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Abstract 

Alternate procedures, based on the use of combinations of overlapping (of the type AB, AC, BC, 
etc.) or disjoint (of the type AB, CD, EF, etc.) subsets of genes, for developing multiline components 
carrying two or more major genes for disease resistance are described. Simple mathematical models 
are used to examine the effects of multilines blended from such components on pathogen evolution 
and long-term disease control. It is found, in agreement with earlier studies, that the use of more 
than one resistance gene per component, where the genes are combined in either overlapping 
subsets or disjoint subsets, will be justified in practice only if it can be demonstrated that unnecessary 
genes for virulence in pathogens act additively to reduce the fitness of their carriers. If unnecessary 
virulence genes in the pathogen reduce fitness multiplicatively then multilines composed of com­
ponents carrying multigenic resistances have only limited advantages (in the case of disjoint subsets 
of genes) or are at a positive disadvantage (in the case of overlapping subsets of genes) in long-term 
disease control compared with multilines in which each component carries a single unique gene for 
resistance. 

Introduction 

In previous papers (Marshall and Pryor 1978, 1979) we examined, using simple 
theoretical models, the effects of 'dirty crop' or 'partially resistant' (Marshall 1977; 
Marshall and Pryor 1978) multiline varieties on the long-term racial composition of 
pathogen populations. These studies indicated that the capacity of multilines to 
prevent the development of complex pathogen races which can attack more than a 
given small proportion (p) of multiline components, and hence, to provide effective 
disease control, depends on four factors: 

(i) the level of selection against unnecessary virulence genes in the pathogen; 
(ii) whether unnecessary genes for virulence act additively or multiplicatively in 

reducing the fitness of their carriers; 
(iii) the number of resistance genes the plant breeder has at his disposal for use 

in the multiline; 
(iv) the way, whether singly or in combinations, these resistance genes are 

incorporated in multiline components. 
In particular, Marshall and Pryor (1979) showed that multiline varieties blended from 
components carrying multigenic resistances either as overlapping gene sets (ofthe type 
AB, AC, BC, etc.) or disjoint gene sets (of the type AB, CD, EF, etc.) would often 
be more effective in long-term disease control than multilines whose components carry 
only a single gene for resistance. Specifically, they showed that for overlapping gene 

* Part II, Euphytica, 1979, 28, 145-59. 
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sets, disease control would be better under the additive, but not the multiplicative, 
fitness-effects model if resistance genes are combined rather than used singly in 
multiline components; With disjoint gene sets, multilines composed of components 
with multigenic resistance would be as, or more, effective in disease control compared 
with a single resistance gene under both additive and mUltiplicative fitness models. 

However, there are serious limitations to the practical use of both overlapping 
and disjoint gene sets per se. On one hand, the use of overlapping gene combinations 
is feasible only with small numbers of resistance genes, say six or fewer. Otherwise, 
the breeder must develop, maintain and mix impossibly large numbers of multiline 
components to exploit their enhanced potential for disease control. On the other 
hand, the use of disjoint sets is only feasible with large numbers of resistance genes, say 
16 or more. Otherwise, the breeder would have too few component lines at his disposal 
to develop an effective multiline variety. 

In this paper we describe alternative procedures, based on the use of combina­
tions of overlapping and disjoint gene sets, of combining resistance genes in multiline 
components which would be of use with intermediate numbers of resistance genes. 
We also examine the effects of multilines blended from such components on pathogen 
evolution and long-term disease control. 

Developing Multiresistant Multiline Components 

We are concerned with the situation where a plant breeder has an intermediate 
number of resistance genes, say between 6 and 15, at his disposal and wishes to 
develop a multiline variety composed of 8-16 components, each carrying two or more 
genes for resistance. There are many ways a breeder could achieve this objective. 
We will consider two. The first, the use of combinations of overlapping subsets of 
genes, would appear to be of value where the breeder has 6-10 resistance genes at 
his disposal. The second, the use of combinations of disjoint subsets of genes, is 
likely to be applicable with larger numbers of resistance genes, say 10-16. 

Combinations of Overlapping Subsets of Genes 

Consider the case where the breeder has n (6<n< 10) non-allelic resistance genes 
to incorporate two or more at a time in multiline components. Under this procedure, 
the n resistance genes are divided into h groups, the first group containing n1 genes, 
the second n2' and so forth. In general, h may take any value in the range 1 ~h~n 
but, in practice, h will seldom be greater than 3. The genes within the ith group are 
combined g i at a time as overlapping sets into subcomponents and the subcomponents 
from the h groups are intercrossed to develop the multiline components. This 

h (ni) (ni) procedure would yield I = n component lines (where is the number of 
1=1 gi gi 

subcomponents developed from the ith group of genes), each line carryingg = ~7=1 gl 
genes for resistance. To illustrate this procedure we will outline two numerical 
examples. In the first, we assume the plant breeder has n = 7 resistance genes on 
hand and that these are subdivided into h = 2 subsets with n1 = 4 and n2 = 3. 
We also assume all subcomponents carry only a single gene for resistance, that is, 
gl = g2 = 1. In this example, the breeder would develop I = 12 lines each carrying 
g = 2 genes for resistance. To use all combinations of seven genes taken two. at a 
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time would require the development of a I = G) = 21-component multiline. In the 

