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Abstract

A Cellulomonas strain (CSI-I) which could readily degrade cotton wool was isolated from soil.
Production of cell-bound and extracellular carboxymethylcellulase (CMCase), P-glucosidase and
avicelase during growth on different substrates was determined. Methods for the isolation of mutants
were assessed and mutants were isolated which were altered in their ability to degrade cotton wool
when compared to CSI-L Studies on one mutant (CSl-7) which was able to degrade cotton wool
more rapidly than the parent revealed large differences in the levels of cell-bound and extracellular
CMCase when compared to CSI-L

Introduction
The best characterized cellulolytic bacteria belong to the following genera or

groups: the Pseudomonas, which include some of those strains which were previously
classified as Cel/vibrio (Yoshikawa et ale 1974; Berg 1975); the Cel/ulomonas (Han
and Srinivasan 1968; Stewart and Leatherwood 1976; Beguin and Eisen 1977);
the Sporocytophaga (Berg et ale 1972) and those broadly classified as the anaerobic
digesters (Leatherwood 1965; Lee and Blackburn 1975; Weimer and Zeikus 1977).
Considerable work has also been reported on a strain called Cellvibrio gilvus (Storvick
et ale 1963; Carpenter and Barnett 1967) but the complete Cel/vibrio genus is no
longer recognized in the eighth edition of 'Bergey's Manual of Determinative
Bacteriology'. Several specieshave been assigned to the genus Pseudomonas (Buchanan
and Gibbons 1974) but available information on Cellvibrio gilvus suggests that it
should be classified as a Cel/ulomonas species.

Most cellulolytic bacteria studied seem to cause little or no degradation of either
highly crystalline cellulose such as cotton wool or lignocellulosic material which has
not been subjected to some pretreatment (Han and Srinivasan 1968; Berg et ale
1972). An exception to this seems to be the Cel/vibrio strains isolated from polluted
water and reported by Berg et ale (1968). Some of these strains appeared fairly "active
in degrading cotton fibres but the exact method of testing was not reported and we
are not aware of any additional information published on them. Generally, however,
bacterial growth and cellulolytic properties are studied using highly processed
essentially pure cellulose or filter paper.

The potential of bacterial systems for the degradation of highly crystalline or
natural cellulosic material may not have been fully explored. This paper reports on
an extensive screening program resulting in the isolation of a Cellulomonas strain
capable of degrading commercial absorbent cotton wool and on the selection of
a range of mutants, of which one is able to degrade cotton wool more efficiently than
can the parent strain.
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Materials and Methods
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Commercial cellulose (avicel SF) was obtained from Ashai Kasai Industrial Co., Japan; sodium
carboxymethylcellulose (CMC) with 0·7-0·8 degree of substitution was from B.D.H., United
Kingdom; absorbent cotton wool was obtained from Johnson & Johnson Pty Ltd, Australia, and
toilet paper was from Gibson Chemicals Ltd, Australia.

,The basic salts medium was a Dubos salts medium which consisted of 0·05 g NaN03 , 0·1 g
K2HP04, 0·05 g MgS04.7H20, 0·05 g KCI and 0·001 g FeS04.7H20 per 100 ml solution at
pH 7 ·0-7·3 (Dubos 1928). Yeast extract was always added at a final concentration of 0·02 % (wjv)
unless otherwise stated. In liquid medium carbon sources were added at the following concentrations:
glucose, 10 mxr: cellobiose, 5 mst; CMC, 1% (wjv); avicel, 1% (wjv) and cotton wool, O·5 % (wjv).
Cotton wool was not cut up or specifically preconditioned, but medium containing cotton wool
was sterilized by autoclaving for 20 min at 138 kPa above atmospheric pressure. Soluble carbon
sources were used in solid media at the same concentrations as in liquid media whilst insoluble
cellulose was utilized by incorporation into a 4-ml overlay as follows: avicel, 1 ·25 %; cotton wool,
cut to approximately 1-mm lengths and used at 0·4%; toilet paper, macerated in distilled water
using a Kolloid-technik 'Puc- Vikosator' type JV10 mill and used at 1·6 %. The solid media were
prepared by addition of 1· 2 % agar.

