THE UPTAKE AND EFFECTS OF CALCIUM AND PHOSPHATE ON MATURITY, LIGNIFICATION, AND PEROXIDASE ACTIVITY OF WHEAT INTERNODES

By R. W. PARISH* and F. L. MILLER[†]

[Manuscript received April 16, 1968]

Summary

Wheat (cv. Gabo) was grown in a controlled environment and supplied with various levels of calcium and phosphate. Low levels of phosphate accelerated maturity irrespective of calcium concentrations, while high phosphate levels delayed maturity. The converse applied to calcium concentrations, and phosphate effects tended to dominate those of calcium. The maturity effects partly explain the lower lignin content of plants grown with high levels of phosphate observed by other workers.

Plants were harvested at the same level of maturity, viz. when the top internode had completed elongating. The top three internodes were analysed for calcium, phosphorus, lignin, and peroxidase.

The internodes of plants grown with higher levels of phosphate contained greater amounts of phosphorus. Internode calcium, however, did not increase above a certain value irrespective of nutrient concentration. Unlike phosphorus, internode calcium was relatively immobile.

Low-calcium plants contained the most lignin, but only with low phosphate treatments. The lignin content of medium and high calcium treatments was not significantly different. Increasing the phosphate level with medium and high calcium levels reduced lignification. Peroxidase specific activity was lower in low and high calcium and phosphate treatments than in controls, but there was no correlation between this activity and lignin content.

Plants grown with low calcium levels had a significantly higher percentage of total peroxidase attached to the internode cell walls than other treatments. Phosphate levels did not affect the amount of wall-bound peroxidase. The percentage of soluble protein loosely bound to cell walls did not differ significantly between treatments.

Phosphate apparently modifies lignification by affecting maturity, but also by some other means. Increasing the levels of calcium probably reduces lignification by releasing peroxidase from the cell wall. Phosphate effects again dominated those of calcium.

I. INTRODUCTION

Miller and Anderson (1963, 1965) have shown that high levels of superphosphate decrease lignification in wheat culms, thus making the straw more susceptible to lodging. In the present work wheat was grown under various levels of calcium and phosphorus and the lignin content of internodes determined.

* Botany Department, University of Melbourne; present address: Eidg. Technische Hochschule, Institut für allgemeine Botanik, Zurich. 8006. Switzerland.

[†] Botany Department, University of Melbourne; present address: Gordon Institute of Technology, Geelong, Vic. 3220.

It has been found that indoleacetic acid inhibits lignification (Petinov and Urmantsev 1964; Stafford 1965), and the lack of lignin in immature tissue may be due to high levels of the growth regulator. Thus, the effects of calcium and phosphate on maturation of wheat have also been studied in the present work. If maturation is delayed then lignification is inhibited and the plant exposed to the danger of lodging for a longer period.

Peroxidase is involved in the formation of lignin (Freudenberg 1959; Brown 1961). Lipetz (1962) found that high levels of calcium reduced lignification in tissue cultures. Lipetz and Garro (1965) showed that high concentrations of calcium release peroxidase from cell walls, and they reconciled this with the effects of calcium on lignification. In the present work the effects of calcium and phosphate levels on peroxidase activity were measured. High concentrations of calcium were added to cell walls and the amount of peroxidase thus released was determined. The effect of calcium nutrition on the binding of peroxidase to the cell wall could then be estimated.

The uptake of calcium and phosphorus into wheat internodes was also measured.

II. MATERIALS AND METHODS

Wheat (cv. Gabo) was germinated on damp filter paper in Petri dishes stored at 4° C. Nylex pots (5-in. diam.) were filled with CSIRO-grade perlite, and plastic gauze was placed in the bottom of the pots. The perlite of each pot was soaked with the relevant nutrient solution. Germinating seeds, the radicle having just appeared, were then placed three to a pot and sown 1 in. below the surface. The pots were placed in a growth room, the temperature being kept constant at 70°F, and the plants grown under long-day conditions (16 hr of light). Four pots were used for each of the nine treatments, and pots were randomly scattered in the growth room.