second example, we assume the plant breeder has n = 6 resistance genes to use in 
a multiline and these are subdivided into h = 2 subsets with n1 = n2 = 3. We 
further assume that g1 = 2 and g2 = 1, that is, the resistance genes in the first subset 
are combined in each subcomponent in pairs, and the genes in the second subset are 
used singly. Intercrossing of these subcomponents would yield I = 9 lines each 
carrying g = 3 genes for resistance. If all possible three-gene sets were used in the 

multiline it would contain I = G) = 20 component lines. 

Combinations of Disjoint Subsets of Genes 

Here we assume the breeder has 10-16 non-allelic resistance genes at his disposal 
which are divided into h groups containing n1 , n2 , ... , nh genes, respectively. The 
genes within each group are combined as disjoint sets into subcomponents which are 
then intercrossed to develop the multiresistant components of the multiline. In this 
case, the number of components would be I = II~=1 (ndg;) = II bi (where bi = n;/gi), 
each carrying g = ~~=1 gi genes for resistance. As an example, assume a breeder 
has 16 genes at his disposal and these are divided into two equal groups (h = 2, 
n1 = n2 = 8) and combined two at a time as disjoint sets in subcomponents 
(gl = g2 = 2), then the completed multiline would contain 16 lines each carrying 
four genes for resistance. The use of disjoint gene sets per se would result in a 
four-line multiline if each component carried four genes for resistance. As a second 
example, assume the breeder has 13 genes at his disposal which he divides into two 
groups with 3 and 10 genes respectively (h = 2; n1 = 3, n2 = 10). If the first group 
is incorporated into subcomponents singly while the second group is incorporated 
into subcomponents in pairs as disjoint sets (g1 = 1, g2 = 2), the completed multiline 
will contain 15 components each carrying three genes for resistance. Here again the 
use of disjoint sets per se would allow the development of only a four-component 
multiline if each line was required to carry at least three different resistance genes. 

Effects on Pathogen Evolution 
) 

We will now examine the effects of the multilines, whose development is described 
above, on the long-term racial composition of an obligate pathogen population, using 
a simple theoretical model. The basic assumptions of the model are briefly that 
(Groth 1976; Groth and Person 1977; Marshall and Pryor 1978, 1979): 

(i) the multiline is composed of equal proportions of I (I > 2) diploid host 
genotypes which are identical except that each has a unique complement of 
one or more homozygous dominant genes conferring resistance to the 
specified haploid pathogen; 

(ii) the host-pathogen system conforms to the gene-for-gene relationship 
between host susceptibility/resistance and pathogen virulence/avirulence 
(Flor 1956); 

(iii) the multiline mixture is reconstituted annually so its composition is stable 
over time, and further that it is grown over a large area so that it is the 
major factor influencing the evolution of virulence in the local pathogen 
population; 
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(iv) biotypes with all possible combinations of virulence genes exist initially, or 
will arise within a short time span, in the pathogen population; 

(v) biotypes carrying unnecessary genes for virulence are less fit than biotypes 
carrying only effective genes for virulence, and that each unnecessary gene 
for virulence reduces their fitness by a constant amount (s); 

(vi) in each generation, pathogen biotypes compete and reproduce at different 
rates (depending on the particular fitness model involved) on susceptible 
hosts and the resultant spores are distributed at random over the host 
population; this procedure is repeated until the pathogen population 
reaches equilibrium; 

(vii) the pathogen populations are large so we are concerned only with deter­
ministic equilibria. 

In each case we consider two variations of this basic model. In particular, we 
assume that two or more unnecessary genes for virulence act either additively or 
multiplicatively in reducing pathogen fitness. 

Combinations of Overlapping Subsets of Genes 
Additive fitness effects 

A multiline composed of I = II 1 lines, each carrying g of n non-allelic genes h (n.) 
1=1 gi 

for resistance, may be parasitized by 2(n -g + 1) classes of pathogen biotypes, viz, 
those withg, g + 1, ... , k, ... , n effective genes for virulence with and without one or more 
unnecessary genes for virulence. We will restrict our attention to the (n -g + 1) 
classes of biotypes carrying only effective genes for virulence since, under our 
assumptions, biotypes with unnecessary genes for virulence invariably have reduced 
fitness and are eliminated from the pathogen population (Marshall and Pryor 1978). 

For the sorts of mixtures considered here, not all members of a particular class 
of pathogen biotypes will necessarily be equally fit (virulent on the same number of 
components) as they were in the previous analysis of multilines containing all possible 
combinations of resistance genes (Marshall and Pryor 1979). The members of a class 
of biotypes which can grow on the most components will have the highest mean 
fitness and will eventually displace their less fit counterparts. As a result, we will 
further restrict our attention to those biotypes, within each of the (n -g + 1) classes 
of interest, which are virulent on the maximum number of multiline components. 