Preparation of Inoculum for Use in Growth Experiments

A single colony from a Dubos-l-I % CMC+0·02% yeast extract plate was inoculated into
Dubos-l-S mMcellobiose-l-u-Oz % yeast extract and grown for 18 h at 30°C on a reciprocal shaker.
The culture was centrifuged and washed twice in 0·9 % saline and then the absorbance was adjusted
to 0·6 at 610 nm. AI· 0 % inoculum of this culture was used except in cotton wool digestion
experiments where a 0·25 % inoculum was used.

Growth of Cultures

Cotton wool digestion experiments were carried out in a I-litre conical flask containing 200 ml
of Dubos +0·02 % yeast extract liquid medium with 1·0 g of absorbent cotton wool as carbon source.
The flasks were incubated stationary at 30°C.

To study enzyme distribution in the parent strain CS1-1 (Fig. 1), growth was carried out in
a Quickfit FVIL I-litre vessel. The initial volume of culture was approximately 820 ml. The air
supply system consisted of an adjustable pressure reducing valve, a needle valve for control of air
flow, a flow meter and a Whatman Gamma 12 air filter fitted with a 03 grade filter tube. The air fed
into the hollow Vibramix shaft and discharged at the base of the stirrer plate. The air escaped from
the fermenter through a cooling condenser connected with a Mackley 10L filter to prevent back
contamination. Dissolved oxygen tension was measured using a Johnson-type electrode (Johnson
et al. 1964). In the experiments reported in this paper the air supply was set to give 100% dissolved
oxygen for each medium prior to inoculation and then the rate of air supply was not varied through­
out the growth experiment. Temperature was controlled by means of the Ether Mini model 19-90j1
using a resistance thermometer type P5 as a sensor and operating a 250-W infrared lamp. pH was
continuously monitored using a pH probe connected to a Dynaco 21A pH meter. No pH control
was employed. Culture samples were taken through a steam sterilizable connection at the base of
the fermentor.

When studying enzyme distribution in CSl-7 compared to CS1-1 (Table 3) cultures were grown
in shaker flasks with 160 ml culture in a l-Iitre conical flask and these were shaken at 30°C on a
reciprocal shaker.

Determination of Residual Cotton Wool

A gravimetric method similar to that described by Fahraeus (1947) was employed to determine
the extent of cotton wool digestion. Controls were prepared in which growth medium was inoculated
with a heat-killed culture and then incubated and tested with the sample cultures. The weight loss
in controls was subtracted from that in sample cultures to determine the amount of cotton wool
digestion by the cellulolytic bacteria.



Cellulomonas Mutants and Cotton Wool Degradation 555

Determination of Enzyme Activity

(i) Buffer used in enzyme studies
The buffer used throughout the enzymic studies was prepared by mixing 0·05 Mcitric acid and

O·1 MNa2HP04 in appropriate proportions to give buffer solutions ranging from pH 2·2 to pH 8· O.
This buffer is referred to as the citrate-phosphate buffer.

(ii) Preparation of enzyme extracts
Culture samples (20-40 ml) were taken at the appropriate time intervals and centrifuged at

10000 g for 20 min at 2°C. The supernatant was then used as the extracellular enzyme extract.
If the reducing sugar content was significant it was removed by dialysis against a citrate-phosphate
buffer at pH 7· O. The cells were then broken by sonication for a total of 4 min using a Bronwill
Biosonik IV Sonicator. The extracts were centrifuged at 15 000 g for 20 min at 2°C and the super­
natant was used as the cell-bound enzyme preparation.