The full nutrient solution used was Hoagland's No. 2. The so-called low concentrations of calcium and phosphate were one third and the so-called high concentrations twice the levels specified by Arnon and Hoagland (1940). Plants grown with normal Hoagland's No. 2 were designated medium-calcium and medium-phosphate plants.

Nutrient solutions (100 ml per pot) were added every second day, while double-distilled water was added on alternate days.

When plants of a particular treatment had completed "heading out", i.e. the top internode had finished elongating, the plants were removed and stored in a deep freeze at -5° C. Five plants per treatment were randomly selected and sampled.

(i) Peroxidase Extraction and Assay

The top three internodes from plants were separated from leaf sheaths and each internode cut up with a razor-blade. The internode segments were then homogenized in a Servall Omnimixer with 6.7 mm phosphate buffer (pH 7.0) for 6 min at 220 V. The homogenate was centrifuged at 1500 g for 10 min. The supernatant was removed and the precipitate washed twice with buffer. The final volume of supernatant was 8.0 ml and this solution was used for peroxidase and protein determination. Extractions were carried out at 0° C.

Two ml of 0.05M Tris-maleate buffer (pH 7.0) containing 10^{-2} M Ca(NO₃)₂, was then added to the precipitate. The precipitate was resuspended and stored overnight at 0°C. The supernatant was removed after centrifugation and assayed for protein and peroxidase. Peroxidase activity was determined by the method of Lück (1963) using *p*-phenylenediamine as substrate. Protein was estimated according to Lowry *et al.* (1951).

(ii) Lignin Extraction

After peroxidase extraction the internode debris was dried and the dry weight determined. Lignin soluble in cold alcoholic alkali (designated CAA-lignin) was then extracted and estimated by the method of Phillips (1927) as modified by Miller and Anderson (1965).

(iii) Determination of Calcium and Phosphorus Uptake

Phosphorus levels of internodes were measured by the method of Strickland, Thompson, and Webster (1956). Calcium was determined by atomic absorption spectroscopy (David 1959).

III. RESULTS

(a) Effects of Calcium and Phosphate Levels on Maturity

The results show that phosphate effects dominated those of calcium (Table 1). All plants grown with low phosphate were first to complete heading out irrespective of calcium concentration. Plants grown with medium phosphate matured next, except where there was low calcium, in which case maturity was delayed. High phosphate plants were slowest to mature, except where high calcium levels were present. In general, as phosphate levels increased or calcium levels decreased maturity was delayed. The calcium effect was not apparent in plants grown with low phosphate. High levels of calcium considerably reduced the maturity-delaying effect of high phosphate. Low calcium levels considerably delayed maturation when normal phosphate concentrations were present.

TABLE 1

EFFECTS OF CALCIUM AND PHOSPHATE ON MATURITY OF WHEAT Number of days between germination and heading out under conditions of low, medium, and high phosphate and calcium levels are recorded

Treatmen	t Level	Days until	Treatmen	Days until	
Phosphate	Calcium	Heading Out Completed	Phosphate	Calcium	Heading Out Completed
Low	Low	53	High	High	
Low	Medium	53	High	Low	93
Low	\mathbf{High}	53	High	Medium	93
Medium	Medium	65	Medium	Low	95
Medium	\mathbf{High}	65			

(b) Calcium and Phosphorus Uptake by Internodes

Plants grown under low calcium levels had a lower calcium content than other plants (Table 2). However, no significant differences in calcium content occurred between plants grown with medium and high calcium concentrations. Under conditions of low calcium, increasing phosphate concentrations slightly increased calcium uptake. At medium calcium concentrations phosphate had little effect, while at high calcium concentrations uptake was slightly reduced by increasing phosphate concentrations.

