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Summary 

It is shown that natural selection for intermediates affects correlations 
between relatives, the effects being different for different sets of relatives. For 
additive genes, when heterozygote has superior fitness, half-sib correlations are 
slightly lower than the parent-offspring correlations. A simple approximate relation 
between the two is derived, and a similarity to effects of epistasis on selection 
response is discussed. 

1. INTRODUCTION 

Biometrical genetic theory is now well developed in many respects. In 
particular, for a population in genetic equilibrium the correlations between 
relatives can be expressed in terms of additive, dominance, and epistatic components 
of genetic variance for arbitrary forms of genetic determination of the character 
concerned (Fisher 1918; Kempthorne 1957). In addition, short-term responses to 
selection in such populations can be predicted (Griffing 1960; and later). However, 
although these results are valid for arbitrary gene action on the character analysed, 
they are subject to the very important qualification that natural selection must be 
assumed not to effect the genes concerned. This assumption is known to be often 
false. 

Although some effects of natural selection on response to artificial selection 
have been discussed by Robertson (1956) and others, the influence of natural 
selection on correlations between relatives appears restricted to work by Penrose 
(1964) in a context unrelated to artificial selection. In view of the close relationship 
between selection response and correlations between relatives (Griffing 1960) it seems 
important that some attention should be given to this point. An attack on the problem 
with any degree of generality appears very difficult, so a simple situation has been 
analysed. 

II. THE MODEL 

The case to be considered is that of a single locus with two alleles, Al and A2, 
which affect a quantitative character in a population in equilibrium under random 
mating. The scale of measurement is chosen so that the unit is the phenotypic 
standard deviation and the homozygotes Al Al and A2 A2 have mean phenotypes 
u and -u respectively. The mean phenotype of heterozygotes A1A2 is au, where a 
is a dominance parameter, being zero for additive gene action, ±1 for complete 
dominance of either allele, and so on. 
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The frequencies of the alleles Al and A2 are p and q (= I-p) respectively, 
so that at fertilization the genotypic frequencies are 

p2AIAI +2pqAIA 2+q2A2A 2. 

If no natural selection operated, the additive and dominance components of genetic 
variance would be 

a~ = 2pqu2[l+a(q-p)]2, 

a1 = 4p2q2a2u2. 

For additive genes (a = 0), a1 = 0 and a~ = 2pqu2. 

It is, however, assumed that the heterozygote is superior in fitness to both 
homozygotes, and that the fitnesses of AlAI and A2A2 relative to that of AIA2 
are l-K and l-L respectively. Since the population is in equilibrium, 

p = Lj(K+L), 

and 

q = Kj(K+L), 

while the mean fitnesp of the population is 1-8, where 

S = KLj(K+L). 

8 is the "segregational genetic load" at this locus. 

If natural selection acts through juvenile "mortality, and measurements of 
the character are made on surviving adults, the genotypic proportions among 
measured individuals are 

p2[(1-K)j(1-8)]AIAI +2pqj(I-8)AIA 2+q2[(I-L)j(1-8)]A2A2. 

For additive gene action the genetic variance is 

2pqu2[(1-28)j(1-8)], 

so that by lowering the frequencies of extreme genotypes, natural selection reduces 
the observed genetic variation. 

It should be noted that there is a difference in principle as well as notation 
between this model and that of Penrose (1964). Penrose assumed that frequencies 
of measured genotypes among progeny were 

p2AIAI +2pqA IA2+q2A2A2' 

taking differential fertility rather than differential survival as the mode of action 
of natural selection. 

III. Cov ARIANCES BETWEEN RELATIVES 

The most widely used methods of estimating genetic variance, at least in animals, 
are based on half-sib correlations and the regression of offspring on parent. Attention 
is here confined to the effects of natural selection on estimates derived from these 
two sources. 
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It may readily be verified that under the above assumptions the frequencies 
of observed parent--offspring genotypic combinations are as given in Table l. 
This differs from Table 3 of Penrose (1964) for the reason mentioned above. For 
this model the genotypic distribution is the same for both generations, whereas 
Penrose's model leads to a lower variance among parents than among progeny. 