(iii) Estimation of reducing sugars
The reducing sugars accumulating in the medium during cotton wool digestion experiments were

determined using a dinitrosalicylic acid reagent (Miller et ale 1960) with a glucose standard. In all
other estimations of reducing sugar equivalents the method of Somogyi (1952) and the chromogen
developed by Nelson (1944) were used, with glucose as a standard.

(iv) Assay of carboxymethylcellulase (CMCase) based on the formation of reducing sugar
The method employed was based on that developed by Reese et al. (1950) for measurement of

'Cx' activity. The enzyme preparation (1·0 ml), at an appropriate dilution, was added to 1· 5 ml of
1%CMC and incubated at 40°C for 20 min. The reaction was stopped by addition of the reagents
for estimation of the reducing sugars. If the protein content was high in the enzyme extracts,
deproteinization was achieved by adding 1·0 ml of 5%ZnS04.6H20 followed by 1·0 ml of 0 ·15 M
barium hydroxide and then removing the precipitate by centrifugation at 2500 g for 10 min.

One unit of enzyme activity is defined as the amount of enzyme that will produce reducing
equivalents equal to 1 /Lmol of glucose per minute under the assay conditions given above. Activity
is expressed as units per millilitre of culture medium for both cell-bound and extracellular CMCase.
We are specifically calling this enzyme CMCase as we do not know how many enzymes are involved
or the substrate specificity of the enzyme(s) active on CMC.

(v) Assay ofavicelase activity
Enzyme solution (1 ml) was added to 1·5 ml of a 1% suspension of avicel in citrate-phosphate

buffer, pH 7 ·0, in a 28-ml McCartney bottle and the mixture was incubated on a reciprocal shaker
at 30°C for 8 h. The reaction was stopped by addition of the reagents for estimation of reducing
sugar. Avicel remaining in suspension .was removed by filtration and if necessary protein was
removed as described for the CMCase assay. One unit of avicelase activity is defined as that amount
of enzyme required to give 1 /Lmol of reducing sugar per minute.

(vi) Assay of P-glucosidase (p-n-glucoside glucohydrolase, Ee 3.2.1.21) activity
p-Glucosidase was estimated by measuring the release of p-nitrophenol (PNP) from p-nitrophenyl­

p-n-glucoside (PNPG) (Han and Srinivasan 1969). An appropriately diluted enzyme extract (1 ml)
and 0·5 ml of 0·005 MPNPG were added to 1·5 ml of citrate-phosphate buffer at pH 7· O. After
incubation for 20 min at 37°C the reaction was stopped by adding 2·0 ml of 1 Msodium carbonate.
The absorbance of the yellow solution produced was read at 400 nm and compared with a standard
curve constructed using PNP.

One unit of enzyme activity is defined as the amount of enzyme which liberates 1 /Lmol of PNP
per minute. Specific activity is represented as units per milligram protein.

(vii) Protein determination
Protein was estimated using the method reported by Lowry et al. (1951).

Mutagenesis

For u.v. mutagenesis bacterial suspensions were grown to late log phase in Dubos-l-S mM
cellobiose +0·05 % yeast extract, centrifuged and resuspended in an equal volume of saline. The
suspension (10 ml) was placed in a sterile Petri dish and irradiated sufficiently at 254 nm to give
approximately a 3 log kill. The irradiated culture was centrifuged and resuspended in Dubos-l-S mM
cellobiose +0·05 % yeast extract and then incubated for 6 h at 30°C on a reciprocal shaker. This
population was then screened for mutants with altered ability to degrade avicel. Screening was



556 W. Y. Choi, K. D. Haggett and N. W. Dunn

achieved by plating for single colonies on a Dubos + 1·25 % avicel medium or a Dubos + 10 mM
glucose+1 ·25 % aviceI medium. Mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine (NG) at
150 fLg/ml was carried out by the method described by Fargie and Holloway (1965).