Assuming additive fitness effects, the mean relative fitnesses of these biotypes on 
multi lines whose components carry combinations of overlapping sets of genes are 
given in Table 1. The relative fitness of class-l biotypes with g genes for virulence 
growing on hosts with g genes for resistance was taken to be [1 -(g -1)s] rather than 
1 to ensure the present results will be comparable with earlier studies (Marshall and 
Pryor 1978, 1979). In effect we assume the fitnesses of all biotypes are measured 
relative to races with a single gene for virulence growing on hosts with a single gene 
for resistance. We also assume that a particular biotype has the same relative fitness 
on all susceptible host genotypes with the same number of resistance genes. Finally, 
since relative fitnesses cannot be negative by definition it is assumed that, if 
(k -1)s ~ 1 or s ~ Ij(k -1), biotypes carrying k or more genes for virulence have 
zero fitness. 
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From the relative fitnesses in Table 1 it is clear that the simplest races with g 
genes for virulence have the highest mean fitness and will dominate the pathogen 
population if 

[I -(g -I)s]jl > (gl + 1)(1 -gs)jl, 
that is, if 

s > gt/(1 +glg)· 

(I) 

(2) 

Since the relative fitness function Cdl -(k -1)s]jl has a single unique maximum 
value with varying k for a given s (Groth 1976) it follows that more complex races 
carrying k genes for virulence will dominate the pathogen population if 

CHi (1 -ks)jl < Ck[I -(k -I)s]jl > Ck - 1 [I -(k -2)s]jl, (3) 

where Ck = .n " with k' i chosen such that Ck is a maximum given the con-h (k l
.) 

.=1 gi 
straints k = ~~=1 k' i and nj ~ k'i ~ gi. 

In simplifying inequality (3) we consider two distinct cases. Firstly, we consider 
the situation where 

Ck = (kll)(kl2) ... (kli) ... ('klh) , 
gl g2 gi gh 

Ck +1 = (kll)(kl2) ... (k1i+l) ... (klh) , 
gl g2 gi gh 

Ck - 1 = (kll)(kl2) ... (kl.-l) ... (klh) , 
gl g2 gi gh 

(4) 

that is, where the differences between Ck are due to differences in the ith group. 
In this case inequality (3) reduces to 

g;/[gi(k -2) +k' j ] > s > g;/[gi(k -I) +k' + I]. (5) 

Secondly, we consider the case where differences in Ck involve two, say, the ith and 
jth, groups, so that, 

Ck = (kl 1) (kl 2) ... (kl i) (kl j) ... (kl h) , 
gl g2 gi gj gh 

Ck + 1 = (kll)(kl2) ... (k1i)(k1j+I) ... (klh) , 
gl g2 gi gj gh 

Ck - 1 = (kll) (kl2) ... (k1i-l)(k1j) ... (klh) , 
gl g2 gi gj gh 

(6) 

and inequality (3) becomes on simplification 

g;/[gi(k -2) +k';] > s > g)[gj(k ...,...1) +k'j + 1]. (7) 

Further, a super-race carrying n genes for virulence and capable of attacking all the 
component lines of the multiline will develop if 

[I -(n -l)s] > Cn-dl -(n -2)s]jl, (8) 
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where Cn - t = ... .... (nt) (n2) (ni-l) (nh) The ith group is chosen such that 
gt g2 gi gh 

Cn - t is a maximum. Since 

(n.-l)j(n.) Cn-t=Cn ~i g: =/(ni-gi)/ni, 

it follows that Cn- t has its maximum when g;/ni has its minimum; that is, when the 
ith group contains the smallest proportion of genes selected for use in the sub­
components of the multiline. Thus, 

Cn- t = 1[1 -(g;/ni)min], 1 ~ i ~ h. 

Table 1. Relative fitnesses of pathogen biotypes on an I-line multiline carrying overlapping subsets of 
9 genes for resistance 

I = IT (nt) where ni is the number of resistance genes in the ith group and gt is the number of these 
t=1 gt 

genes incorporated in each multiline component. For simplicity we assume gl > g2 > ... > gt > 
... > gh. s, Level of selection against unnecessary virulence genes in the pathogen 

Pathogen biotype Relative fitness Max. No. of Mean fitness on multiline 
Class No. of on susceptible susceptible Additive Multiplicative 

effective components components model model 
genes for Additive Multi-
virulence model plicative 

model 

1 9 [1-(g-1)s] (1 -S),-1 1 [1-(g-1)s]/1 (1 - S)"-1 /1 
2 (g+1) (1 -gs) (1 -s)" (gl +1) (gl +1)(1 -gs)/I (gl + 1)(1 -s)"/I 
k-g+1 k [1-(k-1)s] (1 -S)·-1 C.A (Cd1-(k-1)s]/1 C. (1 - s)·-1/1 
n-g n-1 [1 -(n -2)s] (1 _S)0-2 Co - 1 C.- 1 [1 -(n -2)s]/1 Co - 1 (1 _s)0-2/1 
n-g+1 n [1-(n-1)s] (1 _S)O-1 1 [1 -(n -1)s] (1 _S)O-1 

A C. = II 'where k't are chosen such that C. is a maximum given k = ~ k't and nt > k', > g, h (k'.) h 

'=1 gt '=1 
(additive model) i = 1 or gt ~ k't ~ nt (multiplicative model). 