The higher level of phosphate with which the plants were grown, the greater the amount of phosphorus taken up (Table 3). Low calcium levels decreased the phosphorus taken up when phosphate was not limited. High calcium levels tended to decrease phosphorus uptake in plants grown on medium phosphate, but high levels of phosphate overcame this reduction.

The phosphate levels, expressed as a percentage of oven dry weight (Table 4) and total phosphorus (Table 3), were highest in the top internodes, successively decreasing in the second and third internodes. Calcium showed a similar distribution

pattern when expressed as total calcium (Table 2). However, when expressed as a percentage of oven dry weight (Table 4), this pattern was inverted in plants grown with low calcium. At other concentrations no clear pattern emerged. The differences between internodes were much greater in the case of phosphorus than of calcium, suggesting phosphorus may be more readily transferred from maturing to growing tissue.

Treatm	ent Level	Calcium Content (mg) of Internodes:						
Calcium	Phosphate	Тор	Second	Third	Total			
Low	Low	0.191	0.121	0.139	0.451			
Low	Medium	0.257	0.156	$0 \cdot 130$	0.543			
\mathbf{Low}	\mathbf{High}	$0 \cdot 173$	$0 \cdot 165$	$0 \cdot 130$	0.468			
Medium	Low	0.478	$0 \cdot 229$	0.195	0.902			
Medium	Medium	0.285	0.200	$0 \cdot 173$	0.658			
Medium	\mathbf{High}	$0 \cdot 457$	$0 \cdot 219$	0.087	0.763			
High	Low	0.266	0.135	$0 \cdot 121$	0.522			
High	Medium	0.321	$0 \cdot 165$	$0 \cdot 303$	0.789			
High	\mathbf{High}	0.468	0.169	$0 \cdot 117$	0.754			

TABLE 2

CALCIUM CONTENT OF INTERNODES OF PLANTS UNDER VARIOUS LEVELS OF PHOSPHATE AND CALCIUM NUTRITION

LABLE	3
--------------	---

PHOSPHORUS CONTENT OF INTERNODES OF PLANTS UNDER VARIOUS LEVELS OF CALCIUM AND PHOSPHATE NUTRITION

Treatm	nent Level	Phosphorus Content (mg) of Internodes:						
Calcium	Phosphate	Тор	Second	Third	Total			
Low	Low	0.225	0.043	0.010	0.278			
Medium	Low	$0 \cdot 160$	0.032	0.005	0.197			
High	Low	$0 \cdot 100$	0.037	$0 \cdot 010$	0.147			
Low	Medium	0.389	0.083	0.024	0.496			
Medium	Medium	$0 \cdot 424$	0.269	0.094	0.786			
\mathbf{High}	Medium	0.340	$0 \cdot 100$	0.046	$0 \cdot 486$			
Low	\mathbf{High}	$0 \cdot 438$	$0 \cdot 295$	0.204	0.937			
Medium	High	0.707	0.269	$0 \cdot 233$	$1 \cdot 209$			
High	High	$0\cdot 578$	0.373	$0 \cdot 205$	$1 \cdot 156$			

(c) Effects of Calcium and Phosphate Levels on CAA-lignin Content of Internodes

Plants grown with low calcium and low phosphate concentrations contained a higher percentage of lignin than other plants (Table 5). However, increasing the level of phosphate resulted in less lignin under low calcium levels. No significant differences in lignin content existed between high and medium calcium treatments. Medium phosphate-treated plants grown with medium and high calcium concentrations contained higher lignin levels than low phosphate plants; increasing the phosphate concentration further resulted in a decreased lignin content. The effects of treatments on lignin content of top internodes were less marked or even contradictory to the effects observed in second and third internodes. No consistent pattern in the lignin percentage of internodes of each plant became apparent. When expressed as milligram of lignin per centimetre, however, the figures generally increased from top to third internodes, presumably because the latter had completed maturing (Table 5). This suggests that the rate of lignin deposition may differ before and after heading out in different treatments.

