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Summary 

The purpose of this paper is to develop mass selection theory which will 
accommodate not only linkage but will provide for different recombinatlOn 
frequencies in the two sexes. 

The theoretical aspects of the linkage problem are developed in three stages: 

(I) The mass selection theory for two loci is extended to accommodate 
different recombination values for the two sexes. 

(2) A method is developed by which the generalized two-locus model may be 
used to cope with genetic SItuations which are considerably more complex. 
This method requires the estimation of the recombination value averaged 
over all possible pairs of loci. 

(3) The expectations of the half-sib and full-sib covariances for a random­
mating population are generalized to permit different recombination 
values for the two sexes. This allows unbiased estimates of genotypic 
variance components to be obtained. 

Finally, application of the more general mass selection theory to the problem of 
detecting the influence of natural selection in modifying the effectiveness of artificial 
selection, is discussed. 

1. INTRODUCTION 

This paper is the second of a series in which the main objective is to generalize 
mass selection theory to include epistasis and linkage. Except for an abbreviated 
excursion by Kimura (1958), there has been no attempt to extend the mathematical 
theory of selection to include these phenomena. That is, no one has seriously 
attempted to explore selection theory using Kempthorne's (1954) generalized gene 
model which permits an exact treatment of epistasis. Likewise, no one has seriously 
attempted to solve the complex problem of linkage. Therefore, the past treatment 
of selection theory is inadequate, since, obviously, both epistasis and linkage are 
very real phenomena which should not be ignored. 

In the first paper of this series (Griffing 1960), a hierarchical classification 
of hereditary units was considered. These units were the (1) gene, (2) gamete, and 
(3) individual. By using successively higher levels of hereditary units, successively 
higher levels of generalization of the selection theory were obtained. For example, 
when the individual was used as a unit of inheritance, the problem of linkage was 
avoided and certain very general statements were possible. However, by far the 
most informative approach was that in which the gamete was considered as the 
basic unit of inheritance, and the interpretation of the analysis was based on the 
gene. 
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This gamete-gene approach is applied in the present paper. However, with 
this approach the linkage problem cannot be avoided and, in fact, since many 
experimental selection studies are conducted with Drosophila, it is necessary to 
handle not only the general concept of linkage, but it is also necessary to allow for 
the existence of different recombination values in the two sexes. 

One approach to the linkage problem is to attempt to completely describe 
the genetic complexities (including all linkage parameters) in successively more 
complicated genetic systems (Le. systems involving 2, 3, 4, ... , n loci). However, 
the algebra quickly becomes intractable. 

In this study the linkage problem is attacked, first, by deriving the theoretical 
consequences of selection when a two-locus model is used which is generalized to 
accommodate different recombination values for the two sexes. This two-locus model 
is then adapted to apprmdmately describe a complex situation by simply replacing 
the specific recombination value for the two loci by the recombination value 
averaged over all possible pairs of loci. It turns out that a sufficiently accurate 
estimate of this average recombination value can be obtained by a simple expression 
which is a function of only the recombination index. Finally, the problem of 
estimating certain variance components from covariances is solved by extending 
the covariance formulae to accommodate different recombination values in the 
two sexes. 

It is immediately obvious from the general extension of the mass selection 
theory that certain epistatic effects cause results which mimic those due to the 
effects of natural selection. Therefore, a method is outlined with which it is possible 
to detect the influence of natural selection in modifying the responses to a.rtificial 
selection even when epistasis is present. 

II. CONSEQUENCES OF TRUNCATION SELECTION FOR THE COMPLETELY GENERALIZED 

TWO-LOCUS MODEL 

In the first paper of the series (Griffing 1960), the consequences of truncation 
selection based on the individual phenotype were examined in detail for the two-locus 
model which was completely general except for the fact that the recombination 
value was assumed to be the same for the two sexes. With regard to this assumption, 
the following conclusions were drawn: 

"This simplification often does not exist. For example, an extreme case occurs in Dro8ophila 
where crossing over does not occur in the male. Thus, a somewhat more complicated 
analysis is required to accommodate different recombination values in the two sexes. 
However, such a complication does not change the general picture; it merely alters the 
speed of the response to selection and response to relaxation following selection." 

In this section, then, the objective is to set out the analyses for the two-linked­
locus case in which an arbitrary recombination frequency exists for each se;x. 

(a) Definitions 

It is assumed that the selection programme commences with a random-mating 
population which is in equilibrium. This population is designated as ITo. The 
following notation is used (Kempthorne 1957): 



Let 

and 
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~ 1 1 
~Pi(At) = array of alleles at locus (1), 
i 

~ 1 1 1 1 . 
~PiPi(AiAi) = genotypIC array at locus (1), 
tj 

~ 2 2 
~Pk(Ak) = array of alleles at locus (2), 
k 

~ 2 2 2 2 • 
~ PkPZ (AkA z) = genotypIC array at locus (2), 
kZ 

Yi = recombination frequency between the two loci as exhibited 
by the females, 

Ym = recombination frequency between the two loci as exhibited 
by the males. 

The initial equilibrium population may be generated as the product of the 
two genotypic arrays, i.e. 

~ 1 I 1A1 ~ 2 2 2 ,2 ITo = [~PiPi(At i)][~PkPZ(Ak.A.Z)]' 
ij kl 

~ 11221122 = ~ PtPiPkPZ(A,AjAk'Az). 
IjkZ 

Consider, now, the gametic arrays for each of the two sexes in ITo. The female 
gametic array will be obtained first. 

A female of the genotype (A}A~)(A}A~) produces the following gametic array: 

{ f · 1 2 1 2 J. 2 lA2 
[(I-Yi) 2J(AtAk+AjAz)+(Yif2)(AiAz+Aj k)}· 

Hence, the total gametic array for the females is 

~ 1 1 2 2 f 1 2 1 2 1 2 A1A2} ~ PiPiPkPl{[(I-Yi) 2](AiAk+A jAzl+(Yif2)(A,Az+ j k)· 
iikl 

This may be recast, using a summation device introduced by Kempthorne (1957), 
as follows: 

~ { 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 A1A2 
~ PiPiPkPZ[(I-Yi)f2]+PJPiPIPk[(I-Yi)f2]+ptPJPZPk(Yif2)+pjPiPkPZ(Yif2)}( i k) 
tjkZ 

where 

~ 0 1 2 = ~ (J!ik)(AiAk), 
tk 

J!i~ = the relative frequency of the gamete (A}AZ) produced by the females 
in ITo 
12~ 12 12 

= PiPk ~ {[(1-Yi)f2](2pjpd+(Yif2)(2pjpz)} 
jl 

1 2 
=PtPk· 

Likewise, the frequency of the gamete (A}A~) produced by the males in 
ITo is 

o 1 2 
min = PiPz· 
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Thus, when the population is in equilibrium the frequency of a particular 
gamete produced by either males or females is simply the product of the appropriate 
component gene frequencies. 

