Supplementary material

Effects of fire frequency and microhabitat on the ground layer in a grassy woodland

Penny J. Watson^A and E. Charles Morris^{A,B}

^ASchool of Science, Western Sydney University, PO Box 1797, Penrith, NSW 2071, Australia.

^BCorresponding author. Email: c.morris@westernsydney.edu.au

Table S1.Sites used in a study of ground layer vegetation in Cumberland Plain Woodland microhabitats			
Site name	Fire frequency category	Time since fire when sampled	
Ropes Creek	High	9 months	
Shanes Park	High	18-20 months	
Lansdowne ^A	Moderate	18–19 months	
Mount Annan 2 ^B	Moderate	19 months	
Orchard Hills	Low	18–19 months	
Scheyville	Low	18–19 months	

^ALansdowne: the current study was restricted to those parts of the site burnt ~18 months before sampling (the Watson *et al.* 2009 study covered a wider area).

^BMount Annan 2 (moderate fire frequency in the current study) was located adjacent to the low fire frequency area sampled by Watson *et al.* (2009) at Mount Annan. The two adjacent areas had different fire histories. Mount Annan 2 was burnt for experimental and ecological purposes in 1991, and again in 2001, 19 months before sampling (D. Benson and J. Howell, Royal Botanic Gardens, pers. comm., 2001).

Fig. S1. Map of the Cumberland Plain showing remnant native vegetation (green) and study sites in three fire frequency categories. \blacktriangle , high fire frequency; \blacksquare , moderate fire frequency; \blacktriangledown , low fire frequency.

 Table S2.
 List of taxa with uncertain identification in the field, and how they were categorised for

 data analysis

uata analysis			
Categorised as			
Glycine tabacina			
Sporobolus creber			
Oxalis perennans			
Lomandra filiformis			
Einadia nutans			
Arthropodium milleflorum			
Solanum nigrum			
grouped as Rytidosperma			

(a)

(c)

Fig. S2. Examples of microhabitat types. (a) 'Tree' plots were located at the base of large Eucalyptus *moluccana* trees like this. (b) 'Bursaria' plots were located in thickets like this. (c) An area similar to those in which 'open' plots were located.

Fig. S3. Recording ground layer species in nested subplots within a 3.6 m diameter open microhabitat plot at Orchard Hills, a low fire frequency site.

Subplot number	Distance from centre of plot (cm)	Subplot area (m ²)
1	30–40	0.22
2	40–60	0.63
3	60–90	1.41
4	90–130	2.77
5	130–180	4.87

Table S3.	Characteristics of concentric nested subplots used in a study of ground layer vegetation in
	Cumberland Plain Woodland microhabitats

Table S4. PERMDISP results for fire frequency, microhabitat, and fire frequency × microhabitat ×site terms in the PERMANOVA analysis

Factor	permutations	Numb groups	$F_{x,y}$	Р
fire frequency	999	3	2.7307	0.091
microhabitat	999	3	0.1082	0.898
fire \times mic \times site	999	18	1.703	0.79
Fire frequency m	eans and standa	rd errors		
Group		Size	Average	s.e.
high		18	34.393	1.6507
mod		18	38.624	0.6563
low		18	36.323	1.3321
Microhabitat med	ans and standard	l errors		
Group		Size	Average	s.e.
bur		18	39.722	1.3997
open		18	39.501	1.5243
tree		18	38.857	1.1505
Fire × microhabi	itat $ imes$ site means	and standard er	rrors	
Group		Size	Average	s.e.
highShanesbur		3	32.433	3.2393
highShanesopen		3	25.831	2.5112
highShanestree		3	24.199	0.6701
modLansbur		3	22.817	2.2899
modLansopen		3	21.456	0.492
modLanstree		3	21.904	1.4528
modMtAnbur		3	25.953	1.0569
modMtAnopen		3	23.716	1.7386
medMtAntree		3	19.1	0.2594
lowOrcHbur		3	21.659	1.6683
lowOrcHopen		3	24.726	2.1285
lowOrcHtree		3	21.579	1.4786
highRopesbur		3	25.564	2.7247
highRopesopen		3	29.514	4.6002
highRopestree		3	25.801	1.8784
lowScheybur		3	31.245	7.5955
lowScheyopen		3	26.725	2.834
lowScheytree		3	21.221	0.7344

 $F_{x,y} = F_{2,51}$ for fire frequency and microhabitat; $F_{17,36}$ for fire × micro × site

Fig. S4. CAP graphs of sites coded for microhabitat and showing vectors for (a) native species and (b) exotic species ($r \ge 0.3$). Data are (square root) frequency scores at block level (n = 54). Full names for species shown in Table S6.

