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Abstract. Conservation reserve selection is guided by vegetation classification and mapping. New survey data and
improvements in the availability of archived data through online data-sharing platforms enable updated classifications
and the critique of existing conservation criteria. In the Northern Jarrah Forest Region of south-western Australia,
percentage-based targets using ‘forest ecosystem units’ (15% of each unit) and the systematic conservation planning
principles of ‘comprehensiveness, adequacy and representativeness’ underpin the State’s reserve network. To assess
the degree of community-level heterogeneity within the forest ecosystem units, new survey data for the forest
(30 000 plots) were classified using a non-hierarchical clustering algorithm. Results were assigned to the National
Vegetation Information System, and community groups defined at the Association level (Level V). Significant
community level heterogeneity was found, including 15 communities in the dominant ‘jarrah woodland’ unit, and
13 in the ‘shrub, herb and sedgelands’ unit. Overall, this research highlights limitations in the current reserve system,
including the influence of scale on percentage-based targets and ‘representativeness’. A multi-scale approach to reserve
selection, based on a quantitative, floristic, hierarchical classification system, would improve the level of scientific
rigour underlying decision-making.
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Introduction

A primary goal of natural resource management is to
balance development with conservation. In Australia and
internationally, conservation reserve networks are key to
achieving this (Cabeza and Moilanen 2001; Rondinini and
Chiozza 2010; Kullberg and Moilanen 2014; Morelli et al.
2020; Stralberg et al. 2020). Vegetation classification and
mapping underpin networks and provide a scientific basis
for decision making. However, challenges remain. Baseline
data are missing because of poor survey coverage, whereas
incomplete and inconsistent classifications prevent assessment
at suitable scales (McKenzie et al. 1996; Jennings et al. 2009;
Franklin 2013; Peet and Roberts 2013). New data and the
centralisation of datasets provide platforms for improvement
and are occurring internationally (VegBank, BIEN, sPlot),
nationally (TERN Aekos) and at State and Territory levels
(e.g. BioNET (New South Wales), COREVeg (Queensland),

NatureMap (Western Australia), the Vegetation Site Database
(Northern Territory); Benson 2008; Wiser and De Cáceres
2013; Chytrý et al. 2016; Faber-Langendoen et al. 2018; Gellie
et al. 2018; Gibson 2018; Addicott and Laurance 2019;
Bruelheide et al. 2019). Using these products to improve
conservation assessment at multiple scales is key to
improving decision-making.

Conservation decisions require targets (Bakker 2013). In
Australia, this includes a continent-wide target of 17% of
terrestrial ecosystems to be reserved, on the basis of the
2020 Convention on Biological Diversity’s Aichi Target 11
(www.cbd.int/aichi-targets/target/11). More specifically, the
National Reserve Strategy’s (NRS) aim is a ‘comprehensive,
adequate and representative’ (CAR) reserve system at the
bioregional scale (JANIS 1997; Commonwealth of Australia
2010). The Interim Biogeographic Regionalisation for
Australia (IBRA) and regional ecosystem units are the basis
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for CAR targets (Commonwealth of Australia 2010). This
includes the pre-1750 extent of vegetation and examples of at
least 80% of the number of regional ecosystems in each IBRA
region (comprehensiveness) or subregion (representativeness).

Although IBRA and regional ecosystem units provide a
general framework for setting CAR targets, limitations are
evident, particularly for defining and measuring
representativeness. Representativeness is ‘comprehensiveness
considered at a finer scale’ (Commonwealth of Australia 2010,
p. 10); however, how IBRA subregions (rather than regions) are
used to determine representativeness and detect finer-scale
heterogeneity is not clear. The definition of regional
ecosystems is also generic, with scale being a critical factor:

Ecosystems, or a unique unit such as a vegetation
community mapped at appropriate scales, comprising a
recognisable floristic composition in combination with
a substrate (lithology, geology layers) and position in the
landscape, and including their component biota
[Commonwealth of Australia 2010, p. 65].

Work that tests how data collection and analysis methods affect
the quantification of heterogeneity and representativeness will
improve the scientific underpinning of the NRS.