It is now possible to give another representation of the random-mating popu­
lation in equilibrium in terms of the gamete as a unit of inheritance. This 
representation is that obtained by multiplying the gametic arrays from the two 
sexes as follows: 

~ 0 12~ 0 12 ~ 001212 
[~(t/'k)(A,Ak)][~ (m!lZ)(AjAz)] = ~ (t/Ck)(m!JI)(A,Ak)(A1A z)] 
tk lZ tjkZ 

~ 11221122 
= ~ PIP1PkPZ(A,A1A kA z), 

Ijkl 
as before. 

The genotypic value of (AiA~)(A}A~) in IIo is denoted as dCk.ll, such that 

~ 1 1 2 2 
~ PtPjPkPI dlk.j l = O. 

11kl 

This genotypic value is characterized by the following model (Kempthorne 1957): 

1 1 2 2 1 2 
dlk.jl = OCI+OCl +OCk+OCZ +S,j+SkZ+(OCOC)Ck+(OCOC)a+(OCOC)jk+(OCOC)jl 

+(OCS)Ckl+ (OCS)jkZ + (SOC)tjk+ (Soc)m+ (SS)ijkZ, 
where 

OC: = additive genetic effect of the A: allele, 

S~v = dominance effect associated with the A:A~ genotype, 

(OCOC)Ck = additive X additive epistatic effect associated with genes A~ and At 
(OCS)ikl = additive X dominance epistatic effect associated with the gene A~ 

and' the genotype A~A~, and 

(SS)flkZ = dominance X dominance epistatic effect associated with the genotypes 
1 1 2A2 A,Aj and Ak I. 

The total genotypic variance may be partitioned as 

2 222 2 2 
uG = UA+UD+UAA+UAD+UDD, 

where 

and 

U~ = total genotypic variance generated by the two loci, 

u~ = additive genetic variance, 

u~ = dominance variance, 

U~A = additive X additive variance, 

U~D = additive X dominance variance, 

U~D = dominance X dominance variance. 
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In defining the selection value Wik:jl for the genotype (A}A~)(A}A~) it is 
assumed that the genotypic variability of the characteristic which is being studied 
is controlled by genes, each of small effect, at many loci, and that the phenotypic 
varaibility is normally distributed with mean zero and variance a2• Following 
Kimura (1958), the selection value Wik.il is defined to be proportional to the proba­
bility that an individual of the genotype (A}A~)(A}A7) survives selection. Hence 

Wik.il = 1 + (i/a2)dik.jl, 

where i is the selection differential. Details of the argument are presented in the 
earlier paper (Griffing 1960). 

(b) Consequences of n Generations of Continuous Selection 

The objective in this section is to describe the change in parameters which 
occurs with an arbitrary number of continuous cycles of selection. The procedure 
will be to outline briefly the method of obtaining the population mean which results 
from one generation of selection and then to consider the consequences of n con­
secutive cycles of selection. 

The selection programme starts with a random-mating population in equil­
ibrium, as described in the previous section. This population is designated as ITo, 
and the populations resulting from successive cycles of selection are designated as 
ITt (i = 1, ... , n). 

The first cycle starts with 

~ 0 01212 ITo = ~ (tfik)(m!tI)(AiAk)(AjAz). 
ijkl 

The frequency (male or female) of the genotype (A}A~)(A}A~) following 
selection is 

000 
(tfik)(m!tI)Wik.jl. 

The total frequency of the selected individuals (male or female) is 

~ 0 0 . 2 0 
~ (tfik)(mfjl)[I+(~/a )dik.il ] = 1. 
iikl 

The first step in obtaining the mean of IT1 is to determine the frequency of a 
given gamete for each sex in the selected population. These give rise to gametic 
arrays for the selected males and females. The progeny mean, iLl, is then obtained 
by multiplying these gametic arrays and substituting the genotypic value for the 
genotypes. In the following, the frequency of the female gamete (A}A~) will be 
obtained first. The objective is to determine the gametic frequency as a function 
of the parameters of ITo. 

The female genotype (A~A%)(A}A7) produces the following gametic array: 

. AlA· 2 Al 2 AIA2 . AIA2 {[(1-Yf)/2]( i k+ j A d+(Yf/2)( i 1+ j k)}' 
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The total gametic array for the selected females is then, 

~ ,0 ) 0 0 1 2 1 2 / Al 2 1 2} ~ 1 lA2 
.4.J (IJik (m!idwik.jl{[(1-Y/)/2](A,Ak+AjAd+(YI 2)( ,Az+AjAk) =.4.J (J!ik)(A, k), 
~ ~ 

where 

1 o~ 0 0 o~ 00 
J!ue "-' [(1-Y/)/2][(J!tk).4.J(mhl)Wik.jl+ (m!tk).4.J(J!jl)Wik.il] 

jl jl 

~o 00 ~o 00 
+ (YI/2)[.4.J (J!iz) (m!jk)Wu.jk+.4.J (J!jk)(m!U)Wjk. u] 

jl jl 

o 0 .2121 2 12 
= [(1~Y/)/2][(J!ik)+(mftk)]+(t/a )PtPk[OCi+OCk+(OCOC)ik]+YIPiPk 

12./21212 
= PtPk+(t a )PiPk[",,+OCk+(OCOC)ik]. 

Likewise, the frequency of the gamete (AjA7) produced by the males is 

1 0 0 ·21212 12 
mhl = [(1-Ym)/2][(J!Jl)+(m!il)]+(t/a )PiPl[OCj+OCl+(OCOC)jl]+(Ym)PjPl 

1 2 ./ 2 1 2 1 2 
= PjPI+(t a )PjPl[OCj+OCI+(OCOC)jl]. 

The structure of the population IT1 may now be written as 

which has the mean 

~ 111212 
IT1 = .4.J (J!ik)(m!iZ)(AtAk)(AjAz), 

tjkl 

~ 1 1 0 
/1-1 = .4.J (J!ik)(mhl)dik.jl . 

tjkl 

This mean is approximately equal to 

~ 1122 _ 11221 1 2 2 O. 2 2 
.4.J {PiPjPkPI + (t/a)ptpjPkPI[OCt +OCj +OCk+OCI + (OCOC)ik+ {OCOC)jz]}dik.jl = {t/a)[a A +!a AA]. 
iikl 

The approximation results from, first, making the transformation i = i/a 
and, then, assuming that the term 

( gene effect ) 
total phenotypic standard deviation 

is small, so that the square or product of two such quantities can be neglected. 
AssumptIOns of this sort are made throughout this analysis. 

The consequences of n generations of continuous selection may be outlined 
briefly as follows: 

The population resulting from (n-l) consecutive cycles of selection has the 
following structure 

IT ~ n-1 jn-1 1A2 1A2 
n-1 = .4.J (J!ik )(m jl )(Ai k}(Aj Z), 

ijkl 
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The gametic array produced by the selected females is then 

"" fn 1 2 ~(t ik)(AiAk), 
tk 

where 

tfi~ ~ [(l-Yt)/2][(tfi~-I)~(mfJ~-I)w~k.J!+ (mfi~-I)~(tfJ~-I)w~k.J!] 
Jl Jl 

( / "" fn-l)( /n-l 0 "" /n-1 ( fn-1 0 ] + Yt 2)[~(t ik m Jk )Wik.J!+~(t jk ) m il )WJk.il 
Jl Jl 

= [(I-Yt )/2][(tfi~-1) + (mfi~-I)] + (i/a2)p}p~[lXi +IX~+ (1X1X)tk] 

12 .21212 
+(Yt)ptPk+(n-I)(Yt)(t/a )PtPk(lXt +lXk). 