TABLE 1 

FREQUENCIES OF OBSERVED PARENT-OFFSPRING GENOTYPIC COMBINATIONS 

Progeny 
Parent 

AlAI AIA2 A2A2 

AlAI p3(1-K)2/(1-S)2 p2q(1-K)/(1-S)2 

AIA2 p2q(1-K)/(1-S)2 pq/(1-S)2 pq2(1-L)/(1-S)2 

A2A2 pq2(1-L)/(1-S)2 q3(1-L)2/(1-S)2 

It may be confirmed from Table 1 that the mean number of progeny per parent 
is the same for each genotype and that the mean phenotype for both generations is 

m = u[(p-q)+2pqj(1-S)a]. 

If we now define the two quantities or. and f3 as 

or. = [uj(1-S)][1-2S+(q-p)a], 

and 

{3 = [uj(I-S)]{1-2S+[(q-p)aj(1-S)]}, 

it is only a matter of working through the algebra to show that the covariance of 
half-sibs is given by 

cov(HS) = tpqor.2[(1-2S)j(1-S)], 

while the covariance of parent and offspring is given by 

cov(PO) = pqor.{3. 

In particular for additive gene action it is readily seen that 

cov(HS) = tpqu2[(1-2S)j(1-S)]3, 

cov(PO) = pqu2[(1-2S)j(1-S)]2. 

Natural selection reduces both covariances below the values they would have in 
its absence, the effect being greater on cov(HS) than on cov(PO). In the absence of 
dominance the ratio of covariance is 

cov(HS)jcov(PO) = (1-2S)j2(1-S), 

instead of the value t in the absence of natural selection. If S is small this ratio 
is very nearly t(l-S). It may he verified from Table 3 of Penrose (1964) that for 
his model this ratio is t, being unaffected by natural selection. 
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The situation is not quite so simple when there is dominance on the metric 
trait. For example both cov(HS) and cov(PO) may be zero when 0( = O. This 
occurs when 

a = (1-2S)/(p-q), 

and since S ~p ~ I-S, this requires I a I > 1, or that there must be overdominance 
on the metric trait. If attention is confined to cases where I a I ~ 1 so that hetero
zygotes are phenotypically intermediate, O(:;fO. It is then still possible that cov(PO) 
may be negative while cov(HS) is positive, since f3 may be negative. For this to occur, 
assuming a is positive, it is necessary that a> I-S and that p lie in the range 
(I-S) (l-tS) <p < I-S. Thus cov(PO) may be negative if the allele Al is nearly 
dominant on the metric scale, while the genotype A2A2 is very nearly lethal. 

For an arbitrary degree of dominance the ratio of the covariances is 

cov(HS)/cov(PO) = t ([1-2S+(q-p)a]/[I-S+(q-p)a/(1-2Sn), 

so that if a or (q-p) or both factors are small, the ratio will be very nearly t(I-S), as 
for strictly additive gene action. 

If there is no epistasis a similar result may be obtained by summing 
covariances over loci to get 

cov(HS) ~ t(l- S)cov(PO) 

where S is Robertson's (1956) "coefficient of homeostatic strength", defined as the 
weighted average of S values at the several loci, the weights being the additive 
genetic variance components at the loci. 

For the approximation to be poor at any locus we need both a and (q - p) to 
be large. But when (q-p) is large either p or q is small, and the locus contributes 
little to the total variation unless the effect of the locus is disproportionately large. 
Hence the average result may not be unreasonable. 

IV. RESPONSE TO SELECTION 

The most important practical application of estimates of covariances between 
relatives is the prediction of response to artificial selection. The question therefore 
arises as to which covariance gives the more accurate prediction. 