We have, as a result, 

(n.) (n.-I) 
g: [1 -(n -I)s] > 'gi [1 -(n -2)s], (9) 

which reduces to 

g;/[ni +gi(n -2)] > s > O. (10) 

Finally, it should be noted that if s = g;/[gi(k -1) +k' + 1] in the case specified by 
inequality (5) or s =g)[gj(k-l) +k'j +1] in the case specified by inequality (7), 
pathogen races carrying (k-l) and k genes for virulence will co-exist in an equilibrium 
population. Since this equilibrium is neutral in practice,' the relative proportions of 
each class of biotype will vary stochastically. 



Multiline Varieties and Disease Control. III 87 

Multiplicative fitness effects 

Here we take the same model as before and simply vary the fitnesses of the various 
classes of pathogen biotypes as shown in Table 1. Under this model the simplest 
races with g genes for virulence will dominate the pathogen population if 

(1- S)<9-1) /1 > (g i + 1)(1- s)9/1, (11) 
or 

s > gl/(gl + 1). (12) 

More complex races with k genes for virulence will win the struggle for dominance if 

Ck+1(1-s)k/1 < Ck(1-s)k-1/1 > Ck _ 1(1-S)k-z/l, (13) 

I (k") where, as before, Ck = Xl I with k'i chosen such that Ck is a maximum given 
,=1 gi 

the constraints k = l:~ = 1 k' and ni ~ k' i ~ g i' 
Again we consider two distinct cases, In the first, the differences in Ck reside in 

the ith subgroup [see eqn (4)], in which case inequality (13) reduces to 

gJk'i > s > gJ(k'i +1). (14) 

In the second, the differences in Ck reside in two subgroups as in equation (6) and, 
in this case, inequality (13) becomes . 

gdk'i > s > g)(k'j +1). (15) 

Further, a super-race will develop if 

(1-sy-1 > Cn - 1 (1-sy-z/l, (16) 

(n1) (nz) (ni-l)(nh) where Cn - 1 = ... and the ith subgroup is chosen such that 
gl gz gi gh 

Cn - 1 is a maximum. That is, when 

Cn - 1 = 1[1 -(gJni)min] ' 

In this case inequality (16) reduces to 

gJni > s > O. 

1 :(" i :(" h. 

(17) 

Finally, if s = gJ(k'i +1) in the case specified by inequality (14) or s = gAk'j +1) 
in the case given by inequality (15), the pathogen population will be polymorphic 
for races carrying (k-l) and k genes for virulence, with the relative proportions of 
the two classes of biotypes varying stochastically. 

Numerical results 

The above analysis shows that the use of multilines whose components carry 
combinations of overlapping subsets of genes may significantly alter the equilibrium 
racial composition of the pathogen population from that expected if the same 
resistance genes were used in components either singly or in all possible combinations. 
This point is illustrated in Table 2 which gives two examples of the levels of selection 
required to stabilize the composition of a pathogen population carrying k 
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(g ~ k ~ n) genes for virulence, assuming the plant breeder uses the n resistance 
genes at his disposal in various ways. In the first example, it is assumed that n = 7 
and the plant breeder incorporates these into multiline components either singly, 
or two at a time in all possible overlapping combinations, or two at a time as 
overlapping combinations of subsets of genes (with h = 2, n1 = 4, n2 = 3, 
gl = g2 = 1). In the second example, n = 6 and we assume the plant breeder uses 
these genes singly, or three at a time in all possible combinations, or three at a time 
as combinations of gene subsets (with h = 2, n1 = n2 = 3, and gl = 2, g2 = 1). 
The levels of selection required to ensure a particular level of virulence in the 
predominant pathogen biotype are higher in all cases for the multiplicative compared 
with additive models and where genes are used in combinations rather than singly 
(Table 2). The levels of selection required to ensure that the predominant pathogen 
biotype carries k genes for virulence were intermediate for combinations of gene 
subsets compared with their use singly or in all possible combinations. 