On converting to parameters of 110 only, it appears that the above frequency 
can be put in the form 

n-l 
tft~ = [(I-Yt)bn- 1 +Yt+a(I-Yt) 'L br-l]p}p~ 

r=1 

n-1 
+[I+(I-Yt) 'L br-1](i/a2)p}p~[IX}+IX~+(IXIX)ik] 

r=l 

n-1 t 
+[(n-I)(Yf)+ 'L (~a(I-YfW-1)](i/i)pb~(IX} +IX~) 

t=1 r=1 

= p}p~+n(i/a2)p}p~(IX} +IX~) +{I + (I-Yt)[(I-bn-1)/(I-b)]}(i/a2)p}p~(IXIX)ik' 

where 
a = !(Yt+Ym), 

and 
b = I-a. 

In a similar manner the frequency of the gamete (A}A~) produced by the 
selected males is 

mhl = p}p~ +n(i'a2)p}p~(IX} +IX~)+{I + (I-Ym)[(I-bn-l)/(I-b)]}(i/a2)p}p~(IXIX)Jl. 

Therefore, the mean of the population having n consecutive generations of 
selection can be determined as follows: 

"" n n dO fLn ~ ~ (tftk)(mhZ) ik.J! 
Ukl 

= (i/a2)na~ +[(l-bn)/(I-b)](i/a2)!a~A 

n 
= (i/a2)na~+( ~ br-1)(i/a2)ta~A 

r-1 

= (i/a2)(a~+ta~A)+(i/i)[a~+(b)!a~A] 

+(i/a2)[a~+(b2)!a~A]+ ... +(i/a2)[a~+(bn-1)a~A]. 
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This is a more general expression for f'n than that previously obtained 
(Griffing 1960), when it was assumed that Y! = Ym = y. In this case, b = (l-y). 

(c) Consequences of Relaxation after n Generations of Continuous Selection 

The objective in this section is to develop the prediction equation for the 
mean of a population which has had a history of n consecutive cycles of selection 
followed by t generations of random mating without selection. The procedure will 
be to start with IIn and consider the consequences of one generation of rela.xation, 
then to briefly outline the consequences of an arbitrary number t of generations 
of random mating without selection. 

The notation is necessarily more complicated; thus (dltc,m) represents the 
frequency of the gamete (A~A~) produced by the females selected from the popu­
lation IIn,m-1 which has been subjected to n generations of continuous selection 
followed by (m-l) generations of random mating without selection. 

To obtain the mean of IIn,1 it is necessary to start with 

"" f,n,o) .,n,o A1A2 A1A2 IIn,o = k.l C, tk (mJiZ )( t k)( i I)' 
tiki 

The female genotype (A~A~)(A}A~) produces the following gametic array 

1212 1212 
([(I-y!) 12](AtAk+ AjAz) + (y!12)(A,Az + AjAk)}' 

The total gametic array for the female population in which there is no selection is 

I: (df':/)(m!J1,o){[(I-Y!)/2](A~A~+A}A~)+(Y!12)(A~A~ +A}A~)} = I:(df~,l)(A~A~), 
~ ~ 

where it can be shown that 

n,1 1 2 '1 2 1 2 1 2 '1 2 n 1 1 2 d fk = PfPk+n(~ a )PfPk(a:f+a:k)+($ a )(1-y!)[(I-b ) (l-b)]pfPk(a:(X)fk. 

Likewise, the male frequency for the gamete (A}A~) is 

n 1 1 2 ('1 2) 1 2( 1 2 '1 2 ( bn 1 b 1 2 mfjl' = PiPI+n $ a pjPZ a:j+a:z)+(~ a ) 1-Ym)[(1- ) (1- )]pjpz(a:a:)jl. 

Therefore, the mean of IIn,l is 

f'n,l ~ I: (df~,l)(m!J1,1)d~k.iZ 
tjkZ 

= (ila2)[a~+(b)!a~A]+(ila2)[a~+(b)(b)!a~A] 

+(ila2)[a~+(b)(b2)!a~A]+ ... + (ila2)[a~+(b)(bn-l)!a~A]. 
By working through successive cycles, it is clear that after t generations of 

random mating without selection, the female and male gametic frequencies are: 

df~,t = p~p~+n(ila2)p~p~(a:~+a:~)+(ila2)(1-y!){(bt-1)[(1-bn)/(1-b)]}pip~(a:(X)fk' 

and 

mfj~,t = p}~ +n( il(2)p}p~(a:} +a:~)+( il(2)(1-'Ym){(bH )[(1-bn)/(1-b)]} p}p~( a:a:)jl. 
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Hence, the mean of the population which has been subjected to n cycles of 
continuous selection followed by t generations of random mating without selection 
is 

/Ln,t '"""' ~ (tft~,t )(min.,t )dttjl 
ijkl 

= (i/a2)na~ +(i/a2){(bt)[(1-bn)/(1-b)]}!a~A 
n 

= (i/a2)na~+(i/a2)[(bt)( ~ br-lma~A 
r=l 

·22 t 2 ·22 t .12 = (~/a )[aA+(b )!aAA]+(~/a )[aA+(b )(b)2aAA] 

+ ... + (i/a2)[a~+(bt)(bn-l)!a~A]' 
where, as before, 

b = {[(1-y!)/2]+[(l-Ym)/2]} = [1-(Y!+Ym)/2]. 

Again, this is a generalization of the previous result when it was assumed 
that Y! = Ym = y. 

If the increment change in means for the (t-l)th and tth populations is 
defined as 

then 
ntl/L(t-l),t = /Ln,(t-l)-/Ln,t, 

ntl/L(t-l),t = (i/a2){bt-l[(I-bn)/(I-b)]-bt[(I-bn)/(I-b)]}!a~A 

= (i/a2)[bt-l(l_bnma~A. 

For any value of n 

lim[ntl/L(t-l),t] -+0, 
t-+oo 

hence the mean of the population ITn,O decays to 

lim(/Ln,t) -+ (i/a2)na~. 
t-.oo 

Finally, it must be noted that in all of the analyses of this and the previous 
section, it is assumed that natural selection is not operating in any way to modify 
the pressure applied by artificial selection. 