 TABLE 4

 CALCIUM AND PHOSPHORUS CONTENT (AS PERCENTAGE OF OVEN DRY WEIGHT) OF

INTERN	ODES OF PLAN	TS UNDER	VARIOUS L NUTRITIO	EVELS OF N	CALCIUM	AND PHOSI	PHATE
Treatment Level		Calciu	Calcium Content (%) of Internodes: Internodes:				
Calcium	Phosphate	Тор	Second	Third	Тор	Second	Third
Low	Low	0.173	0.187	0.250	0.204	0.066	0.018
Low	Medium	$0 \cdot 173$	0.195	0.219	$0 \cdot 263$	0.105	0.041
Low	\mathbf{High}	$0 \cdot 250$	0.307	$0 \cdot 344$	0.633	0.550	0.540
Medium	Low	0.388	$0 \cdot 272$	0.304	$0 \cdot 130$	0.038	0.008
Medium	Medium	0.368	0.304	0.302	0.547	$0 \cdot 409$	0.164
Medium	\mathbf{High}	$0 \cdot 275$	$0 \cdot 244$	$0 \cdot 118$	$0 \cdot 426$	0.300	0.316
High	Low	0.502	0.285	0.431	$0 \cdot 190$	0.079	0.036
High	Medium	$0 \cdot 237$	0.168	$0\cdot 394$	$0 \cdot 251$	$0 \cdot 102$	0.059
High	\mathbf{High}	0.331	0.212	0.178	$0 \cdot 409$	0.469	0.311

(d) Effects of Calcium and Phosphate Levels on Specific Activity of Peroxidase in Internodes

Low and high levels of calcium depressed peroxidase activity, the former considerably more than the latter (Table 6). At all levels of calcium, low and high phosphate decreased the peroxidase activity. High phosphate decreased the activity more than low phosphate under low calcium levels, but less than low phosphate at medium and high calcium levels. Comparison between internodes of various treatments showed similar trends as the combined internode activities of each plant. The top internode, except with low phosphate and low calcium, had a lower peroxidase activity than the other internodes. Internodes of plants grown with low and high levels of phosphate had lower peroxidase activity than controls. Activity was lowest under low levels of phosphate. Low and high levels of calcium decreased peroxidase activity at all levels of phosphate. Changes in the peroxidase activities of second and third internodes were similar to changes in the combined internode activities of each plant.

Treatm	ent Level	C7	AA-lignin Conte (% dry v	nt of Internod veight):	Se Se	C/	AA-lignin Conte (mg/c	nt of Internod	se
Calcium	Phosphate	Top	Second	Third	Mean	Top	Second	Third	Mean
Low	Low	11.21	7.95	19.71	12.9	2.37	3.60	6.78	3.91
Low	Medium	$2\cdot 23$	$1 \cdot 37$	$2\cdot 23$	$1 \cdot 9$	$1 \cdot 49$	0.92	2.22	1.54
Low	High	$1 \cdot 12$	$3 \cdot 72$	$6 \cdot 20$	$3 \cdot 7$	$0 \cdot 53$	$2 \cdot 73$	$4 \cdot 80$	$2 \cdot 69$
Medium	Low	$3 \cdot 34$	$2 \cdot 71$	$1 \cdot 90$	2.6	1.35	$1 \cdot 85$	$1 \cdot 54$	1.58
Medium	Medium	$3 \cdot 22$	$1 \cdot 90$	$5 \cdot 63$	$3 \cdot 6$	$1 \cdot 51$	1.57	3.86	$2 \cdot 31$
Medium	High	$2 \cdot 93$	$2 \cdot 02$	$2 \cdot 06$	$2 \cdot 6$	$1 \cdot 32$	$1 \cdot 48$	$2 \cdot 22$	$1 \cdot 67$
High	Low	$2 \cdot 01$	1.71	$2 \cdot 73$	$2 \cdot 1$	$1 \cdot 09$	$1 \cdot 29$	$2 \cdot 78$	1.72
High	Medium	$2 \cdot 42$	$5 \cdot 40$	$6 \cdot 62$	4.8	$1 \cdot 12$	$3 \cdot 90$	4.55	$3 \cdot 19$
High	High	$3 \cdot 31$	$3 \cdot 72$	$3 \cdot 91$	3.6	$1 \cdot 69$	$2 \cdot 80$	3.66	$2 \cdot 72$
Least signifi difference	cant $(P=0.05)$	1.72	$1 \cdot 63$	$1 \cdot 03$		0.83	0 - 76	0.63	