Table 2. Levels of selection required to stabilize the racial composition of the pathogen popUlations 

No. of 
virulence 
genes (k) 

in dominant 
pathogen 
biotype 

Level of selection when available resistance genes are incorporated into 

.;;2 

.;;3 

.;;4 

.;;5 

.;;6 
7 

.;;2 

.;;3 

.;;4 

.;;5 
6 

Additive 
model 

>0·50 
>0·25 
>0·17 
>0·13 
>0·10 
>0·08 
<0·08 

>0·50 
>0·25 
>0·17 
>0·13 
>0·10 
<0·10 

A n.a., Not applicable. 

multiline components: 
Singly g at a time, 

overlapping sets 
of genes 

Multiplicative Additive Multiplicative 
model model model 

Example 1 (g = 2) 

>0·50 n.a.A n.a. 
>0·33 >0·40 >0·67 
>0·25 >0·25 >0·50 
>0·20 >0·18 >0·40 
>0·17 >0·14 >0·33 
>0·14 >0·12 >0·29 
<0·14 <0·12 <0·29 

Example 2 (g = 3) 

>0·50 n.a. n.a. 
>0·33 n.a. n.a. 
>0·25 >0·33 >0·75 
>0·20 >0·21 >0·60 
>0·17 >0·17 >0·50 
<0·17 <0·17 <0·50 

Combinations of Disjoint Subsets of Genes 

Additive fitness effects 

g at a time, 
combinations of 

overlapping subsets 
of genes 

Additive Multiplicative 
model model 

n.a. n.a . 
>0·33 >0·50 
>0·25 >0·50 
>0·17 >0·33 
>0·14 >0·33 
>0·11 >0·25 
<0·11 <0·25 

n.a. n.a. 
n.a. n.a. 

>0·29 >0·67 
>0·20 >0·50 
>0·14 >0·33 
<0·14 <0·33 

A multiline composed of components carrying g genes for resistance as com­
binations of disjoint subsets of genes will contain I [= n~=l (nJgi) = rr~=l bi] 

components. Such a multiline may again be parasitized by 2(n -g + 1) classes of 
pathogen biotypes, viz, those with g, g + I, ... , k, ... , n effective genes for virulence 
with and without unnecessary genes for virulence. Of these, only those with COill-
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binations of virulence genes which directly match the resistance genes in one or more 
of the component lines are of direct interest here. The number of such classes is a 
function of the number and composition of the subsets of resistance genes. The 
maximum number is I = Tl7=1 hi' 

The relative fitnesses of the biotypes of interest on each susceptible component as 
well as their mean fitness on the multiline as a whole are given in Table 3 under this 
model. The simplest race with g genes for virulence will dominate the pathogen 
population if 

[1 -(g -1)s]jl > 2[1 -(g+gh -1)s]jl, (18) 
or 

s> Ij(g+2gh-l). (19) 

Table 3. Relative fitnesses of pathogen biotypes on an I-line multiline mixture in which each com­
ponent carries g genes for resistance as combinations of disjoint subsets of genes, assuming additive 

fitness effects 

I = II~=1 (n,jgi) = II~=1 bi where ni is the number of resistance genes in the ith subset and gi is 
the number used in each multiline component. gi are ranked such that g, ;;:. g2 ;;:, ... ;;:, gi ... ;;:, gh 

Pathogen biotype Relative fitness Max. No. of Mean fitness 
Class No. of effective on susceptible susceptible on multiline 

genes for virulence components components 

1 g [I-(g-I)s] 1 [I - (g -I)s]jl 
2 g+gh [1 - (g +gh -I)s] 2 2[1 -(g +gh -I)s]jl 
m(= II7=1 m'i) k(= ~~=1 m'lg;) [I -(k -I)s] Ck A Cdl-(k-I)s]jl 
I-I g-gi [I - (n - gi)S] Cn - gi C-gi [1 -en -gi)s]jl 
I n( = ~1:1 bi gi) [1 -en -1)s] I [I-(n-I)s] 

A Ck = II7=1 m'i where m'i is chosen such that Ck is a maximum given k = ~~=I m'igi and 
bi ;;:, m'i ;;:, 1. 

Alternatively, more complex races with k genes for virulence will dominate the 
pathogen population if 

Ck - g Jl -(k -gi -1)s]jl < Cdl -(k -1)s]jl > Ck +gi [1 -(k +gi -I)s]jl, (20) 

where Ck represents the maximum number of lines susceptible to any race carrying 
k genes for virulence. Here Ck = Tl7=1 m'i where m'i is chosen such that Ck is a 
maximum given k = ~?=1 m'igi and hi ~ m'i ~ I. The complexities involved in 
calculating Ck are illustrated in Table 4 which lists Ck , m'l and m' 2 for all important 
classes of pathogen biotypes virulent on a 15-line multiline developed using disjoint 
subsets of resistance genes wheren = 13,h = 2,n1 = 3,n2 = IOandg1 = l,g2 = 2, 
g = 3. It should be emphasized that in this example pathogen races carrying 8, 10 
and 12 genes for virulence will invariably be eliminated from the pathogen population 
since they are less fit than races with 7, 9 and 11 genes for virulence but can only 
grow on the same number of component lines. 