III. ADAPTING THE TWO-LOCUS MODEL TO GENETICALLY MORE COMPLEX SITUATIONS 

In the previous section the consequences of selection and relaxation from 
selection have been treated in detail for a very general genetic situation involving 
two loci. Clearly, however, if this form of analysis is to be of interest in selection 
theory, a method must be devised to adapt the two-locus model to accommodate, 
approximately, the variability generated by a much more complex genetic situation. 
This can only be done with certain simplifying assumptions. Thus, for the total 
genotypic variance, it is assumed that all epistatic interactions involving three 
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or more loci are negligible. For covariances which are disturbed by linkage, and 
for equations derived in the selection theory, it is assumed that: (1) all epistatic 
interactions involving three or more loci are negligible, and (2) the value for the 
covariance can be approximated by replacing the recombination value for the 
specific two-locus model by the recombination value averaged over all pairs of loci. 
The critical argument in this procedure is the argument on which the estimation 
of the "average recombination value" is based. 

(a) Average Recombination Value 

The problem in this section is to obtain an estimate of the recombination 
value averaged over all possible pairs of those loci whose genes cause variability in 
the characteristic under consideration. 

The problem is particularly simple if all active loci are independent of each 
other in the segregational sense. In this case the average recombination value is, 
obviously, t. However, this situation implies that the individual loci are on different 
chromosomes, or, if two or more loci are on the same chromosome, they are spaced 
sufficiently far apart so that they segregate independently. Such restrictions make 
this simplified model unrealistic for most polygenic systems. 

It is assumed in the following argument that for a given complexly inherited 
phenomenon, the number of active loci greatly e;x:ceeds the number of chromosome 
pairs, and that the genes are scattered over the chromosome complement. Hence, 
an entire range of linkage values among different pairs of loci is e;x:pected to occur. 
In this case it is obvious that the average recombination value over all pairs of 
loci lies between some lower limit and t. 

In the first part of the following discussion, it will be shown that a lower 
limit can be determined quite simply using the chromosome as a unit of segregation. 
This argument will be followed by an attempt to bracket the average recombination 
value more e;x:actly by taking crossing over into consideration. Finally it will be 
argued that a simple formula based only on the recombination inde;x:, although 
slightly biased, yields a sufficiently accurate estimate of the average recombination 
value for all practical purposes. 

(b) The Ohromosome Argument 

For simplicity, consider the argument, first, for the situation of only two 
pairs of chromosomes. Assume that there are nl loci on one pair and nz loci on 
the other pair, where nl +nz = N. The total number of different pairwise com· 
binations of loci is 

(~) = N(N-l). 

Each of these combinations falls into one of three classes. These classes are: 

(i) Combinations in which both loci are located on the first chromosome. 
The number of such pairs is 

(nl) _ nl(nl-l). 
2 - 2 
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(ii) Combinations in which both loci are located on the second chromosome. 
The number of such pairs is 

(~) = n2(n~-I). 

(iii) Combinations of loci, one of which is located on the first chromosome 
and the other on the second chromosome. There are nln2 such combinations. 

Each pair of loci in classes (i) and (ii) may exhibit a recombination value between 
o and t. However, it is assumed that each and every pair ofloci in class (iii) exhibits 
a. recombination value of exactly t. Hence, the lowest possible limit for the recombin­
ation value averaged over all possible pairs of loci is obtained by setting all recom­
bination values in classes (i) and (ii) equal to zero. This lowest value is then 

U(nln2)/tN(N -1)] = nln2/N(N -1). 

If nl::::: N/2, then the lowest average value becomes 

N 2/4(N2_N) = 1/4[1-(I/N)], 

and the limit of this value as N becomes large is t. 
This argument can be generalized easily to any number, m, of non-homologous 

chromosome sets. Suppose that there are nt loci on the ith chromosome set 
(i = 1, ... , m) such that N = ~ni. The total number of different pairs of loci is 

(~) =N(~-l}. 

The number of pairs of loci, one on each of two non-homologous chromosomes is 

~ninj, 
1<1 

(i,j = 1, ... , m). 

Hence, the lowest possible average recombination value is 

~ ntn,/N(N -1). 
i<J 

. ................... (1) 

If nt "-' (l/m)N (for all i), then (1) becomes 

[(m-l)/2m][N2/(N2-N)] = [(m-l)/2m]{I/[I-(I/N)]}. 

and the limit of this value as N becomes large is (m-I)/2m. 

The above argument has been given in terms of chromosomes, and the lower 
limit of the average recombination value has been derived on the basis of no crossing 
over. In this case meiosis results in the independent segregation of entire chromosomes 
whose loci are completely linked. If crossing over occurs, it is possible to state that 
the recombination value averaged over all possible pairs of active loci lies in the 
interval 

(m-l)/2m<fi<!· 
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It is instructive to tabulate (m-1)/2m for varying values of m as follows 
(m = number of chromosome pairs): 

m 2 3 4 5 6 10 20 

(m-l)/2m o 1/4 1/3 3/8 2/5 5112 9/20 19/40 

An interesting fact immediately becomes clear from this table, viz. the recom­
bination value averaged over all possible pairs of loci is close to t if the haploid 
chromosome number is five or more. This is due to the fact that as the number of 
chromosomes increases, the relative proportion of linked pairs of loci rapidly 
decreases and the average recombination value asymptotes steeply towards t. 

However, there are undoubtedly many instances when attention is focused 
on sets of chromosomes whose numbers are small (i.e. less than five). This isparticu­
larly true for Drosophila melanogaster, since it is extensively used as an experimental 
organism in testing quantitative inheritance and selection theories. Therefore, it 
is of interest to extend the above argument in some detail. 

(e) The Crossing Over Argument 

The estimation of the average recombination value can be made more exact 
by considering the consequences of crossing over. This phenomenon increases the 
number of segregating units, and therefore, it is natural to suppose that an estimate 
of the average recombination value can be obtained by replacing m in the "chromo­
some" formula by Darlington's (1958) recombination index. This index gives the 
average number of pieces into which the chromosome complement is divided by 
chiasma formation. 

However, this procedure, which may be termed the index method of estimation, 
is biased. This is so because the actual pattern of chiasma formation yields an 
extensive array of chromosome segments having different numbers of active loci, 
rather than a constant pattern of segments all having approximately the same 
number of loci. It will now be shown that, because of this fact, the index method 
yields an upper limit to the average recombination value. The argument will be 
illustrated first, for an obligatory chiasma forming on a single chromosome pair. 

Suppose that a single chiasma forms at exactly the same position on the given 
chromosome pair in every mother cell. There will be nl active loci to the left and 
n2 active loci to the right of the exchange. Clearly, pairs of loci to the left exhibit 
a recombination value of zero; as do pairs of loci to the right of the chiasma position. 
However, pairs of loci, which involve one locus on each side of the chiasma, exhibit 
a recombination value of t. Hence, the recombination value averaged over all 
loci is 

y = tnln2/ (~) 
= nln2/N(N-I). 
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It can be shown that the average recombination value, fj, varies depending 
on the position of the chiasma, which in turn alters the relative magnitudes of 
nl and n2. Furthermore, it can be shown that the maximum value of fj is obtained 
for the situation in which nl = n2. The argument may be sketched as follows: 

Let 

where 8 > -1. Then 

and 

Hence 

N = nl+n2, 

nl = n2(1+8), 

nl = N[(1+8)/(2+8)), 

n2 = N/(2+8). 

fj = [(l+3)/(2+8)2]{I/[I-(IIN )]} 

:::: (1+8)/(2+3)2, for large N, 

= 1/{4+[32/(1+3)]). 