State and Territory land and vegetation databases and
map products provide the basis for this work. New South
Wales BioNet collection includes over 800 maps of varying
resolution, coverage and currency (Benson 2008). Queensland
has 20 years of Regional Ecosystem Mapping (Neldner et al.
2019) and scale is recognised as important for detecting true
floristic heterogeneity (Wardell-Johnson et al. 2007).
Victoria’s ecological vegetation classes (EVC) provide a
range of units including mosaics, complexes, aggregates
and generic wetland mapping units, which, in combination
with bioregions, provide a bioregional conservation status
(BRS) (databased in NatureKit 2.0). In Western Australia,
state-wide mapping is at a 1 : 3 000 000 scale (Beard 1990;
Shepherd et al. 2002; Beard et al. 2013). Broad floristic
formations (forest ecosystem units) underpin the
conservation reserve system, Regional Forest Agreement
and Forest Management Plan (2014–2023; Department of
Agriculture, Water and Environment 2019) (JANIS 1997;
Commonwealth of Australia 1998; Government of Western
Australia and the Commonwealth of Australia 1999;
Conservation Commission of Western Australia 2013).
Community-level mapping (1 : 5000–1 : 100 000) is
available in some regions (Wardell-Johnson et al. 1989;
Wardell-Johnson and Williams 1996; Mattiske and Havel
1997, 1998). This finer-scale mapping is used in
development assessment, for determining offset targets,
and informal reserve definition, but has not been fully
incorporated into assessments of CAR for the conservation
reserve system (JANIS 1997; Ecoscape 2002).

The Northern Jarrah Forest (NJF) region of south-western
Australia provides a case study for investigating how
community-scale data may influence CAR targets, including
representativeness. A Mediterranean forest, the area has
important commercial and conservation values, including as
a major water catchment area for Perth (Petrone et al. 2010;

Hughes et al. 2012; Wardell-Johnson et al. 2015). Alcoa of
Australia Ltd (Alcoa) have collected 30 000 plots of floristic
data since the 1990s (see Trotter et al. 2018 for full details).
The dataset covers a restricted area at high resolution, enabling
community mapping and comparison to the broad floristic
formations currently used to set CAR conservation targets in
the forest.

Here, we use the dataset to assess how an updated
classification informs mapping and conservation targets across
scales in the NJF. Our aim is to describe and understand
vegetation heterogeneity and its implications for decision-
making. To do this, we perform the following:

(1) Classify the data at three scales and use remotely sensed
environmental attributes and modelled climate data to
describe results. Landscape position (upland and plateau
v.valleyfloors) is predicted todrive vegetationdifferences at
broad scales, with finer patterns driven by local topography
and soil.

(2) Assign groups to the hierarchical National Vegetation
Information System (NVIS).

(3) Compare the groups derived from this analysis to the units
currently used for mapping and decision-making, and assess
how results inform the representativeness of the reserve
system in the NJF.

Materials and methods
Study site
The NJF has a Mediterranean climate, with an average annual
rainfall of 1300 mm in the west, dropping to 600 mm inland
and to the east (Havel 1975b; Gentilli 1989). A dry-sclerophyll
system, it ranges from low woodlands in the north to open
forests in the south (McKenzie 2008). The forest is significant
globally, as Mediterranean ecosystems house a fifth of known
vascular plant species in only 2% of the world’s land area.
They are also one of the biomes predicted to experience the
greatest biodiversity change over the next 80 years, through
both climate and human land-use pressures (Sala et al. 2000;
Klausmeyer and Shaw 2009; Cox and Underwood 2011;
Moreira et al. 2019). The NJF also occurs in the South-
western Australia Global Biodiversity Hotspot (Myers et al.
2000; Hopper et al. 2016). Vegetation patterns are
characterised by subdued topography, rainfall and regular
fire incidence (Burrows et al. 2019). The forest also has a
history of logging and mining (1834–current) that has
considerably affected structure (Calver and Wardell-
Johnston 2004; Wardell-Johnson et al. 2015). Floristically,
the forest overstorey is largely dominated by two tree species,
namely, Eucalyptus marginata (jarrah) and Corymbia
calophylla (marri), but it has a complex and diverse
understorey (3096 taxa; Dell et al. 1989; see https://
florabase.dpaw.wa.gov.au). Understorey vegetation has been
described as a multidimensional continuum with semi-discrete
community types (Havel 1975a).

The climatic and hydrological regimes of the forest are
shifting in response to global warming; rainfall has decreased
by 16% and temperature increased 0.4�C since the mid-1970s
(Bates et al. 2008; CSIRO, State of the Climate 2020, see csiro.
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au/state-of-the-climate). This has led to decreased surface run-
off (20–100%), falling water-tables and shifts from perennial
to ephemeral streams (Petrone et al. 2010; Hughes et al. 2012;
Zhang et al. 2016). High summer evapotranspiration offsets
winter rainfall, which is predicted to further decrease under
continuing climate change (CSIRO, State of the Climate 2020,
see csiro.au/state-of-the-climate).