In reducing inequality (20) to simpler terms we again consider two distinct cases. 
Firstly, we consider the case where 

Ck = (m' l)(m' 2) ... (m' i) ... (m' h) , 

Ck+ g , = (m't)(m' 2) ... (m'i + 1) ... (m' h), 

Ck - g , = (m'1)(m'2)···(m'i- 1) ... (m'h)' (21) 
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that is where the differences among Ck are due solely to differences in the number 
of combinations taken from the ith subset of genes. Here inequality (20) reduces to 

1/[(k -1) +gJm', -1)] > s > I/[(k-I) +gj(m'j + 1)]. (22) 

The second case we consider is where 

Ck = (m'l)(m'2)···(m'j)(m') ... (m'h)' 

Ck+9i = (m'l)(m'2) ... (m'j+l)(m') ... (m'h)' 

Ck - 9j = (m'I)(m'2) ... (m'j)(m'j-I) ... (m'h) , (23) 

that is, where differences in Ck involve two, the ith and jth, groups. Here inequality 
(20) reduces to 

I/[(k -1) +gj(m'j -1)] > s > I/[(k -1) +gj(m'j + 1)]. (24) 

Table 4. Maximum number of components (C.) in a IS-line multiline susceptible to each class of 
pathogen biotypes 

No. of 
virulence genes 

in pathogen 
biotype (k) 

3 
4 
5 
6 
7 
8 

2 
3 
2 
3 

, 
ml 

3 (or 2) 

See text for additional details 

1 
1 
2 
2 

, 
mz 

2 (or 3) 

Ck 

1 
2 
3 
4 
6 
6 

No. of 
virulence genes 

in pathogen 
biotype (k) 

9 
10 
11 
12 
13 

m'l 

3 
3 
3 
3 
3 

m'z 

3 
3 
4 
4 
5 

Ck 

9 
9 

12 
12 
15 

From Table 3 it is also clear that a super-race carrying n genes for virulence will 
dominate the pathogen population if 

[1-(n -1)s] > Cn _ g,[I-(n -gj -1)s]/I, (25) 

where Cn - gi = (b 1)(b2) ... (bj-I) ... bh, and bj is chosen such that Cn - gj is a maximum. 
In this case 

Cn - g , = TI m'j = (6 bj)(b, -1) = /(b j -1)/b j, 
·-1 J-l 
,- j*j 

and Cn - g , is maximized when b j is maximized. As in the overlapping subsets case, 
this occurs when I/b i = g Jnj is minimized, so that 

Cn - gi = /[1 -(gJn;}minL l~i~h. 

This reduces to 

bj[I -en -1)s] > (b j -1)[1 -en -gj -1)s], (26) 

or 

s < l/[(n-I)+g;(b j -l)]. (27) 
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Multiplicative fitness effects 

The relative fitness of the various classes of pathogen biotypes under this model 
are given in Table 5. Here the simplest races with g genes for virulence will dominate 
the pathogen population if 

(l-syg- 1)/I> 2(1-s)(g+gh-1)/I, (28) 
or 

s > I - (1/2)1/9h . (29) 

Complex races with k genes for virulence will dominate the pathogen population if 

Ck- 9 ,(1 _S)(k -g, -1)/1 < Ck(l _sYk -1)/1> Ck+g,(1-sYk+g, -1)/1, (30) 

where Ck = I1~=1 m'i and m'i is chosen 'such that Ck is a maximum given k = 
~7=1 m'jgj and b j ~ m'j ~ 1. 

Table S. Relative fitnesses of pathogen biotypes on an I-line multiline where each component has 9 
genes for resistance in disjoint subsets of genes, under the multiplicative fitness effects model 

I = n~=i (n,fg,) = n~=1 b" where n, is the number of resistance genes in the ith subset and g, is 
the number used in each multiline component. g, are ranked so that gl ;;: g2 ... ;;: gb 

Pathogen biotype Relative fitness Max. No. of Mean fitness 
Class No. of effective on susceptible susceptible on multiline 

genes for virulence components components 

1 9 (1 -s)« -1) 1 (1 -s)< -1/1 
2 g+gh (1 -S)(o+<h -1) 2 2(1 -S)(o+9h -1)/1 

m(= n~=1 m',) k(= ~~=1 mig,) (1 _S)(k -1) CkA Ck(1 -S)k -1/1 
1-1 n-g, (1 -s)(o -gil CO- g, Co_g,(l -s)(O -g//I 
I n(= ~~=1 big,) (1 _S)"-1 I (1 _S)O-1 

A Ck = n~=1 m', where m', is chosen to maximize Ck given the restraints k = ~~=1 m',g, and 
b, ;;: m', ;;: 1. 

As before we consider two separate cases. In the first Ck is given by equation (21) 
in which case inequality (30) reduces to 

1-[(m'j-I)/m'J1 /g, > s > 1-[m'J(m'j+I)j1/9i. (31) 

In the second, Ck is given by inequality (22), and inequality (30) becomes 

I-[(m'j -1)/m'J/gj > s > I -[m'J(m'j + IW/g ,. (32) 

Finally, a super-race will develop under this model if 

(l_sYn-1) > Cn - g, (l-s)(n -g, -1)/1, (33) 

where Cn - g, = (b1)(b2 ) ... (bj-I) ... (bh), and the ith group is chosen such that Cn - gi 
is a maximum. As before, this occurs when 

Cn - g , = 1[1 -(gJnj)min]' 1 ~ i ~ h. 