Since 3> -1, 82/(1+8);;:: O. Therefore, the maximum value of fj is 1, which 
occurs when 3 = O. This is the value obtained by the index estimation method. 

This proof can be extended to the situation of more than one obligatory 
chiasma. The following argument for two chiasmata illustrates how this may be done. 

Consider a hypothetical situation in which two chiasmata invariably form a 
given pattern in every mother cell. Let there be nl active loci to the left of the first 
chiasma, n2 loci between the two chiasmata, and n3 loci to the right of the second 
chiasma. Assuming no chromatid interference, the average recombination value 
over all pairs of loci is then, 

fi = !(nln2+nln3+n2n3) / (~) 
= (nln2+nlna+n2na)/N(N -1). 

The maximum value for fi can be determined as follows: 
Let 

where ex> -1, and 

where ~ > -1. Then 

N = nl +n2+na, 

nl = n2(I+ex), 

na = n2(1+~), 

nl = [(I+ex)/(3+ex+~))N, n2 = N/(3+ex+~), and na = [(I+~)/(3+ex+~)]N. 
Hence 

_ 3+2ex+2~+ex~[ 1 ] 
Y = (3+ex+~)2 1-(I/N)' 

which, for large N, is approximately 

/[ 
ex2+~2_ex~ ",,] 

1 3 + 3+2ex+2~+ex~ . 
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Since IX, {3 > -1, 
2 2 {3 (IX +(3 -IX(3)/(3+2IX+2 +IX(3) ~ 0. 

Thus, y is a maximum when 

(IX2+{32_ IX{3)/(3+2IX+2{3+IX{3) = 0, 

and this occurs only when both a and {3 equal zero. Therefore, the maximum value 
occurs when, invariably, nl = n2 = n3: the situation required for the argument 
involving the recombination index. 

It is clear, then, that any agency which causes the positions of the chiasmata 
to be varied so that the chromosome pieces do not have equal contents of active 
loci lowers the average recombination value. 

In reality, of course, the pattern of chiasmata is not invariable. Generally, 
chiasmata may form along the entire length of the chromosome, and the number 
of chiasmata for any given chromosome pair may vary in different mother cells. 
Observational data on the distribution of chiasmata in individual chromosomes 
are few, perhaps the most extensive are those reported by White and Morley (1955). 
However, it is apparently agreed that the following two conditions hold for most 
species of plants and animals: 

(1) At least one chiasma per bivalent is obligatory for the survival of the 
bivalent; and 

(2) A strong chiasma interference exists, at least within each arm of every 
chromosome. 

Since there is no chiasma distributional theory which completely satisfies the 
above conditions, the procedure which will be followed is to continue the approach 
of using simplified cross-Qver models to bracket the true recombination value in as 
small an interval as possible. Finally, it will be shown that the index method, 
although biased, yields a sufficiently accurate estimate for most practical situations. 

In view of the fact that the pattern of chiasmata is not invariable, it is clear 
that the index method yields an upper limit to the average recombination value. 
Therefore the true average recombination value must lie in the interval 

(m-l)/2m<y«r-1)/2r, 

where m = haploid chromosome number, and r = recombination index. 

In this interval, the upper limit is set by a cross-over model in which the 
chiasma configuration invariably yields chromosomal segments containing equal 
numbers of active loci. It is "sensitive" in that the limit changes with different 
numbers of chiasmata for a given number of chromosomes. The lower limit, however, 
is based on chromosomal segregation and is "insensitive" to chiasma distribution. 
Hence the next step is to devise a cross-over model which yields a sensitive lower 
limit to the true average recombination value. 

As mentioned earlier, one of the accepted facts with regard to actual chiasma 
distribution is the strong chiasma interference within a chromosome arm. Such 
interference tends to space the chiasmata located in the same arm. This results 
in a restricted array of chromosomal segments tending to have the same number 
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of active loci: the condition required by the index method. Hence, a cross-over 
model in which there is no chiasma interference will produce an unrestricted array 
of chromosome segments, with the net result that the average recombination value 
based on this model will generally be lower than the true value. Thus, a non-inter" 
ference model, incorporating the following conditions, will be considered as providing 
a sensitive lower limit for the true average recombination value: 

(1) At least one obligatory chiasma per bivalent; 

(2) Non-interference of chiasma formation, i.e. all chiasma form independently 
of each other; and 

(3) No chromatid interference. 

In determining the consequences of this non-interference model, it is convenient 
to break down the approach into two stages, both of which are concerned with 
chiasma formation on a single chromosome pair. In stage one, the average recom­
bination value is determined for a given number, k, of independent chiasmata formed 
on the single chromosome pair in every mother cell. In stage two, the numbers of 
chiasmata are allowed to vary according to the Poisson distribution. 

With regard to stage one, first consider a specific example in which there are 
three independent chiasmata formed on the given pair of chromosomes in every 
mother cell. Let the length of the chromosome be divided by n loci into (n-l) 
regions, in each of which a chiasma is equally likely to occur. (It is assumed that the 
regions are sufficiently small so that the probability of two chiasmata forming in 
the same region is negligible). 

There are (~) different pairwise combinations of loci, and (n-; 1) different 

chiasma configurations. Hence, there is a total of (~) ( n-; 1) events, which, for a 

given pair of loci, may be defined in terms of the recombinational consequences of 
the imposition of a certain chiasma configuration. Thus a recombinant event is one 
which, when all possible meiotic configurations are considered, results in 50 per 
cent. recombinant chromosomes. Such an event occurs when at least one chiasma 
forms between the two loci, and a non-recombinant event occurs when chiasmata 
do not form between the loci. 

The recombination value averaged over all possible pairs of loci may then be 
defined as 

- _ (Number of recombinant events) xi 
Y - Total number of events . 

This is most easily obtained as 

_ = ((Total number of events)-(Number of non-recombinant events)) xi. 
Y Total number of events 

The basic problem, then, is the enumeration of the non-recombinant events. 
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For a given chromosome configuration, a non-recombinant event exists when 
the region between the two loci is not interrupted by one or more chiasmata. Hence, 
for the three-chiasmata example, the enumeration problem is simplified if, for each 
clllasma configuration, the number of combinations of loci which occur, (1) to the 
left of the first chiasma, (2) between the first and second chiasmata, (3) between 
the second and third chiasmata, and (4) to the right of the third chiasma, are 
enumerated. The total number of such non-recombinants is found to be 

4ni:.3(n-~-1) (r). 
r~2 ~ 2 

Therefore, the average recombination value, as n increases indefinitely, for a single 
chromosome pair invariably having three chiasmata is 

y = lim r (;) (n~1)_4:~:(n-;-lt~) 1 xl 

n~ool (;)(n~l) J 
= lim [(!/12)n(n-1)2(n-2)(n-3)-(1:30)n(n-l)(n-2)(n-3)(n-4)] xl 

n~oo (1/12)n(n-l) (n-2)(n-3) 

= lim{3/10[1+(1/n)]} 
n~oo l-(l/n) 

= 3/10. 

