41 970 1958 0.25 0.48 0.34 0.041 42 297 1598 0.14 0.61 0.19 0.046

6_8 60 89 42 264 1958 0.26 0.47 0.36 0.041 42 413 1598 0.16 0.59 0.21 0.046

11_13 110 139 42 274 1958 0.25 0.50 0.33 0.042 42 425 1598 0.15 0.61 0.20 0.045

17_19 170 199 42 412 1958 0.24 0.54 0.31 0.042 42 372 1598 0.14 0.61 0.19 0.045

21_23 210 239 42 615 1958 0.25 0.55 0.31 0.043 42 239 1598 0.18 0.60 0.23 0.046

25_27 250 279 42 732 1958 0.29 0.55 0.34 0.043 42 046 1598 0.26 0.56 0.32 0.048

DIM, days in milk; Vg, additive genetic variance; Ve, residual variance; s.e., standard error.
ANumber of selected top sequence variants and 50 k SNPs (40 510).

Fig. 2. Correlations for dry-matter intake among six different lactation time periods within and
across first (1:) and later (2:) parities. The correlations were calculated on the basis of
14 million SNP effects from GWAS based on the phenotypes of overseas cows at six different
lactation time periods of first and later parities. Start and end days in milk (DIM) for each time
period are defined in Table 2. Bold values show the correlations between different time periods
within each parity and regular values show the correlations between different time periods
across first and later parities. White background represents correlations of less than or equal to
0.252; red background represents correlations of higher than 0.252 and less than or equal to 0.50;
green background represents correlations of higher than 0.50 and less than or equal to 0.75; yellow
background represents correlations of higher than 0.75.
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different lactation time periods of first and later parities. As 
expected, the relationships between neighbouring time 
periods within first or later parity were strongest (0.72– 
0.92), and its strength diminished from early to late stages 
of lactation. The lower correlations for DMI were observed 
between early and late lactation stages (e.g. the lowest 
correlation was 0.23). For later-parity cows, the correlations 
of SNP effects between time periods of lactations were slightly 
higher than those in the first parity cows. There were lower 
relationships of SNP effects between the first- and later-
parity cows across lactation stages (0.18–0.29). 

Fig. 3 shows the genomic prediction accuracies for DMI 
and RFI in AUS cows by using 17 different sets of top 
sequence variants (as described in the Materials and 
methods section) in addition to 50 k SNP. The accuracies 
for DMI were 0.33 and 0.36 by using HD and 50 k SNPs 
respectively. The accuracies of GEBVs using the 50 k SNP 
genotypes combined with sequence variants selected from 
GWAS at different time periods are compared with the 
accuracies using the genotypes with only 50 k or HD SNPs 
(Fig. 3). The highest accuracies for DMI GEBVs in AUS cows 
(up to 0.448) were observed with the combined genotypes of 
50 k SNPs, together with the sequence variants selected from 
GWAS based on phenotypes of the multiparous OVE cows at 
mid- to late-lactation stages (DIM:170–280). When the 
sequence variants were selected from two individual GWAS 
based on the phenotypes of the later-parity cows from two 
consecutive time periods in late lactation (2:L), the genomic 
prediction accuracy was higher (0.46) than using those 
single-lactation time-period GWAS (2:21_23 or 2:25_27) 
(Fig. 3a). Use of selected sequence variants from the phenotypes 
of the first-parity OVE cows in different lactation time periods 
did not improve the accuracy of genomic prediction in AUS 
cows compared with only the 50 k SNP genotypes. Compared 
with 50 k SNPs, the genomic prediction accuracy was slightly 
increased using the 50 k SNPs combined with sequence 
variants selected from GWAS based on full-lactation DMI 
records of OVE cows for later parity, but the improvement in 
accuracy was much less than using the phenotypes specifically 
for the two later-lactation time periods (2:L, Fig. 3a). 