TABLE 5

82

R. W. PARISH AND F. L. MILLER

(e) Effects of Calcium and Phosphate Levels on Wall-bound Protein and Peroxidase

The percentage of the total soluble protein released from internode cell walls by calcium ions was similar in all treatments (Table 7). The percentage of total peroxidase activity released, however, differed between treatments (Table 7). A

				Та	BLE 6				
SPECIFIC	ACTIVITY	OF	PEROXIDASE	IN	INTERNODES	OF	PLANTS	UNDER	VARIOUS
LEVELS OF CALCIUM AND PHOSPHATE NUTRITION									
Activity is expressed as $10^3 imes$ units per milligram soluble protein									

Treat	ment Level	Spec Peroxi	dase in Int	y of ernode:	Total Peroxidase	Mean Peroxidase
Calcium	Phosphate	Тор	Second	Third	Activity	Activity
Low	Low	0.856	0.786	0.820	$2 \cdot 462$	0.820
Low	Medium	0.576	0.800	$1 \cdot 237$	$2 \cdot 613$	0.871
Low	\mathbf{High}	$0 \cdot 265$	0.346	$0 \cdot 340$	0.951	0.317
Medium	Low	$0 \cdot 482$	$1 \cdot 192$	$1 \cdot 440$	3 114	$1 \cdot 038$
Medium	Medium	$1 \cdot 130$	7.550	$7 \cdot 100$	$15 \cdot 780$	$5 \cdot 260$
Medium	\mathbf{High}	0.617	$2 \cdot 322$	$4 \cdot 660$	$7 \cdot 599$	$2 \cdot 533$
\mathbf{High}	Low	0.320	0.986	0.371	$1 \cdot 677$	0.559
High	Medium	0.598	$4 \cdot 350$	$2 \cdot 320$	$7 \cdot 268$	$2 \cdot 422$
High	\mathbf{High}	0.828	$1 \cdot 463$	$0 \cdot 902$	$3 \cdot 193$	$1 \cdot 064$
L.S.D. ()	P=0.05)	0.328	0.407	0.372		

TABLE 7

PERCENTAGE OF TOTAL PEROXIDASE ACTIVITY AND SOLUBLE PROTEIN (VALUES IN PARENTHESES) RELEASED FROM CELL WALLS OF INTERNODES BY CALCIUM IONS