This argument can be readily generalized to any number, k, of independent 
chiasmata formed on the given pair of homologous chromosomes in each mother 
cell. This generalization results in the following expressions for the average recom­
bination value: 

_ 1. 2 k r-2 k 1 2 .1 {(n) (n-l) _(k+l)nf(n--=--l) (r)} 
Y = 1m ------ ---- X 2 

n~oo (;)(n~l) 

which is, apparently, 

{ 
1 [n(n-l)(n-l)!] [ n! ]} 

= lim 2k! (n-k-l)! k!(k+2)(n-k-2)! X! 
n~OO ~[n(n-l)(n-l)!] 

2k! (n-k-l)! 

_ r {( k ) (1 +(l/n))} 
- nl!!!, k+2 l-(l/n) X! 

= k/2(k+2). 
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The above argument is developed for the genetic situation in which exactly Tc 
independent chiasmata occur on the given bivalent in every mother cell. It is now 
necessary to extend this argument to permit varying numbers of chiasmata to form 
on the chromosome pair in different mother cells. The extension must satisfy the 
two conditions mentioned previously, i.e. (1) at least one chiasma is obligatory for 
each bivalent, and (2) all chiasmata form independently of each other (no chiasma 
interference). It follows from the last condition that, apart from the initial obligatory 
chiasma, the numbers of additional chiasmata are distributed according to the Poisson 
distribution. Thus, the probability of exactly t additional chiasmata is 

e-A A' 
P(t;A) = -t!-' 

where A = (average number of chiasmata)-l. 

The frequencies for varying t values are as follows: 

o 1 2 

Obligatory chiasma 1 

Total chiasmata (k = ,+ 1) 1 2 3 

3 

1 

4 

Frequency e-A e-A,\ (e-A,\2)/2! (e-A,\3)/3! 

The average recombination value for exactly Tc chiasmata in each and every cell 
may be recast in terms of the variable t as follows: 

Tc 
f) = 2(Tc+2) 

(t+I) . 
= 2(t+3) 

The average recombination value over all possible pairs of loci may now be 
obtained for the situation in which the frequencies for varying values of t are taken 
into consideration as follows: 

00 

f} = ~ [(e -A At)jt!][(t+I)j2(t+3)J 
t=o 

00 

= ~ [(e -A At)jt!][i-Ij(t+3)] 
'=0 

00 00 

=!~ [(e-AAt)jt!]_(IjeA){~ [A'jt!(t+3)]} 
t=o t=o 

= !-(IjeA){(2j AS)[(A2eAj2)-(A_I)e -A -I]) 

= i-(IjA)+[2(A-I)jAS]+(2jA3e\ 
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The value fI then is the recombination value averaged over all possible pairs 
of loci for a single chromosome pair when it is assumed that: 

(1) a large number of active loci occur at random in the chromosome pair; 

(2) at least one chiasma is obligatory for the survival of the bivalent; and 

(3) there is neither chiasma nor chromatid interference. 

The above expression holds for A ~ 1; for A = 0, fI = i. 
To summarize the results when crossing over is taken into consideration, the true 

average recombination value for a single chromosome pair lies in the interval defined 

TABLE 1 
DIFFERENCE OF TIlE AVERAGE RECOMBINATION VALUE FOR THE METHOD IN WHICH THE RECOMBI­

NATION INDEX IS USED AND THE METHOD IN WHICH THE CIDASMATA ARE ASSU~1ED TO FORM 

INDEPENDENTLY OF EACH OTHER WITH THE RESTRICTION THAT AT LEAST ONE CHIASMA IS 

OBLIGATORY 

Average No. 
No. of Sets of Homologous Chromosomes (m) 

of Chiasmata 
per Chromosome 

(8) 1 2 3 4 5 

1 0·083 0·042 0·028 0·021 0·017 

2 0·098 0·049 0·033 0·024 0·020 

3 0·091 0·046 0·030 0·023 0·018 

4 0·081 0·041 0·027 0·020 0·016 

5 0·072 0·036 0·024 0·018 0·014 

by the non-interference model at the lower limit and the index model at the upper 
limit, i.e. 

(1) Single obligatory chiasma: 

i < fI < 1· 
(2) Single obligatory chiasma plus A additional chiasmata: 

{!- (1/ A) + [2( A-l)/ A3]+ (2/ A3e A)}<fI<[( A+ 1 )/2(A+2)]. 

The magnitudes of the intervals for different average numbers of chiasmata 
are given in the first column of Table 1. These values vary from 7 to 10 per cent. 
and tend to diminish as the average number of chiasmata increases. Because (i) it 
is likely that the probability distribution of chiasma position is not uniform throughout 
a chromosome arm, and (ii) a powerful chiasma interference occurs which tends 
to disperse the points of exchange, the true average recombination value, in most 
instances, will probably lie toward the upper limit of the interval, not far from the 
value given by the index method. For a single chromosome, then, the index method 
yields an estimate with a slight positive bias. 
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In selection theory, however, one is seldom concerned with a single chromosome; 
therefore, it is of interest to determine the magnitude of the interval generated by 
the non-interference (independent chiasmata) and the index methods, as the 
chromosome number increases. The following gives the details for (i) m chromosome 
pairs each having only one chiasma, and (ii) m chromosome pairs each having an 
average of 8 = (1.+1) chiasmata. 

For the situation in which each of m chromosome pairs has only one chiasma, 
the two models yield the following formulae: 

and 
Yindex = (2m-1)/4m, 

Yindep. = (3m-2)/6m. 

Hence, the difference between the two estimators is 

d = Y - -Y = 1/12m. 
index indep· 

For the situation in which each of m chromosome pairs has an average of 
8 = (1.+1) chiasmata, the corresponding formulae are 

Y. d = [m(A+2)-l]/[2m(A+2)], 
m ex 

Yindep. = t-(1/mA)+[2(A-1)/mA3]+2e -A/mA3, 

and 
d = Y. d -Y. = {(A3-4A+8)/[2m(A+2)A3]}-(2e-A/mA3). 

m ex mdep· 

The magnitudes of the differences for varying values of m and 8 are given in 
Table 1. It is clear that as the number of chromosomes increases, the differences 
generated by the two methods of estimation diminish, and both methods converge 
on the true value. 

It may be concluded that for all practical purposes the index method, which 
is simple and convenient to use, yields a satisfactory estimate of the average recom­
bination value. For example, when the chromosome number is increased to only 
two, the true recombination value may be expected to lie within 2 per cent. of the 
value given by the index method. If greater precision is required, estimates could 
be made using both methods and the arithmetic mean obtained from them. 

The methods outlined in this section give at least a first approximation to 
the recombination value averaged over all pairs of loci. The approximation becomes 
better as more information on chiasma frequency becomes available. If only the 
chromosome number is known, one can certainly say that the average recombination 
value lies in the range 

(m-1)/2m < fI < t, 
where m is the haploid chromosome number. If fertility is high, it can be assumed 
that at least one obligatory chiasma occurs in each and every chromosome pair. 
Hence, without actually making a chiasma count, one can obtain an estimate of the 
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average recombination value, which should be fairly accurate in most cases, by 
the following formula . 

g = (m'-I)/2m', 

where m' is twice the haploid chromosome number. 