For RFI, similar to DMI, the accuracies of GEBVs were 
compared using the top sequence variants selected from 
DMI GWAS combined with 50 k SNPs, versus only the 50 k 
or HD SNP genotypes (Fig. 3b). The accuracies for RFI were 
0.33 and 0.31 by using HD and 50 k SNPs respectively. 
Compared with 50 k only, higher prediction accuracies 
were observed in some cases when sequence variants were 
added, particularly when using phenotypes of the later-parity 
cows at mid- to late-lactation time periods (DIM:170–280) 
and across the entire lactation period. The strongest improve-
ment in accuracy of GEBVs for RFI (up to 0.37) was obtained 
by combining the sequence variants from two GWAS using the 
phenotypes of two consecutive time periods during late (2:L) 
lactation (DIM ≥ 200) with 50 k SNPs. 

Discussion

In our previous study (Bolormaa et al. 2022), we showed that 
either sharing of phenotypes and genotypes, or only sharing of 
signed t-values of SNP effects from sequence GWAS, could 
generate a custom set of more highly predictive variants for 
increasing the accuracy of genomic prediction for RFI and 
DMI. However, that study used only a GWAS for all DMI 
records jointly, regardless of the lactation time period or 
parity. Therefore, this study took the next step of exploring 
whether DMI phenotypes measures at different lactation time 
periods and/or parities would further increase the accuracy of 
GEBVs and inform future studies for optimal parity and time 
periods to record DMI. 

DMI is an expensive and difficult-to-measure trait, and 
therefore its measurement period is often either short and 
daily, or over a longer period but measured intermittently 
(e.g. weekly). For example, DMI of the OVE cows used in 
our GWAS as a discovery population, were measured at 
different stages of the lactation period (DIM: 5–306 days) 
and for different lengths of time. DMI in both USA and CAN 
was mainly measured during early lactation (e.g. 78% of DMI 
in USA cows were recorded between 6 and 99 DIM) while 
some were also measured in mid or late lactation periods. 
The DMI of GBR cows was measured once a week throughout 
most of the lactation period, and DMI of DNK cows was 
routinely measured once a week across the entire lactation. 
This DMI data in the OVE cows is in contrast to that of the 
AUS cows where most DMI records were collected over a 
short period (~4–7 weeks) and between 75 and 124 DIM 
(~70% total records, Table 2). 

In this study, collating the OVE data from different 
countries provided sufficient daily DMI records to cover the 
entire lactation period, which enabled the use of RRM to 
predict sporadically missing values. The application of RRM 
to predict missing values to generate a full description of 
feed intake and efficiency and increase accuracy of genomic 
predictions has been used in previous longitudinal studies 
of chickens, pigs, and both beef and dairy cattle (e.g. 
Schaeffer and Jamrozik 2008; Bignardi et al. 2011; Berry 
et al. 2014; Begli et al. 2016; Kang et al. 2017; Wang et al. 
2022). An advantage of using RRM is that the multiple records 
of each animal for different time points are simultaneously 
analysed together. In the present study, RRM was used only 
to predict the sporadic missing records of DMI. To predict 
missing values as accurately as possible, we used the 
approach of Berry et al. (2014) that divides the lactation into 
four stages for estimating the residual variance components to 
account for heterogeneity that exists across the lactation 
period. 

In lactating cows there are marked changes in milk yield 
and energy balance across both lactation period and parities. 
Previously, it was shown that combining DMI records from 
the OVE cows with the AUS cows improved accuracy of 
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Fig. 3. Accuracies of GEBVs for (a) DMI and (b) RFI in AUS cows by using Bayesian approach. Labels on x-axis are HD and 50 k SNP
(orange and green respectively), 50 k and plus sequence variants (dark blue), where sequence variants were selected from GWAS for DMI
using the phenotypes of overseas cows at each time-point for first (1) and later (2) parities, 50 k and plus sequence variants (purple), which
are from GWAS using lactation-wise (lactw) records, and 50 k and plus sequence variants (light blue) where sequence variants were
selected from two individual consecutive time-point GWAS (2:E, 2:M, and 2: L).