Treatu	ment Level	Peroxidase F	Mean			
Calcium	Phosphate	Top Internode	Second Internode	Third Internode	Values	
Low	Low	$15 \cdot 3 (19 \cdot 0)$	26.8 (13.0)	$23 \cdot 1 (12 \cdot 3)$	$21 \cdot 7 (14 \cdot 8)$	
Low	Medium	$22 \cdot 5$ (19 · 1)	$34 \cdot 9 (16 \cdot 6)$	$20 \cdot 4$ (18 · 1)	$25 \cdot 9 (17 \cdot 9)$	
Low	High	$20 \cdot 9$ (16 \cdot 6)	$38 \cdot 5 (16 \cdot 3)$	$18 \cdot 4 (19 \cdot 7)$	$25 \cdot 9 (17 \cdot 5)$	
Medium	Low	$32 \cdot 3 (15 \cdot 2)$	$27 \cdot 0$ (17 $\cdot 8$)	$23 \cdot 1 (17 \cdot 4)$	27.1 (16.8)	
Medium	Medium	$15 \cdot 6 (15 \cdot 4)$	$12 \cdot 0 (16 \cdot 5)$	$10 \cdot 1 (15 \cdot 9)$	$12 \cdot 6 (15 \cdot 7)$	
Medium	\mathbf{High}	$11 \cdot 8 (14 \cdot 4)$	$12 \cdot 1 (12 \cdot 9)$	$3 \cdot 78 (13 \cdot 5)$	$9 \cdot 22 \ (13 \cdot 6)$	
High	Low	$14 \cdot 3 (15 \cdot 7)$	$15 \cdot 0 (15 \cdot 8)$	$11 \cdot 9$ (16 $\cdot 0$)	$13 \cdot 7$ (15 $\cdot 8$)	
High	Medium	$9 \cdot 70 (16 \cdot 3)$	$11 \cdot 1 (16 \cdot 4)$	$23 \cdot 8 (15 \cdot 7)$	$16 \cdot 1 (16 \cdot 1)$	
High	\mathbf{High}	$9 \cdot 50 (14 \cdot 1)$	$27 \cdot 5 (13 \cdot 4)$	$11 \cdot 4 (14 \cdot 6)$	$14 \cdot 0 (14 \cdot 0)$	
L.S.D. (I	$\mathbf{P} = 0.05$)	$4 \cdot 61 (5 \cdot 31)$	$6 \cdot 27$ (4 · 92)	$6 \cdot 12 (7 \cdot 10)$		

significantly higher percentage of peroxidase was released from the internode cell walls of plants grown with low calcium, irrespective of phosphate level, than with other treatments. Normal calcium and low phosphate was the only other treatment with significantly higher amounts of wall-bound peroxidase. Phosphate levels, except in the latter case, did not significantly affect wall-bound peroxidase levels.

IV. Discussion

Miller and Anderson (1965) suggested that the decreased lignification they observed in the presence of high superphosphate levels was a result of delayed maturation. Since in the present work plants were harvested at the same stage of maturity, viz. when heading out was complete, the extent to which calcium and phosphate affected lignification via maturity or some other means could be established. Low phosphate, irrespective of calcium level, and high calcium accelerated maturity. Wheat grown under either of these conditions would, therefore, be expected to contain more lignin early in the season than wheat grown with medium levels of phosphate or calcium. The converse would apply to plants grown with high phosphate since these conditions delayed maturity. High calcium considerably reduced the maturity-delaying effect of high phosphate. However, the observations of Miller and Anderson (1965) could be at least partially explained by the effects of phosphate on maturity. The reported advance in the date of harvest caused by high phosphate levels in field experiments (Russell 1961) conflicts with observations made during the present work.

As phosphate levels increased, increasing amounts of phosphorus were detected in the wheat internodes. The uptake was not significantly affected by changes in calcium concentration. Calcium uptake into the internode was greater in medium than in low calcium treatments, but no significant difference existed between medium and high calcium treatments. Therefore, high calcium levels must exert their effect on maturity indirectly, perhaps by modifying the uptake of other ions (Hooymans 1964; Hirata and Mitsui 1965; Van Steveninck 1965).

The level of CAA-lignin was high in plants grown with low calcium provided phosphate levels were also low. High and medium calcium treatments with low phosphate contained similar amounts of lignin, suggesting that the effect of calcium on lignification is a direct one. If phosphate levels simply modify the rate of lignification by accelerating or delaying maturity, one would expect plants of similar maturity, no matter what the phosphate level, to contain similar amounts of lignin. However, in the second and third internodes of plants grown with high levels of calcium and in the third internodes of plants grown with medium calcium, both high and low phosphate levels significantly decreased the CAA-lignin content (expressed either as percentage dry weight or as milligrams per centimetre) when compared with medium phosphate levels. This suggests that phosphate may be affecting lignification by other means in addition to controlling maturity.