Finally, if the average number of chiasmata per cell is known, it is possible to 
bracket the average recombination value in a smaller range, i.e. 

{t - _1_ + _2_m_2_ [exp(_p_-_m) + p_-_2_m]} < g <p,,-+-,---m_l 
P-'I!J- (p_m)3 m m 2(p+m) , 

where the expression to the left is the average recombination value for the non­
interference model when there is an average of (>..+1) = p/m chiasmata on each of 
m chromosome pairs, and p is the average number of chiasmata per nucleus. When 
the number of chia"Smata vary with different chromosomes, this expression is not 
exact. The expression on the right is the average recombination value given by 
the index method. 

For practical purposes a direct estimate of the average recombination value 
may be made, using the convenient and simple index formula, i.e. 

g = (p+m-l)/2(p+m). 

The above argument supposes that (i) there are a very large number of active 
loci scattered at random over the chromosome set, (ii) the chromosomes are not 
drastically different in size (as, for example, with the two major and the fourth 
autosomes in Drosophila), and (iii) a chiasma is invariably associated with a genetic 
crossing over. 

(d) A Drosophila Example 

Clayton, Morris, and Robertson (1957) and Clayton and Robertson (1957) 
demonstrated that with the population of Drosophila which they were using, almost 
all of the genetic variability for abdominal bristle number was generated by genes 
located in the two major autosomes. The question may now be asked as to what is 
the average recombination value for each of the two sexes for all possible pairs of 
genes causing variability in bristle number. 

Since crossing over does not occur in the male, the recombination index for 
these autosomes is merely 2, and hence the average recombination value for males 
is equal to t. 

Crossing over occurs in the female, enabling linkage maps to be synthesized. 
Since the map for each of the two major autosomes is slightly greater than 100 cross­
over units, the recombination index for the two major autosomes is appro;x:imately 6. 
Therefore, the average recombination value for females is appro;x:imately 5/12. 

IV. ESTIMATES OF VARIANCE COMPONENTS FROM COVARIANCES WHEN THE 

RECOMBINATION VALUES ARE DIFFERENT IN THE Two SEXES 

In a previous section formulae were given for the responses to selection and 
relaxation from selection in terms of genotypic variance components. In comparing 
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the theoretical consequences of selection with the experimental results, it is necessary 
to estimate these variance components from the original random-mating population. 
This is done with covariances. 

The expectations of some of these covariances are affected by linkage, and 
Cockerham (1956) has given the expectations of the necessary covariances for the 
situation in which the recombination value is the same for both sexes. These 
expressions must now be generalized to accommodate different recombination values 
for the two sexes. 

There are three covariances which are of interest. These are: parent-offspring 
covariance, designated as Cov(PO); half-sib covariance, designated as Cov(HS); 
and full-sib covariance, designated as Cov(FS). Of these, the Cov(PO) is not affected 
by linkage, but linkage parameters do enter into the expectations for the other 
two covariances. 

The definition of the half-sib covariance may be reduced to the expectation 
of the squares of the half-sib family means. A "sire" half-sib family is generated 
by the union of the gametic array of an arbitrary sire with the total gametic array 
from the dams, and, similarly, a "dam" half-sib family results from the union of the 
gametic array of an arbitrary dam with the total gametic array from the sires. If 
the recombination value is different for the two sexes, it is obvious that the sire 
and dam half-sib families differ, even if the sire and dam are of the same genotype. 
Thus, two different covariances are possible: 

COV(m) (HS) = covariance generated by sire half-sib families, and 

Cov(f) (HS) = covariance generated by dam half-sib families. 

Consider first, the derivation of Cov(m) (HS). An arbitrary sire (A}A%)(AjA~), 
produces the following gametic array 

j I 2 AIA2 j Al 2 I 2 ([{1-Ym) 2](AtA k+ j d+(Ym 2)( tAz+AjAk)}' 

The total female gametic array in the random-mating population is 

~ I 2 AIA2 ~PrPt( r d· 
rt 

Hence, the sire half-sib family mean is 

~ 1 2d ~ I 2 h(tk.jZ)( .... ) = [(1-Ym)/2][~PrPt tk.rt+~PrPtdjl.rt] 
rt rt 

~ 1 2d ~ 1 2 +(YmI2)[~PrPt il.rt+~PrPt djk.rtl. 
rt rt 

The sire half-sib covariance may then be evaluated as 

where 

C HS ~I122 2 
OV(m) ( ) = ~PtpjPkPz[h(ik.jl)( .... )] 

ijkl 

2 2 
= !aA+[(lj16)+(8mj16)]aAA, 

8m = (1-2Ym)2. 
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Likewise, the dam half-sib covariance is 

where 
COV(f) (HS) = ta~+[(1/16)+Ulf/16)]a~A' 

2 Of = (1-2Yf) . 

The defintion of the full-sib covariance may be reduced to the expected value 
of the squares of the full-sib means. Consider, now, the evaluation of this definition 
for the case of different recombination values for the two sexes. 

The mean of the full-sib array which results from the cross between an 
arbitrary sire, (A}A~)(A}A~), and an arbitrary dam, (A~A~)(AiA~), is 

h(ilc.jl) (rt.su) = {[(1-Ym)/2][(I-Yf )/2](dik.rt+dik.su +djl.rt+djl.su) 

+ [(I-Ym)/2](Yf/2)(dik.ru +dik.st+djl.ru +dj1.st ) 

+ (Ym/2)[(I-Yf )/2](dil.rt+dil.su +djk.rt+djk.su) 

+ (Ym/2)(Yf/2) (di1 . ru +dil .st+ djk.ru +djk.st )}. 

By definition, the full-sib covariance may be obtained as follows: 

'" 11112222h 2 Cov(FS) = ~ PiPjPrPsPkP1PtPu[ (ik.jl)(rt.su)] 
ijklrstu 

= !a~+ta1+a+[(Of+Om)/16]}a~A 

Hl+ [( 0f+ om)/16]}a~n+ (1/16)(1 + of)(l + om)aEn. 

Assuming that the epistatic interactions involving three or more loci are 
negligible, the simplest method of estimating a~ and a~A is to use the parent­
offspring and half-sib covariances. Thus, starting with the expectations 

2 2 
Cov (PO) = !aA+taAA, 

and 

Cov(m) (HS) = ta~+1/16(I+om)a~A' 

estimates of a~ and a~A may be obtained as follows: 

a~ = {Cov(PO)[2Ym(l-Ym)-I]+2[Cov(m)(HS)]}/Ym(I-Ym), 

and 

a~A = 2{Cov(PO)-2[Cov(m) (HS)]}/Ym(I-Ym). 