Results

Isolation and Characterization of the Cellulomonas sp. (CS1-l)

(i) Isolation, classification and growth responses of CS1-l

An extensive screening program was undertaken to obtain cellulolytic bacteria
capable of degrading cotton wool and which could be used in a mutation study; the
samples screened were taken from different soil types, composting garden refuse,
rotting logs and leaf humus.

The chosen organism was found to be rod shaped (0· 3-0·5 byO· 8-1 ·2 flm), gram
positive, oxidase negative, catalase positive, fermentative, a facultative aerobe,
non-motile and to form yellowish colonies on a variety of media. In addition the
organism had a yeast extract growth requirement. The classification tests carried out
suggest that this organism is a Cellulomonas species, and consequently the strain
was called CSI-I. Attempts were made to define the growth factor requirement of
CSl-l but no combination of vitamins and/or amino acids was found that could
substitute for yeast extract itself. In an earlier study Keddie et ale (1966) reported
that the Cellulomonas strain NCIB8077 had a growth requirement of biotin and
thiamine. Biotin and thiamine were therefore tested as growth supplements for
NCIB8077 and CSl-l but only slight growth stimulation was observed for each
organism; these specific supplements could not substitute for yeast extract. Since
growth responses of CSl-l were to be determined on a variety of different carbon
sources it was necessary to establish the yeast extract concentration which could
provide the growth requirements but which would not interfere with the determination
of growth responses. The yeast extract concentration effective for this purpose was
found to be 0·02 %. At this concentration in both solid and liquid medium growth
responses could be clearly determined without significant interference from the added
yeast extract. Yeast extract at 0·02 %was therefore added to all media unless other­
wise stated.

Growth responses of CSl-l were determined on a variety of media. After
incubation for 2 days CSl-l was found to grow well in liquid Dubos medium
supplemented with cellobiose, CMC, or in nutrient broth. Under similar conditions
slower growth was obtained in Luria broth and in Dubos medium supplemented
with glucose and sucrose. On the insoluble cellulosic materials avicel and macerated
toilet paper, discrete colonies were observed after incubation for approximately
2 days. Distinct clearing of the avicel and macerated toilet paper layers was observed
after incubation for 4 and 10 days respectively. After incubation of CSl-l on Dubos
-l-cotton wool plates for 8 days, bacteria were seen to be growing along the fibres
both on the surface of the plate and down into the medium. From microscopic
examination it was apparent that significant biodegradation of this highly crystalline
cellulosic material had occurred.

(ii) Effect of growth conditions on production of enzymes associated with the
cellulolytic process

The production of enzymes involved in the cellulolytic process was studied under
a variety of growth conditions. Assays were carried out with both cell-bound and



Cellulomonas Mutants and Cotton Wool Degradation 557

extracellular fractions using avicel (for avicelase), CMC (for CMCase), and p-nitro­
phenyl-ji-n-glucoside (for p-glucosidase) as substrates.

Only very low and probably insignificant levels of avicelase were detected. In
addition p-glucosidase'was never detected as an extracellular enzyme. Consequently
only the cell-bound and extracellular levels of CMCase and the cell-bound levels of
p-glucosidase are reported. Fig. 1 presents data on production of these enzymes
during growth on cellobiose, CMC and avicel. In addition viable counts, pH and
accumulation of reducing sugar were monitored during growth.
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Fig. 1. Growth characteristics and enzyme production using
CSl-l on cellobiose, CMC and avicel during growth in the
fermentor. • Cell-bound CMCase. o Extracellular CMCase.

During growth on both avicel and cellobiose the pH .of the culture medium
decreased from 7· 2 to a pH of c. 5· O. On cellobiose the decrease was much more
rapid. On CMC, however, pH remained high and in fact rose slightly from the
starting pH of 7 ·2. The viable cells in the population on cellobiose appeared to be
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dependent on the pH in the culture. If the pH decreased rapidly to less than 6 ·0 then
viability of the culture also decreased quickly. Reducing sugar was found to
accumulate from growth on avicel and CMC.