genomic prediction (Bolormaa et al. 2022), but previously no balance periods during and across lactations. Genetic variation 
consideration has been made for the time period of lactation for DMI varies across breeds, populations, lactation stages, and 
in which the DMI was recorded in the different herds. However, the data used (Tempelman et al. 2015; Hurley et al. 2017; 
it is difficult to capture the genetic changes in different energy Li et al. 2018; Negussie et al. 2019). Li et al. (2018)  found 
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genetic heterogeneity of DMI across lactation in Holstein, 
Jersey, and Nordic Red breeds, and genetic correlations 
between DMI at different stages of lactation are much less 
than unity. This indicates that DMI at different stages of 
lactation behave as different traits. Similarly in our study, a 
lower correlation of WGS variant effects (r < 0.80) was found 
between neighbouring time periods during early lactation 
stage (10–30 DIM and 60–90 DIM) in both first- and later-
parity cows than in the time periods of mid- to late-lactation 
stage. Also, for both first and later parities in Fig. S1, the EBVs 
for late periods are the most distinctly different and clustered. 
The earliest time periods are split from early–mid- and mid– 
late periods. Manzanilla Pech et al. (2014) also found DMI in 
early lactation had low genetic correlation with DMI in mid-
to late lactation. At early stages of lactation, cows achieve the 
highest peak milk production with a feed intake deficit, which 
results in weight loss due to mobilisation of body fat reserve. 
Negussie et al. (2019) reported that for DMI, the lactation-
wise h2 was 0.33 and daily h2 estimates ranged from 0.18 
to 0.45 in 227 first-parity Nordic Red cows. 

In this study, the number of actual observed DMI records 
for the first and later parities in the OVE genotyped cows 
were similar (Table 2). However, 360 more first-parity cows 
(N = 1958) than later-parity cows (N = 1598) were genotyped, 
which resulted in higher genomic heritability estimates 
(~0.31–0.36). There are several reasons that possibly contri-
buted to lower heritabilities in later-parity (2+ parities) cows. 
First, this is a small dataset recorded in different herds from 
different continents and there were fewer cows with records 
in later parities than in first parity, and 20% of later-parity 
cows were not part of the first-parity cows. Second, the 
residual variance in later-parity cows was higher (Table 3) 
possibly due to cow records being combined from different 
parities (2+). Third, the genetic variance tended to be 
lower for later-parity cows than the first-parity cows; this 
might occur because cows in parity 2+ would have been 
more highly selected for other traits (e.g. milk), which may 
reduce genetic variance in later-parity cows for DMI compared 
with first-parity cows. Interestingly, the genomic-heritability 
estimates based on HD GRM in the later-parity cows increased 
from 0.2 to 0.32 towards the later stages of the lactation, 
indicating that the late-lactation period is capturing more 
genetic variation in the OVE cows. 

The improvement of the genomic prediction accuracy 
obtained for feed intake and efficiency using sequence 
variants particularly from later parity is interesting because 
it could help inform data use and/or improve design of 
collaborative projects for these expensive and difficult-to-
measure traits. The effect of most SNPs on DMI are small as 
expected for a complex trait, which is why we used a lenient 
P-value threshold to select SNPs (Fig. S2). By analysing SNP 
associations with DMI over different lactation periods may 
help increase power and/or detect a slightly different set of 
variants. This may be due to real genetic differences or 
genetic signal-to-noise ratio is variable across the lactation. 