For truncation selection with selection differential i it can be shown that the 
change in frequency of the allele A, among selected parents, is 

8 = ipq {f3+[2Spau/(I-S)2]}, 

and that the genetic gain in the mean of the measured progeny, G, is given by 

G = 20(8, 

neglecting terms in 82, and hence 

G = 2 i cov(PO)+4 ip 2qau/(I-S)2. 

In particular for additive gene action we have 

G = 2 i cov(PO). 
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The error in using G = 2 i cov(PO) will only be appreciable if there are marked 
deviations from additivity. This result may also be extended to several loci if there 
is no epistasis. 

In short, then, for additive or nearly additive genes, 

cov(HS) ~ 1(1- S)cov(PO), 

and 

G ~ 2 i cov(PO). 

V. DISCUSSION 

One striking point about these results is the way in which natural selection 
for intermediates resembles an important additive X additive component of genetic 
variance in its effects on these correlations between relatives. Considering only 
two-locus epistasis in the absence of natural selection, 

cov(PO) = 1a~+ialA' 

cov(HS) = ial+ l~a!A. 

Thus the effects of a component a~A of about one-fifth of the genetic variance 
and a value of S of a bout 0·05 would be very similar with respect to these covariances. 
It had already been pointed out by Griffing (1960) that the presence of an additive X 

additive component would give similar results to opposing natural selection following 
relaxation of artificial selection. The similarity may be extended a little in the light 
of the present results. 

For the additive model with natural selection the result of relaxation of selection 
is a loss of a fraction S of the response obtained. This was shown by Robertson (1956) 
for the case where measurements are taken before selection acts, and may be obtained 
for the present model in a similar manner. Thus Gf the response after one generation 
of selection and one of relaxation is 

Gf ~ 2icov(PO)(1- S) 

~ 4icov(HS). 

It was shown by Griffing (1960) that for two-locus epistasis without natural selection 
the loss from relaxation was 1iya~A' where y is the recombination fraction. For 
unlinked loci, y = 1 and for this model also 

Gf = 4icov(HS). 

This emphasizes further the difficulty of distinguishing between the two models 
without fitness data. 

In a recent study Bradford and Van Vleck (1964) estimated heritability of milk 
yield in cattle as 0·43 ±O· 03 by daughter-dam regression and 0·25 ±O· 05 by paternal 
half-sib correlations. They considered a number of factors which could have contri
buted to this difference, including an important additive X additive component of 
genetic variance, but not the possibility of greater fitness of intermediates. There 
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is no evidence suggesting the plausibility of this hypothesis, but it may bear 
consideration. 

Again, Clayton, Morris, and Robertson (1957) estimated heritability of 
abdominal bristle number in Drosophila melanogaster by the two methods as: 
half-sib correlation, 0·48 ±O ·11; parent-offspring regression, 0·51 ±O· 07. These 
estimates do not differ significantly, but if the difference were genuine it would 
correspond in our model to a value of S of O' 06. For this population Latter and 
Robertson (1962) estimated S as 0·04. 

It has already been seen that the present model gives different results from 
that of Penrose (1964) for an additive character. If the character considered is 
fitness itself, it follows from Penrose's model that cov(HS) = cov(PO) = O. 
On the other hand, for the model presented here 

and 

cov(HS) = [(p - q)2S4(1-2S)]/2pq(I-S)3, 

cov(PO) = [(p-q)2S4(3-2S)]/2pq(I-S)3, 

cov(HS)/cov(PO) = [(1- 2S)/(3 - 2S), 

or roughly t(I-S). This further emphasizes the importance of the difference 
between the two models. 

In general any relationships between fitness and phenotype may be expected 
to affect correlations between relatives, the nature of the effect being dependent 
on the connection between phenotype and fitness and also on which relatives are 
concerned. It will also depend on the stages of the life cycle at which differential 
fitness occurs and at which measurement is made. These complications appear 
to make any general treatment of the problem extremely difficult. 
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