Following growth on the insoluble substrate avicel, it was predominantly the cell­
bound CMCase that was detected. The reverse was the case for the soluble substrate
CMC-very high levels of extracellular CMCase were detected compared with the
cell-bound enzyme levels. On cellobiose no extracellular CMCase was detected but
low levels of the cell-bound enzyme were detected. Low levels of P-glucosidase were
detected during growth on each of the three substrates.

The level of cell-bound P-glucosidase is shown as the specific activity, so enzyme
levels produced during growth on the different substrates can be compared directly.
For CMCase the activity is expressed as units per millilitre of culture medium. This
provided a reasonable method for comparison of cell-bound and extracellular levels
of CMCase on a particular growth substrate. Although levels of cell-bound CMCase
could be shown as the specific activity, extracellular CMCase levels could not be
presented in this fashion because of the yeast extract additive and the extremely low
levels of extracellular protein synthesized. It is therefore difficult to compare CMCase
levels produced under different growth conditions. Since the total' viable count
varies considerably between each culture (8 X 109lm l on avicel and 2 X 109lml on
CMC), the number of viable cells contributing to the level of CMCase varies between
experiments. It is therefore possible to calculate the enzyme activity for a certain
number of viable cells in the culture and to obtain a more accurate comparison
between the different growth conditions. During the initial growth period and when
cell viability decreases as a result of the decrease in pH the comparative data are
misleading. However, between these two regions comparative data can be obtained.
From these calculations it is clear that the extracellular CMCase detected during
growth on CMC is, per viable cell, approximately 30-fold higher than that detected
during growth on avicel.

(iii) Properties of the extracellular CMCase produced during growth on CMe

No significant loss in activity of the extracellular CMCase was detected as a result
of standing in a citrate-phosphate buffer at 4°C for 48 h at pH 7 ·0, at 30°C for 24 h
at pH 7·0, and at 30°C for 12 h at pH 5·0. Standing for 24 h at pH 5·0 resultedin
a 10% loss in activity. The enzyme was stable to freeze-drying and to dialysis against
tap water for 48 h at 4°C in Visking cellulose casing. The pH optimum of the enzyme
was found to be 6·5-7 ·0. At pH 4· 5, 5 ·0, 6·0 and 8·0 there was 20, 30, 75 and 65 %
activity detected relative to the total recorded at the optimum pH.

Loss of CMCase activity was observed in the presence of a 1% suspension of
avicel in citrate-phosphate buffer at pH 7·0 and 30°C. 20 % of the CMCase activity
was lost after incubation for 4 h. Incubation for an additional 8 h did not result in
any further loss in activity. Inhibition of the CMCase activity by cellobiose was
determined following preincubation at pH 7·0 for 15 min with cellobiose at various
concentrations. No inhibition of CMCase was detected up to 10 mM cellobiose but
a 30 % inhibition was observed at 20 mM and 55% inhibition at 50 mM cellobiose.

Isolation of Mutants with Altered Cellulolytic Properties

CSl-l underwent mutation with NG at 150 pglml and this resulted in a 1 log kill.
Approximately 6000 survivors were plated onto Dubos-l- 1·25 % avicel plates.' There
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appeared to be two classes of mutants-those able to degrade the avicel layer more
rapidly than the parent CS1-1, of which mutant CSl-2 was chosen as representative,
and those degrading the avicellayer much more slowly than the parent. The colony
morphology of CSl-2 was quite different from that of CS1-1. The mutant CSl-2
had watery, glistening colonies which were more translucent than the clearly defined
yellowish colonies of CS1-1.