We have, as a result, 

(b j)(I_s)n-1 > (b j -1)(1 _s)<n -g, -1) , (34) 

or 
s < I - [(bj -1)/bJ1/g,. (35) 



92 D. R. Marshall and J. J. Burdon 

As in the case of combinations of overlapping subsets of genes, if s is equal to any 
of the critical values given in inequalities (22), (24), (31) and (32), the pathogen 
population will be polymorphic, and will contain two classes of pathogen biotypes 
in a neutral equilibrium. 

Table 6. Levels of selection (s) required to stabilize the racial composition of pathogen populations 
See text for additional details 

No. of 
virulence 
genes (k) 

in dominant 
pathogen 
biotype 

Level of selection when available resistance genes are incorporated into 

Additive 
model 

4 >0·13 
,.;6 >0·08 
,.;8 >0·06 

,.;10 >0·05 
,.;12 >0·4 
,.;14 >0·04 

16 <0·03 

3 >0·17 
,.;4 >0·13 
,.;5 >0·10 
,.;7 >0·07 
,.;9 >0·06 

,.;11 >0·05 
,.;12 >0·05 

13 <0·04 

A n.a., Not applicable. 

Numerical results 

Singly 
multiline components: 

o at a time, 
overlapping sets 

of genes 

Multiplicative Additive Multiplicative 
model model model 

Example 1 (0 = 4) 
>0·20 >0·09 >0·16 
>0·14 n.a.A n.a. 
>0·11 >0·05 >0·10 
>0·09 n.a. n.a. 
>0·08 >0·04 >0·07 
>0·07 n.a. n.a. 
<0·06 <0·04 <0·07 

Example 2 (0 = 3) 

>0·25 >0·13 >0·20 
>0·20 . n.a. n.a . 
>0·17 n.a. n.a. 
>0·13 n.a. n.a. 
>0·10 >0·05 >0·09 
>0·08 n.a. n.a. 
>0·08 <0·05 <0·09 
<0·08 n.a. n.a. 

o at a time, 
combinations of 

overlapping subsets 
of genes 

Additive Multiplicative 
model model 

>0·14 >0·29 
>0·11 >0·29 
>0·08 >0·18 
>0·06 >0·18 
>0·05 >0·13 
>0·05 >0·13 
<0·05 <0·13 

>0·25 >0·50 
>0·17 >0·33 
>0·13 >0·25 
>0·08 >0·18 
>0·06 >0·13 

n.a. n.a. 
>0·05 >0·11 
<0·05 <0·11 

Two numerical examples are given in Table 6 to illustrate more clearly the effects 
of the use of combinations of disjoint subsets of genes on the equilibrium. racial 
composition of a pathogen population. In the first example we assume the breeder 
has 16 resistance genes at his disposal which he incorporates into multiline com­
ponents either singly, four at a time in disjoint sets, or four at a time as combinations 
of disjoint subsets of genes (we assume k = 2, nl = n2 = 8 and gl = g2 = 2). In 
the second example, we assume n = 13 and calculate the critical levels of stabilizing 
selection for cases where multiline components carry a single gene for resistance, 
three genes for resistance as disjoint sets (plus one unused gene), or three genes for 
resistance as combinations of disjoint subsets (in the latter case we assume k = 2, 
n1 = 3, n2 = 10 and gl = 1, g2 = 2). Here, in contrast with the situation with 
overlapping gene sets, the levels of selection required to ensure the predominant 
pathogen race carries k genes for virulence are generally higher when the genes are 
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used as combinations of disjoint subsets of genes than when they are used either 
singly or in disjoint sets. 

Effectiveness in Disease Control 

As emphasized previously, the important question facing the practical plant 
breeder considering the use of different sorts of multilineal varieties is not which 
variety will maintain the simplest pathogen biotypes. Rather, it is whether such 
varieties differ in their effectiveness in disease control. The answer to this question 
certainly depends on the number of virulence genes carried by the predominant 
pathogen biotype. However, it also depends on the total number of lines in the 
multiline (I) and the acceptable proportion of susceptible components (p), that is, 
the proportion of lines which can be susceptible to the predominant pathogen 
biotypes while the crop still escapes significant disease damage. 

Table 7. Levels of selection (s) required for adequate disease control with the breeding strategy of 
a single resistance gene per component (1), g genes per component in overlapping gene sets (2), or g 

genes per component as combinations of overlapping subsets of genes (3) 
Examples 1 and 2 are those of Table 2 

Breeding Level of selection for an acceptable proportion of susceptible host plants (p) of: 
strategy 0·10-0·15 0·20-0·25 0·40-0·45 

Example 1 Example 2 Example 1 Example 2 Example 1 Example 2 

Additive model 

>0·50 n.a.A >0·50 >0·50 >0·17 >0·25 
2 >0·25 >0·25 >0·25 >0·18 >0·18 >0·18 
3 >0·30 >0·25 >0·25 >0·25 >0·17 >0·17 

Multiplicative model 

1 >0·50 n.a. >0·50 >0·50 >0·25 >0·33 
2 >0·50 >0·75 >0·50 >0·60 >0·40 >0·60 
3 >0·67 >0·67 >0·67 >0·67 >0·67 >0·50 

A n.a., Not applicable. 