Floristic data
To meet statutory requirements, Alcoa has been collecting
floristic data in the NJF for almost 30 years (1991–ongoing).
Vegetation mapping now spans 432 km2 with 31 000 plots on a
120-m2 grid that follows ore exploration (Fig. 1). At each grid
point, tree species were recorded in a 20-m radius and
understory taxa in a 5-m radius. Cover-abundance (1–5)
and stress (1–5) were scored (Mattiske 2012). Collected
plant specimens were dried, fumigated and identified in
accordance with the requirements of the Western Australian
Herbarium (Mattiske 2012; see https://florabase.dpaw.wa.gov.
au) and the conservation status of taxa were checked using
current Government Gazette lists (see https://florabase.dpaw.
wa.gov.au). Each plot in the dataset was also assigned a site

vegetation type, which is the community-scale unit used for
mapping in the forest (Havel 1975a, 1975b). Eleven types
were described across the study area.

Environmental data
Environmental variables were collected at each plot, and
included soil type, topography, outcrop type and amount,
dieback (Phytophthora cinnamomi) presence or absence and
impact, years since fire, log debris and number of tree stumps.
Additional environmental variables were generated in the
System for Automated Geoscientific Analyses (SAGA, ver.
2.1.2; Conrad et al. 2015) using NASA’s one arc-second
(30 m) Shuttle Radar Topography Mission (SRTM)
hydraulically enforced digital elevation model (DEM;
Geoscience Australia 2011).

Topographic variables include distance to channel base
network, which is calculated from an inverted DEM and
negatively correlated with elevation (high valley-depth values
indicate a larger distance from ridge lines, or lower valley
position). Distance to valley depth is an inverted ridge-top
distance. Curvature and convexity both measure the
roundness or hollowness of a surface, with convexity

60 km0 30 0 4 8 km

N

(c)(a)

(b)

Fig. 1. Map of study area: (a) Western Australia (outline) and the Northern Jarrah Forest (black); (b) the study area (grey) within the mapped region
(black) of the Northern Jarrah Forest (outline); (c) site data collection followed the 120-m drilling grid used by Alcoa for ore exploration (points). Dams
and weirs (light blue).
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indicating the number of convex shapes within a set radius,
whereas curvature measures the convex or concavity of a
slope. The SAGA wetness index (SWI) was used to
represent flow across the study area. SWI is similar to the
topographic wetness index (TWI; Beven and Kirkby 1979),
but is based on a modified catchment-area calculation,
which does not conceptualise flow as a thin film (Böhner
et al. 2002).

Aspect in degrees was transformed to radians for further
analysis (Roberts 1986). Northness (derived from cos(aspect))
has values close to 1 if the aspect is northward (or –1 if
southward). Alternatively, eastness is a function of sin
(aspect), with values close to 1 representing east-facing
slopes. Environmental data were tested for collinearity using
the package corrplot (Wei et al. 2017). Where correlation was
more than 0.5 (positive or negative), one variable from the pair
was removed (Fig. S1 of the Supplementary material). Removal
was based on previous research and expert opinion regarding
which environmental driver would be the most valuable when
interpreting vegetation patterns (e.g. Havel 2000).

Data cleaning
A floristic information management system was developed to
prevent data corruption and data-entry error, and to ensure that
future data additions fit system requirements (Trotter et al.
2018). This included automating name updates through Max
(the Western Australian Herbarium platform for sharing plant
name updates, see https://www.dpaw.wa.gov.au/about-us/
science-and-research/publications-resources/113-max-a-species-
database-helper-for-windows). In addition to the technical data-
cleaning process, 337 species were excluded from the original
Alcoa species list because of data-entry errors, subspecies updates
and incorrect species identification. Singletons (a single species
record) and doubletons (only two species records) were also
removed from the dataset for this analysis (186 species).
Annuals, biennials, deciduous taxa such as most geophytes, and
alien taxa were removed because surveys were not conducted
consistently in theflowering season. In total, 435 species remained
in the modified dataset for this analysis. Floristic data were
summarised in R (ver. 3.4.2, see https://cran.r-project.org/bin/
windows/base/old/3.4.2/) and species richness and Shannon
diversity were calculated.