On the basis that CSl-2 appeared to be a more active cellulolytic strain, this culture
was further irradiated with u.v, light in an attempt to isolate mutants with further
improvements in cellulolytic. properties. In this case 10 000 colonies were screened
on Dubos-l- 1·25 % avicel medium. In total 63 potential mutants were selected that
appeared to degrade avicel faster than did CSl-2. These mutants could be placed
into two classes based on their distinctive colony morphology. CSl-4 was chosen as
being representative of the class which formed very smalldistinct white colonies.
CSl-5 was chosen as being representative of the second class which characteristically
formed large watery colonies similar to the parent CSl-2.

Table 1. Clearing of avicel in solid medium with and without added glucose by CSl-l
and the mutant derivatives

Strain
No.

Derivation Time (days) to clear 1·25 %avicel
No added glucose With 10 mMglucose

CS1-1 Wild type
CS1-2 NG mutagen. of CS1-1
CS1-4 u.v. mutagen. of CSI-2
CS1-5 u.v. mutagen. of CSI-2
CSI-7 u.v. mutagen. of CS1-1

A Not tested.

3·5
2·5
2·5
2·5
2·0

10·0
10·0
n.t."
n.t.
6·0

In a third mutation experiment screening was carried out on avicel in the presence
of glucose. Both CS1-1 and CSl-2 were irradiated with u.v, light and then approxi­
mately 10000 survivors from each culture were plated for single colonies on Dubos
+1·25% avicel-l-If mM glucose-l-u-Ofi'z; yeast extract. Six mutants of CS1-1 were
selected. Of these, three had a colony morphology similar to CS1-1; the other three
had a colony morphology similar to CSl-2 although they grew much better than that
strain. Those mutants with colony morphology like CSl-2 were distinctly superior
to those like CS1-1 both in degrading avicel by itself and in degrading avicel in the
presence of 10 mM glucose. One of the more active strains was chosen for further
study and was called CSl-7. Mutants of CSl-2 were also selected. These appeared
to be marginally superior to the parent in degrading cellulose but they were much
slower than the mutants isolated from CS1-1.

For comparative purposes the growth responses of the parent and chosen mutants
are given in Table 1. By this test method all the mutants appear significantly superior
to the parent in the degradation of an avicellayer in solid medium. The mutant CSl-7
appears to be slightly more active than the other mutants. When 10 msr glucose is
incorporated into the test medium there is a marked increase in the time period
required for clearing of the avicellayer. The mutant CSl-7 is much less sensitive to
this glucose effect than is the parent strain.
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Growth Characteristics of CS1-l and Mutants on Cotton Wool

To obtain a quantitative assessment of the cellulolytic activity of CS1-1 and the
mutant derivatives, degradation of cotton wool was studied in liquid culture. The
action on cotton wool was assessed by determination of residual cellulose, culture pH
and viable counts following stationary incubation for 3 and 5 days. The results of
these experiments are given in Table 2. It is clear that CSl-l is a very active cellulolytic
strain, resulting in 9%degradation of cotton wool after incubation for 3 days and

Table 2. Growth of Cellulomonas mutants on 0 ·5% cotton wool in stationary
culture

Parameter Strain Incubation time (days)
0 3 5

Viable count CS1-1 8 x 106 1 X 109 6x 108

(cells/ml) CSl-2 2x 106 6x 108 4x 108

CSl-4 8 x 106 1 X 109 5 X 108

CSl-5 6x 106 5 X 108 7x 108

CSl-7 6x 106 1 X 109 2x 108

Culture pH CS1-1 7·3 6·1 5·9
CSl-2 7·3 6·3 5·6
CSl-4 7·3 6·5 6·0
CSl-5 7·3 6·5 5·5
CSl-7 7·3 5·8 5·4

Cotton wool CS1-1 0 9 16
digestion (%) CSl-2 0 6 13

CSl-4 0 8 16
CSl-5 0 6 13
CSl-7 0 13 24

Reducing sugar (mg/rnl CS1-1 <0·10A <0·10 0·16
culture medium) CSl-2 <0·10 <0·10 <0·10

CSl-4 <0·10 <0·10 0·14
CSl-5 <0·10 <0·10 <0·10
CSl-7 <0·10 0·22 0·57

A Reducing sugar (as glucose) present in culture medium at less than
0·10 mg/ml.