Fig. S5. CAP graph of sites coded for microhabitat showing vectors for native species that align with the open microhabitat but with r < 0.3. These species achieve maximum abundance in the open microhabitat and low abundance in one or both of the bursaria and tree microhabitats (Table S5). Full names for species shown in Table S6.

Table S5. Native species that achieve maximum abundance in the open microhabitat and lowabundance in one or both of the bursaria and tree microhabitats, and whose vectors align with the open
microhabitat (Fig. S4a, S5)

	Open	Bur	Tree	Figure
Bothriocloa macra	0.41 (0.09)	0.11 (0.11)	0.10 (0.10)	S 7
Dichopogon fimbriatus	0.82 (0.47)	0.65 (0.33)	0.12 (0.12)	S6a
Eragrostis brownii	0.30 (0.15)	0.25 (0.13)	0.08 (0.08)	S 7
Hibbertia diffusa	0.38 (0.22)	0.11 (0.11)	0	S 7
Hypericum gramineum	0.56 (0.12)	0.31 (0.05)	0.06 (0.06)	S 7
Wurmbea dioica subsp. dioica	0.42 (0.29)	0.40 (0.24)	0.13 (0.13)	S 7
Zornia dyctiocarpa var. dyctiocarpa	0.96 (0.26)	0.11 (0.11)	0.11 (0.11)	S6a

Data are mean square root frequency scores at block level (±s.e.)

(a) Native species

Fig. S6. CAP graphs of sites coded for fire frequency showing vectors for (a) native species and (b) exotic species ($r \ge 0.475$). Data are (square root) frequency scores at block level (n = 54). Full names for species shown in Table S5.

Table S6.	Full species names and	l abbreviations for s	pecies names used i	n Fig. S4. S5 and S6

Native species	Abbreviation	Exotic species	Abbreviation
Aristida vagans	ARI VAG	Asparagus asparagoides*	ASP ASP*
Arthropodium milleflorum	ART MIL	Hypochaeris radicata*	HYP RAD*
Bothriochloa macra	BOT MAC	Lysimachia arvensis*	LYS ARV*
Cheilanthes distans	CHE DIS	Paspalum dilatatum*	PAS DIL*
Cheilanthes sieberi subsp. sieberi	CHE SIE SIE	Richardia stellaris*	RIC STE*
Chloris ventricosa	CHL VEN	Senecio madagascariensis*	SEN MAD*
Desmodium varians	DES VAR	Setaria parviflora*	SET PAR*
Dianella revoluta var. revoluta	DIA REV	Sida rhombifolia*	SID RHO*
Dichondra repens	DIC REP	Solanum nigrum*	SOL NIG*
Dichopogon fimbriatus	DIC FIM	Sonchus oleraceus*	SON OLE*
Einadia nutans	EIN NUT	Trifolium striatum*	TRI STR*
Einadia trigonos subsp. trigonos	EIN TRI TRI		
Eragrostis brownii	ERA BRO		
Eremophila debilis	ERE DEB		
Geranium solanderi var. solanderi	GER SOL SOL		
Hardenbergia violacea	HAR VIO		
Hibbertia diffusa	HIB DIF		
Lomandra filiformis	LOM FIL		
Lomandra multiflora subsp. multiflora	LOM MUL MUL		
Microlaena stipoides var. stipoides	MIC STI		
Oxalis perennans	OXA sp.		
Paspalidium distans	PAS DIS		
Poa labillardierei var. labillardierei	POA LABORATORY		
Scleria mackaviensis	SCL MAC		
Solanum prinophyllum	SOL PRI		
Stackhousia viminea	STA VIM		
Themeda triandra	THE TRI		
Tricoryne elatior	TRI ELA		
Wahlenbergia gracilis	WAH GRA		
<i>Wurmbea dioica</i> subsp. <i>dioica</i>	WUR DIO		
Zornia dyctiocarpa var. dyctiocarpa	ZOR DYC		

Reference

Watson PJ, Bradstock RA, Morris EC (2009) Fire frequency influences composition and structure of the shrub layer in an Australian subcoastal temperate grassy woodland. *Austral Ecology* **34**, 218–232. <u>doi:10.1111/j.1442-9993.2008.01924.x</u>