Peroxidase specific activity is decreased by both low and high levels of calcium and phosphate. Since calcium uptake is limited, the effect of high levels must again be indirect. Peroxidase is required for lignification, but lignification may also be limited by the availability of lignin precursors (Brown 1961; Higuchi 1966) or the level of indoleacetic acid (Petinov and Urmantsev 1964; Stafford 1965). No consistent correlation existed between lignin content and peroxidase activity. This may be explained if the activity of peroxidase decreases after a certain degree of lignification has occurred. However, other work (Galston and Dalberg 1954; Parish 1968a, 1968b) suggests that peroxidase activity increases continually during maturation and senescence. Thus it is doubtful whether peroxidase synthesis is the determining factor in the control of lignification by calcium and phosphate levels.

It has been suggested that high calcium levels reduce lignification in tissue cultures by releasing peroxidase from the cell wall (Lipetz 1962; Lipetz and Garro 1965). In all low calcium treatments in the present work there was a significantly higher percentage of total peroxidase activity loosely bound to the internode cell wall than in other treatments. Medium and high calcium treatments did not differ significantly, which was to be expected, as the internodes contained similar levels of calcium. Medium and high levels of phosphate did not affect the amount of wall-bound peroxidase in the presence of low calcium levels, but did reduce lignification. This further supports the postulate that phosphate effects dominate those of calcium and do not act via peroxidase.

The amount of protein loosely bound to cell walls did not differ significantly between treatments. This suggests that the release of peroxidase by increasing concentrations of calcium is not a non-specific effect.

V. ACKNOWLEDGMENTS

The authors thank Professor J. S. Turner, Head of the Botany Department, University of Melbourne, for the provision of facilities. The work was supported by a Federal Wheat Research Council Grant.

VI. References

- ARNON, D. I., and HOAGLAND, D. R. (1940).-Soil Sci. 50, 463-85.
- BROWN, S. A. (1961).—Science, N.Y. 134, 305-13.
- DAVID, D. J. (1959).-Analyst, Lond. 84, 536-45.
- FREUDENBERG, K. (1959).-Nature, Lond. 183, 1152-5.
- GALSTON, A. W., and DALBERG, L. Y. (1954).-Am. J. Bot. 41, 373-80.
- HIGUCHI, T. (1966).—Agric. biol. Chem. 30, 667-73.
- HIRATA, H., and MITSUI, S. (1965).-Pl. Cell Physiol., Tokyo 6, 699-709.
- HOOYMANS, J. J. M. (1964).—Acta bot. neerl. 13, 507-40.
- LIPETZ, J. (1962).—Am. J. Bot. 49, 460-4.
- LIPETZ, J., and GARRO, A. J. (1965).-J. Cell Biol. 25, 109-16.
- LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L., and RANDALL, R. J. (1951).—J. biol. Chem. 193, 265-75.
- Lück, H. (1963).—"Methods of Enzymatic Analysis." p. 895. (Ed. H. U. Bergmeyer.) (Academic Press, Inc.: New York.)
- MILLER, F. L., and ANDERSON, K. L. (1963).-Crop Sci. 3, 468-71.
- MILLER, F. L., and ANDERSON, K. L. (1965).-Crop Sci. 5, 391-4.
- PARISH, R. W. (1968a).-Planta 82, 1-13.
- PARISH, R. W. (1968b).-Planta 82, 14-21.
- PETINOV, N. S., and URMANTSEV, YU. A. (1964) .-- Soviet Pl. Physiol. 11, 559-65.
- PHILLIPS, M. (1927).—J. Am. chem. Soc. 49, 2037.
- RUSSELL, E. J. (1961).—"Soil Conditions and Plant Growth." 9th Ed. (Longmans-Green & Co., London.)
- STAFFORD, H. A. (1965).-Pl. Physiol., Lancaster 40, 844-57.
- STRICKLAND, K. P., THOMPSON, R. H. S., and WEBSTER, G. R. (1956).—J. Neurol. Neurosurg. Psychiat. 19, 12–16.
- VAN STEVENINCK, R. F. M. (1965).-Physiologia Pl. 18, 54-68.