16%after incubation for 5 days. As a result of the growth on cotton wool the pH of
the medium decreased and, between 3 and 5 days incubation, this resulted in a decrease
in cell viability. The cotton wool degradation observed did not represent the limit of
breakdown. If the residual cotton wool was extracted after digestion for 5 days and
then used as substrate in fresh growth medium, 14%additional digestion was obtained
after incubation for a further 5 days.

Surprisingly the only mutant which is clearly superior to the parent CSl-l in
degrading cotton wool is CS1-7 which degraded 24% after incubation for 5 days.
It is.therefore apparent the plate selection on avicel medium did not necessarily pro­
duce mutants which were more active than the parent on cotton wool. For all strains
a marked drop in pH was observed in liquid culture, and for both CSl-l and the
more active mutant CS1-7 significant accumulation of reducing sugar equivalents was
observed after growth on cotton wool for 3 days.
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Enzyme Production by the Mutants Compared to CSl-l when Grown on Avicel

CSl-7 was clearly more cellulolytic than CS1-1, so experiments were conducted to
determine whether there was any significant change in distribution or levels of
avicelase, CMCase and {3-glucosidase during growth on the insoluble substrateavicel.
As with the parent only very low and probably insignificant levels of avicelase were
detected and no extracellular {3-glucosidase was detected. Levels of cell-bound and
extracellular CMCase, cell-bound {3-glucosidase, viable counts and pH changes during
growth of CS1-1 and CSl-7 on avicel are recorded in Table 3. In contrast to the
experiments conducted to characterize CS1-1 (Fig. 1), these experiments were con­
ducted in shaken flasks and slight differences in various parameters are apparent.
In each case the viable counts of CS1-1 and CSI-7 and the pH changes resulting from
growth of these strains are very similar. These make comparison of enzyme levels
relatively straightforward. As a result of mutation there are very obvious differences
in the levels of both cell-bound and extracellular CMCase. Increased levels of each
enzyme were produced and the ratio was changed such that higher levels of the
extracellular enzyme were produced by CSI-7. In addition to changes in CMCase
levels and distribution, approximately twice the amount of{3-glucosidase was detected
in CSI-7 as in CSI-I.

Table 3. Growth characteristics and enzyme production of CSl-7 and CSl-l
grown on avicel in shaken flask cultures

Parmeter Strain Incubation time (days)
0 2 4

Viable count CSl-l 2x 107 6x 109 7x 109

(cells/ml) CSI-7 2x 107 5 X 109 7x 109

Culture pH CSl-l 7·2 7·0 6·2
CSI-7 7·2 7 ·-1 6·1

fi-G lucosidase CSl-1 - 0·01 0·01
(units/mg protein) CSI-7 - 0·02 0·01

Extracellular CMCase CSl-1 - 3 5
(units/ml culture) CSI-7 - 15 40

Cell-bound CMCase CSl-1 - 6 8
(units /ml culture) CSI-7 - 15 22

For the three mutants CSI-2, CSI-4 and CSI-5 the maximum viable count observed
on avicel medium was 2 X 109/ml compared to 8 X 109/ml for CSI-I grown under the
same conditions. The decrease in pH of the culture medium was more rapid for all
these mutants, reaching pH 4· 5 after incubation for 5 days, compared to pH 5· 5 for
CSI-I after the same incubation period. Since the total number of viable cells is
much lower for the mutants than for CSI-I, this rapid pH change is more significant.
The cell-bound CMCase activity per viable cell for these mutants between days 2
and 5 was always about half that for CSI-I, whereas the extracellular CMCase
activity per viable cell was approximately three times higher than for CSI-I.