Normally, then, the experimental procedure would be to obtain accurate 
estimates of the parent-offspring and half-sib covariances from the original random­
mating population, and compute a~ and a~A using the above expressions in which 
the specific recombination values are replaced by the recombination value averaged 
over all possible pairs of active loci. The variance estimates may then be substituted 
into the theoretical selection formulae for comparison with the observed responses. 
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V. A THEORETICAL METHOD FOR THE DETECTION OF DISTURBANCES DUE TO 

NATURAL SELECTION 

The selection theory has been developed on the basis that natural selection 
is not operating differentially on the various genotypes. Clearly, however, this need 
not be the case. It appears that in experiments where artificial selection has been 
applied unidirectionally, it has often been found that when the population is relaxed 
from selection, the mean regresses toward its original value. This phenomenon 
has been termed "genetic homeostasis" by Lerner (1954), and it is generally assumed 
that this regression is due to the effects of natural selection which oppose the effects 
of artificial selection. 

However, in this study, and in a previous paper (Griffing 1960), it is shown 
that the contributions of certain epistatic effects mimic the antogonistic effects of 
natural selection. This mimicry occurs in both the response to selection and 
relaxation from selection. Thus, even when natural selection is ineffective, the 
increment changes due to artificial selection in successive generations become 
increasingly smaller: i.e. in the formula 

~JLn,(n-l) = (ila2)[a~+(bn-llta~A]' 

the contribution of a~A decreases as n increases. This diminishing of increments 
is similar to the effect that one would expect on the assumption that the intensity 
of natural selection increases as artificial selection causes the cumulative change 
in the population mean to increase. 

Likewise, the decay of the mean on relaxation from the value 

n 

fl-n,O = (ila2)[na~+ ~ W-l)!a~A] 
r=l 

to 

lim(fl-n,t) --+( ila2)na~, 
t->oo 

simulates the response which would occur if natural selection were operating in 
the absence of artificial selection to regress the mean toward its original unselected 
value. 

Thus, if epistatic contributions are not taken into consideration, the disturbance 
they cause may be confounded with, or wrongly judged due to, the antagonistic 
effects of natural selection. Therefore, it is necessary to outline a possible method of 
detecting the influence of natural selection in the presence of disturbances caused 
by epistatic effects. Such a method will be given after the basic requirements for 
a selection programme aimed at detecting natural selection are given. 

(a) Requirements of a Selection Programme 

The following lists the basic requirement in a selection programme designed 
to detect the effects of natural selection in opposing artificial selection: 

(i) Use of a truly random-mating population in equilibrium as the original 
population with which the selection programme starts; 



524 B. GRIFFING 

(ii) Collection of sufficient data to allow for the accurate estimation of parent­
offspring and half-sib covariances in the original population (this requires 
a very large sample of observations); 

(iii) Collection of data from several cycles of truncation selection based on 
the individual phenotype (the selection must be conducted with known 
intensity and with large numbers of individuals); and 

(iv) Collection of data from selected lines which have been allowed to mate 
at random for several generations, i.e. from rela;xed lines. 

There are other experimental ramifications which are useful. These include 
the following: 

(v) Simultaneous selection experiments conducted with the same intensity 
in opposite directions; 

(vi) Simultaneous selection e;xperiments conducted with different intensities 
of selection; 

(vii) Rela;xation of selection at various stages in a continuous selection 
programme; 

(viii) Back-selection of relaxed lines after they have become stabilized; 

(i;x) Mass reciprocal crossing of highly selected relaxed lines; and 

(x) Sufficient fitness measurements to give a developmental picture of the 
change in fitness throughout the selection programme. 

These subsidiary experimental procedures give additional information, allow 
a broader basis for the comparison of e;xperimental results with selection theory, 
and provide some measure for the verification of the validity of the assumptions 
on which the theory is based. For e;xample, simultaneous selection in opposite 
directions provides a useful check on the fulfilment of the assumptions, since if the 
assumptions hold, a symmetrical response should be obtained by the application 
of identical "up" and "down" selection pressures. If an asymmetrical pattern 
develops, at least one of the assumptions has been violated. 

(b) A Method for Detecting the Effects of Natural Selection 

When data from a selection programme, as outlined above, are available, the 
influence of natural selection may be detected, in the presence of epistatic disturbances, 
by comparing the observed responses due to artificial selection with those expected 
from the theory presented earlier which assumes no disturbance from natural 
selection. This requires the computation of accurate, unbiased estimates of 
a~ and a~A from the original unselected population and replacing the variances in 

the selection formulae with these estimates. If the observed means do not differ 
significantly from the e;xpected values, it may be inferred, generally, that natural 
selection does not have an appreciable effect. If, however, the observed means 
are significantly less than the expected values, it may generally be assumed that 
natural selection is opposing the effects of artificial selection. This argument holds 
only if the assumptions inherent in the theory have not been violated. 
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VI. DISCUSSION 

This paper deals primarily with the extension of mass selection theory to 
accommodate linkage. The various aspects of this problem are developed in three 
stages. 

(i) Mass selection theory for two loci is extended to accommodate different 
recombination values for the two sexes. This theory is now completely general in 
that it permits: (1) any number of alleles at each locus; (2) arbitrary linkage, 
including the condition that the recombination value may be different for the two 
sexes; and (3) arbitrary dominance and epistatic effects. 

This extension of the two-locus theory is necessary if one is to take into con­
sideration the general phenomenon of linkage in organisms such as Dro8ophila 
which have different recombination values in the two sexes. 

(ii) A method is developed for estimating the recombination value averaged 
over all possible pairs of loci scattered at random over all chromosome sets. 

The solution to this problem is necessary in order to adapt the generalized 
two-locus theory, developed in the first stage, to cope with genetic situations which 
are considerably more complex. That is to say, the solution to stage (ii) allows the 
variability generated by a genetically complex system involving many loci to be 
approximately described by the relatively simple two-locus theory. 

(iii) The expectations of the half-sib and full-sib covariances for a random­
mating population are generalized to permit different recombination values for the 
two sexes. 

Solution to stage (iii) is necessary for the estimation of genotypic variance 
components from covariances between relatives which are, themselves, subject to 
linkage disturbances. These variance components can then be used for the purpose of 
comparing observed with theoretical selection responses. 

Finally, the above theory is used to outline a method which permits the 
detection of the influence of natural selection in modifying the effectiveness of 
artificial selection even when the mimicking effects of epistasis are present. 

Clearly, the approach to the linkage problem adopted in this study results 
in only an approximate solution, since various simplifying assumptions are required. 
These include: (1) epistatic interactions involving three or more loci are negligible, 
and (2) the true value of Cov(m)(HS) can be approximated by the Cov(m)(HS) 
derived from the two-locus model in which the average recombination value is 
substituted for the specific value for the two loci. 

The usefulness of the theory rests on its ability to describe observed selection 
results. At the present time, the only data available which are sufficiently com­
prehensive to make this comparison are those reported by Clayton, Morris, and 
Robertson (1957) and Clayton and Robertson (1957). Unfortunately, however, the 
basic covariances from the original population were not estimated with sufficient 
accuracy to provide meaningful estimates of the variance components. Therefore, 
comparison of observed responses with the theoretical results of the present study 
will have to be made in the future when sufficiently accurate data are available. 
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