To evaluate the relative effectiveness of different types of multilines in disease 
control, we have calculated, for the examples given in Tables 2 and 6 for a range of 
values of p, the levels of selection against unnecessary genes for virulence required 
to stabilize the racial composition of the pathogen population and provide adequate 
disease control (Tables 7 and 8). Clearly, the lower the level of selection required 
to achieve a particular objective, the greater the likelihood that a breeder will have 
the necessary resistance genes at his disposal. The values of s required to achieve 
adequate disease control for the alternative breeding strategies and the two examples 
presented in Table 2 are given in Table 7. For the additive model, lower levels of 
selection are required to achieve adequate disease control if the resistance genes are 
combined in overlapping sets rather than used singly. Further, the use of overlapping 
subsets of genes appears to be as effective from this point of view as the use of all 
possible gene combinations. However, for the multiplicative model, greater levels of 
selection are required to ensure adequate disease control with more than one gene 
per component. Again, there is little difference between breeding stratewes 2 and 3 
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in the critical values of s. These findings confirm a previous conclusion (Marshall 
and Pryor 1979) that the use of overlapping gene sets will only be of practical 
importance if it can be demonstrated unequivocally that unnecessary genes for 
virulence in pathogens act in an additive, or near additive, fashion. The levels of 
selection required to achieve adequate disease control where resistance genes are 
used singly or as disjoint gene sets, using the two examples given in Table 6, are com­
pared in Table 8. Here the levels of selection necessary to achieve this objective are 
lower, under the additive fitness model, or very similar, under the multiplicative 
fitness model, for breeding strategy 3 compared with breeding strategies 1 and 2. 

Table 8. Levels of selection (8) required for adequate disease control with the breeding strategy of 
a single resistance gene per component (1), 9 genes per component as disjoint gene sets (2) or 9 genes 

per component as combination of disjoint subsets of genes (3) 
Examples 1 and 2 are those of Table 6 

Breeding Level of selection for an acceptable proportion of susceptible host plants (p) of: 
strategy 0·10--0·15 0·20--0·25 0·40--0-45 

Example 1 Example 2 Example 1 Example 2 Example 1 Example 2 

Additive model 

1 >0·25 >0·25 >0·13 >0·17 >0·07 >0·10 
2 n.a.A n.a. >0·09 >0·13 >0·09 >0·13 
3 >0·11 >0·17 >0·08 >0·13 >0·06 >0·08 

Multiplicative model 

1 >0·33 >0·33 >0·20 >0·25 >0·13 >0·17 
2 n.a. n.a. >0·16 >0·20 >0·10 >0·20 
3 >0·29 >0·33 >0·18 >0·25 >0·18 >0·18 

A n.a., Not applicable. These multilines contain only four components. 

Discussion 

The procedure described here, viz, the use of combinations of overlapping subsets 
of genes or combinations of disjoint subsets of genes, offers alternative means of 
developing multiline varieties in which the components carry two or more genes for 
resistance. Further, multilines developed in this way would, from the analysis given 
in Tables 7 and 8, appear to be as effective in long-term disease control as varieties 
developed using either overlapping or disjoint gene sets per se. Together with our 
earlier findings (Marshall and Pryor 1979), the present results indicate that the use 
of more than one resistance gene per multiline component is clearly advantageous 
only if unnecessary genes for virulence in pathogens act additively to reduce the 
fitness of their carriers. If unnecessary virulence genes reduce fitness multiplicatively, 
then multilines composed of multiresistant components have little or no advantage 
(in the case of disjoint sets of genes) or are disadvantageous (in the case of overlapping 
sets of genes) in long-term disease control compared with multilines in which the 
components each carry a unique single gene for resistance. 

However, we must emphasize again that these conclusions are based on the use 
of simple models which embody many arbitrary and often unrealistic assumptions. 
In particular, we have assumed that unnecessary genes for virulence in the pathogen 
act either additively or multiplicatively to reduce the fitness of their carriers. Barrett 
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and Wolfe (1978) criticized the use of additive models in describing pathogen 
evolution on multiline varieties on the grounds that they represent a special case of 
the general multiplicative model for very small values of s. Although this is true, 
as shown both here and in a previous paper (Marshall and Pryor 1979) for large 
values of s, the way in which unnecessary genes for virulence combine to reduce the 
relative fitness of complex pathogen races substantially affects the potential of multi­
line varieties in terms of long-term disease control, particularly in the case of over­
lapping gene sets. Consequently, in this situation, the additive model cannot be 
regarded as a special case of the multiplicative model. Further, the exclusive use of 
multiplicative models may lead to erroneous conclusions concerning the value of 
multi lines in disease control. The latter point stresses the urgent need for experimental 
data on the ways unnecessary virulence genes interact to reduce the fitness of 
complex pathogen races, as well as other aspects of stabilizing selection, before 
multiline varieties can be regarded as a viable alternative to other forms of disease 
control. 
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