Discussion

A strain of Cellulomonas was isolated from the soil which could degrade com­
mercial absorbent cotton wool. Although this strain is active in the degradation of
highly crystalline cellulose in cotton wool, no significant enzyme activity against the
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insoluble substrate avicel was detected in the extracellular culture medium or the
cell-bound enzyme extract. This characteristic is common amongst the cellulolytic
bacteria which have been' characterized. It seems that factors' other than the in vitro
enzyme activity of CMCase and P-glucosidase may be involved in permitting effective
degradation of crystalline cellulose.

In studying enzyme distribution during growth on various substrates it is apparent
that this varies markedly depending on the carbon source. Cellobiose as substrate
appears to cause repression of synthesis of CMCase. Growth on the soluble substrate
CMC resulted-in formation of high levels of extracellular CMCase when compared
to cell-bound CMCase. During growth on avicel the reverse situation was observed
in that the cell-bound CMCase level was higher than the extracellular level. There
may have been some adsorption and/or inactivation of the extracellular CMCase on
the avicel and this may have reduced the amount detected during growth. However,
this is probably not a major factor since only a 20 %loss of extracellular CMCase
activity has been observed in the presence of avicel.

The degree of cotton wool digestion and enzyme- production during growth on
various substrates provides a convenient way to characterize any mutants with
alterations in cellulolytic properties. However, a study of enzyme distribution only
gives an indication of gross changes. It is not known how many enzymes contribute
to the various activities being assayed or whether entirely different enzymes having
activity against a particular substrate are produced under different growth conditions.
This limitation is evidenced by the complexity of the cellulases produced by Pseudo­
monas (Yoshikawa et ale 1974) and by Cel/vibrio gilvus(Storvick and King 1960).

Two selection methods were used in attempting to isolate mutants which were more
efficient than the parent in their ability to degrade cotton wool. Avicel, not cotton
wool, was used in the selection-medium primarily because it is more convenient. On
solid medium with avicel as substrate CSI-2 appeared to be a more active cellulolytic
strain than the parent CSI-I. However, the ability of this strain to degrade cotton
wool was reduced compared to CSI-I. Therefore it became apparent that CSI-2 was
not a good parent strain for the additional mutation experiment which resultedin
the isolation of CSI-4 and CSI-5. Although these strains seemed as good or margin­
ally better at degrading cotton wool than CSI-2 when tested in liquid medium, they
were no better than CSI-I. It is possible, however, that these mutants are more active
than CSl-l against avicel in liquid medium. We consider it more likely that the
apparent avicel degradation on the selection plates was misleading. The mutant
colonies were more translucent than CSl-1 and consequently they only appeared to
be more highly cellulolytic. In addition, when using .avicel medium CSl-l caused
initial clearing after incubation for 3· 5 days whilst the mutants showed clearing after
2· 5 days. The time differential for clearing is therefore slight. With incorporation of
glucose into the medium no lysis of avicel was observed until 10 days for CSl-l
compared with 6 days for CSI-7. The time differential was thus increased so that in
isolation of mutants such as CSI-7 a very obvious difference was apparent when
compared with the parent strain. For CSI-7 the ability to degrade cotton wool was
significantly improved. Marked differences in enzyme levels and distribution were
also observed when CSI-7 was grown on avicel and compared with CSl-l grown on
the same substrate.

This work illustrates that mutation can be employed to affect the cellulolytic
process in Cel/ulomonas in terms of the enzymes synthesized and the rate of degrad-
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ation of cotton wool. To date only limited information is available concerning the
effect of mutation on the cellulolytic process in bacteria. The only other data for
a strain of Cellulomonas is that in which mutants exhibiting derepressed synthesis of
extracellular CMCase are reported (Stewart and Leatherwood 1976). Currently we
are continuing the mutation program to determine how effective it will be in further
increasing rates of cellulose degradation.
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