The use of sequence variants, selected from GWAS for DMI 
by using the later-parity OVE cow data in mid- to late-
lactation (DIM:170–280), gave the highest accuracy of 
GEBVs for AUS cows (Fig. 2). This is interesting because 
the majority of real DMI measurements for OVE (discovery 
population) were recorded earlier in lactation. Furthermore, 
very few AUS cow DMI records (used for training prediction) 
were taken in mid- to late-lactation (DIM > 140). This 
suggests that the DMI records from mid- to late-lactation 
perhaps capture the effects of some specific variants more 
accurately than those from other time periods, rather than 
there being a specific set of variants that better predict the 
same time period. Interestingly, the proportion of sequence 
variants estimated to have non-zero variance was consid-
erably higher in the later-parity group (51%) than in the 
first-parity group (41%). Additionally, the proportion of 
sequence variants with non-zero variance was higher in the 
last two time periods (54%) of later-parity group than in 
the earliest two time periods (46%). This indicates that the 
measurement of DMI phenotypes from the mid- to late 
lactation-time periods is appealing to detect the associated 
WGS variants that may help increase genomic prediction 
accuracy through custom SNP panels. 

Because there were high correlations between SNP effects 
from neighbouring time periods (r > 0.88, Fig. 2), we 
combined the sequence variants from two consecutive time 
periods, to see whether the accuracies reflect a wider time 
frame, as early (DIM ≤ 100), mid- (100 < DIM < 200), and 
late (DIM ≥ 200) lactation stages. Combining the sequence 
variants of two time periods during later (DIM ≥ 200) 
lactation stage further increased the accuracy of GEBVs. This 
might be due to combining of SNPs with a moderate effect that 
were detected uniquely to one or other time period. This result 
suggests that if resources are limited for DMI measurements 
across the entire lactation, it may be better to narrow down 
the period of measurements towards later lactation stage 
and later parities. 

Splitting phenotypes into different time periods for the 
first-parity OVE cows did not result in sets of sequence 
variants that improved accuracy of genomic prediction in 
AUS cows. Indeed, in some cases it appears to drop slightly 
compared with 50 k SNPs only. This could be because a much 
smaller proportion of daily DMI records were collected across 
the AUS first-parity cows (Table 2). Another reason may be 
that there is still a growth and development phase occurring 
during first parity of young cows, and first-lactation cows 
having a more naïve immune system than for cows with 
more parturitions (Strucken et al. 2015). Furthermore, some 
studies showed low to moderate genetic and phenotypic 
correlations (0.3–0.4) between RFI of growing cattle and 
RFI of lactating mature cows (Arthur et al. 1999; Bolormaa 
et al. 2022), which may be due to the differences in 
efficiency of energy partitioning in growth and lactation. 
Selection of sequence variants using a full set of phenotypes 
for DMI across lactation (lactation-wise phenotypes) of OVE 
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cows for later parity did improve the accuracy of GEBVs in 
AUS cows, but improvement was much less than using only 
the phenotypes at later-lactation time periods (Fig. 3a). It is 
possible that during these later-lactation time periods the 
physiological noise (e.g. post-partum stress, energy balance 
and peak milk production) is lower. 

Ideally, this approach should be used in a GWAS using the 
same animals in the first and later parities and validated in a 
population that had DMI recorded across the entire lactation 
period. This would enable disentangling of the value of 
measuring phenotypes at different time periods and identify 
the largest increase in accuracy at each time period and parity. 
Here, we used all OVE cows in the discovery set, therefore 
using OVE cows as a validation set for genomic prediction 
would introduce bias. Additionally, because the current 
number of OVE cows used in the GWAS discovery set was 
small (1958 and 1598 cows in first and later parities 
respectively), we did not attempt to reduce it further to 
create an additional independent validation set. However, 
it is advisable to confirm the effectiveness of this approach 
for improving accuracy of genomic prediction with larger 
datasets. 