Algorithm choice
Cluster analysis was performed using the non-hierarchical
algorithm ALOC in PATN (ver. 3.12, see https://patn.org/;
Belbin 1984, 1987; Belbin and McDonald 1993). Non-
hierarchical algorithms have benefits over hierarchical ones,
because they ‘produce a single partition that optimises within-
group homogeneity, instead of a hierarchical series of partitions
optimizing the hierarchical attribution of objects to clusters’
(Legendre and Legendre 2012, p. 349). The goal is to obtain a
direct representation of the relationships among objects, rather
than a summary of the hierarchal relationships that optimise
fusions (Belbin 1987; Legendre and Legendre 2012). The
potential to re-allocate objects to any group in the partition
at each iteration is another advantage of non-hierarchical
models, and computing memory requirements can be lower,

as an object–group, rather than object–object resemblance
matrix is calculated (Legendre and Legendre 2012).
Negatives include that users must pre-define the number of
groups to be clustered and that the relationship between objects
(usually shown by a dendrogram) can be difficult to visualise.

By calculating object–group, rather than object–object
associations, the non-hierarchical algorithm ALOC is
effective in clustering large datasets. The number of groups
is pre-defined by the user and the number of iterations n–1
(n = sample size). The algorithm begins by allocating objects
to a (suboptimal) set of seeds, starting with the first object in
the dataset (although prior groups can also be used). It
proceeds by taking each object, calculating the closest
group and reallocating it to a closer group if more a
homogenous option is found, until an overall optimal
solution is reached (Belbin 1987). Overall, the algorithm is
reasonably insensitive to seeds, and has been tested against
hierarchical methods and shown to have a good recovery of
clusters (Belbin and McDonald 1993).

Alternative non-hierarchical clustering algorithms that
were investigated, but not selected for analysis, include
k-means, partitioning around meoids (PAM), clustering
large applications (CLARA), OPTPART and OPTSIL
(MacQueen 1967; Kaufman and Rousseeuw 2009; Roberts
2015; Kassambara 2017). K-means is a commonly used
unsupervised machine learning algorithm (Kassambara
2017). It classifies objects so that within cluster, similarity
is maximised, and between-clusters it is minimised. There are
several k-means algorithms; however, the standard one (Wong
and Hartigan 1979) uses Euclidean distance, which is sensitive
to outliers and not appropriate in data with many zeros, as is
the case for many ecological datasets.

PAM (or k-medoids clustering) is less sensitive than is
k-means to outliers and more likely to converge at a similar
solution from different starting medoids (Kaufman and
Rousseeuw 2009). However, PAM is considered suitable for
at most 2000–3000 plots (R help file). CLARA is the
recommended non-hierarchical alternative in R for larger
datasets, but also uses Euclidean (or Manhattan) distance.
Roberts (2015) stated an updated case for the use of non-
hierarchical clustering with his algorithms OPTPART and
OPTSIL. However, OPTSIL took 50 h of CPU time for
209 species and 424 sites (Intel I7 processor). Because this
dataset has over 400 species and 30 000 sites, the computing
time would have been large. Although high-performance
computing provides solutions to this, fast desktop
alternatives such as PATN (one simulation took an average
of 20 min to complete) are a practical and effective alternative.

Cluster analysis and evaluation
For this study, a site by species matrix (31 087 sites; 435
species) was imported into PATN and the Data > Analysis
option was selected. The pre-set menu of PATN splits analysis
options by columns and rows. For rows, no association
measure was selected, with non-hierarchical clustering
(constant 2) and 99 final groups. Ninety-nine groups were
selected to ensure that adequate community variation was
captured, relative to the number of communities previously
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described for the study area (11). For columns, a two-step
association measure was selected, with 21 groups, to display
site by species relationships (constant 2). All evaluations were
selected (details below). The analysis was run, and results were
exported to Excel for further processing.

PATN has a range of summary statistics that can be
exported from the cluster analysis and used to visualise the
results. This includes row (sites) and column (species) group
statistics. Column summary data show the mean value of a
species association to a group centroid, with the most frequent
species having the highest values, whereas row data capture
the group and distance to centroid that a site belongs to. Row
statistics were used to produce an object–group dendrogram, to
show how groups are related to one another, whereas species
scores (column statistics) were used in non-metric
multidimensional scaling (nMDS) to display species–group
relationships. Visual assessment of the dendrogram was used
to determine the number of clusters (groups) for further
interpretation and evaluation.