The sequence variants were selected only on on the basis of 
DMI rather than RFI because the number of observed records 
for DMI of OVE cows used in RRM was already small, and 
hence we did not try to calculate the RFI phenotypes on the 
basis of the predicted and observed phenotypes from RRM. 
The RFI phenotypes of AUS cows used in the genomic 
prediction were previously calculated on the basis of all 
available AUS records of DMI across the whole test period 
(there was not enough records for different time points). The 
DMI-selected sequence variants from later lactation time 
periods increased the accuracy of RFI, although to a lesser 
extent than did the accuracy of DMI. This is expected 
considering high correlations between DMI and RFI 
(Manzanilla-Pech et al. 2021). This result shows predictive 
sequence variants were effective in increasing the genomic 
prediction accuracy of RFI and DMI. Moreover, a possible 
genotype-by-environment (G × E) interaction effect could 
exist across broader groups of cows (across continents). 
Berry et al. (2014) reported that genetic correlations for DMI 
among North America, European high-input (DNK) and low-
input (GBR), and grazing (i.e. AUS) cow populations varied 
from 0.14 to 0.84 by using across-parity data. In this study, 
we used the OVE cows as a discovery population for selecting 
the top sequence variants to use in the prediction analysis for 
AUS cows. It is possible that G × E interaction effect of a 
genetic variant on complex trait could lead to the differences 
in benefit of variant sets selected at different time periods. 

In the BayesRC RFI analyses, it is difficult to determine 
why, in some cases, the accuracy appeared to drop when 
using the 50 k genotypes plus sequence variants from the 
first parity compared with the 50 k genotypes on their own. 
Generally, we find for BayesRC that adding a randomly 
selected set of variants in addition to a standard SNP chip 

did not result in a drop in accuracy because there is a flat 
prior for all SNP sets. However, it may be due to the small 
training and validation datasets, or possibly BayesRC analysis 
overpredicted the effects of some DMI-selected sequence 
variants for the RFI trait. Therefore, our results should be 
interpreted with caution due to the small size of the reference 
and validation sets used in this study. 

Because the primary focus of this study was improving 
genomic prediction by using sequence variants at different 
time points during the lactation and lifetime of cows, we 
did not discuss the dynamic (changing) associations for DMI. 
Due to small numbers of cows used in the discovery popula-
tions, there was low power to detect variants with small to 
moderate effects in these 12 GWAS at the more traditional 
significance levels (e.g. P < 1 × 10−5; Fig. S2). Only a few 
association studies in livestock reported the dynamic expression 
of genes involved in milk production across the lactation 
(Bionaz and Loor 2008; Verbyla and Verbyla 2009) but not 
for DMI. Markers close to the casein genes had the strongest 
effects in early lactation and the effects of the DGAT1 
gene were detectable after 40 DIM (Strucken et al. 2011). 
Therefore, dynamic association studies could help in identi-
fying potential physiological mechanisms to enhance feed-
and milk-production efficiency. Overall, there are many 
potential avenues to improve availability of DMI phenotypes 
both directly and indirectly, such as use of intermediate 
phenotypes such as milk mid-infrared spectroscopy and nuclear 
magnetic-resonance data, and cow methane emission due to its 
correlation with DMI (Herd et al. 2014; Callegaro et al. 2022). 

Conclusions

The genomic prediction of DMI can be improved by including 
sequence variants of a DMI GWAS selected from independent 
populations. Selecting these variants from GWAS performed 
using phenotypes of DMI at specific lactation stages appears 
to be advantageous, in particular the later-parity cows at 
the late-lactation stages provided an increase in genomic 
prediction accuracy of DMI and RFI. Thus, using phenotypes 
at particular lactation stages can help increase genomic 
accuracy for DMI and RFI through custom SNP panels to 
use in genomic selection programs. Additionally, our findings 
are important because a higher accuracy of GEBVs at late-
stage lactation in later-parity cows might indirectly indicate 
the optimal time to collect data on feed intake. However, 
this result should be interpreted with caution because of 
the small size of the reference and validation sets used in 
this study. Further confirmation of the effectiveness of this 
approach for improving of accuracy of genomic prediction 
with larger datasets is recommended. Ideally, future studies 
would include large data sets that are recorded across full 
lactation (first and later parities) to determine which time 
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periods and parities are the most indicative of full lactation or 
lifetime DMI and RFI. 

Supplementary material

Supplementary material is available online. 
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