Cluster evaluation was performed using the inbuilt
evaluation tools of PATN (Belbin 1993; L. Belbin, unbpul.
data). These include the Kruskal–Wallis statistic, principal-
component correlation (PCC) and Monte-Carlo attributes in an
ordination (MCAO). Kruskal–Wallis is a non-parametric
(rank-based) test. In PATN, environmental variables were
used to determine a significant difference among groups,
with higher values being the most discriminating (Kruskal
and Wallis 1952). PCC fits environmental variables to the
cluster solution in ordination space, using multiple linear
regressions (each variable is fitted independently) and
provides an R2 value for interpretation (Belbin 1993).
MCAO tests the robustness of the PCC results. Using
MCAO, environmental variables are re-allocated among
objects (sites), the PCC linear regressions re-run 100 times
and results compared with the true R2 value. Results show the
number of R2 values that exceeded the true R2 value
(percentage permuted R2 > actual R2), with values higher
than 5 of 100 indicating that a significant correlation
is unlikely (PATN help file). Because of the limitations
in PATN for the visualisation of non-hierarchical results in
ordination space, the results of the clustering (species group
statistics) were exported and displayed using nMDS (with the
Bray–Curtis index) in R using the package vegan (ver. 2.3.1,
J. Oksanen, F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre,
D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson,
P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner, see
https://cran.r-project.org/web/packages/vegan/index.html).

Typology and comparison to previous classifications
Following visual interpretation and cluster evaluation, 2, 11,
30 and 77 groups were selected for further analysis. The
30-group partition was chosen to represent community-level
patterns, based on expert interpretation. Because no synoptic
table or fidelity measure options are available in PATN,
species frequency per group was calculated to show the
dominant (indicator) species for each group (Table S1). A
NVIS-style description was developed for each community
group (McKenzie 2008; NVIS Technical Working Group

2017). Several attributes required for a NVIS description
were inferred, because data were not collected in the field
(stratum cover, dominant growth form and average height).
Cover was based on species frequency per group, whereas
the dominant growth form was assigned using FloraBase (see
https://florabase.dpaw.wa.gov.au/) species descriptions. Strata
were assigned on the basis of growth form, including upper
layer (U): trees; mid-layer (M): shrubs, small trees and
monocots; and ground layer (G): small shrubs, grasses,
sedges, ferns, cycads and herbs. Boxplots and nMDS with
the Bray–Curtis index were used to visualise species–group
and environmental associations for the 2- and 30-group
partitions in R. Summary statistics from the cluster analysis
for the 30-group partition (mean distance from group centroids
for each species) were used as input for the nMDS ordination.

An analysis of the difference between previously mapped
units and the current results was performed using a confusion
matrix of the frequency of site occurrence between the two
typologies (see the R script file in the Supplementary material).
Because 11 community types had been previously described
across the study area, an 11-group partition of the classification
was used for the comparison. Finally, confusion statistics
(commission, omission and overall accuracy) were calculated
for the updated typology.

Results

Classification

Overall, the classification identified two supergroups,
representing the upland and riparian flora of the NJF
(A and B, Fig. 2). These supergroups are heavily skewed;
Supergroup B contains the majority of sites (95%) and species,
with the largest subgroup (26) containing 404 species and
24 253 sites (Fig. 2, Table S1). Upland species dominate this
supergroup (Table 1), reflecting their high abundance in the
dataset (jarrah, marri and Macrozamia riedleii, interspersed
with Xanthorrhoea preissii, Bossiaea aquifolium,
Allocasuarina fraseriana, Persoonia longifolia and
Pteridium esculentum). Species unique to the riparian
supergroup (A, 1421 sites, Fig. 2) include Eucalyptus
patens, Taxandria linearifolia, Banksia littoralis and
Hypocalymma angustifolium, which are associated with
valleys, stream banks and seasonally wet areas (see https://
florabase.dpaw.wa.gov.au/). Key dominant species occur
across both supergroups, notably jarrah, marri, X. preissii,
M. riedleii and P. esculentum (Table 1, Table S3). Aspect,
valley depth and convexity varied between the two
supergroups, with riparian sites (A) being found lower in
the landscape on less convex, north-east-facing slopes
(Fig. 3). Species richness and the number of stumps (a
measure of historic logging intensity) was also lower (Fig. 3).

At the community level (30 groups) Eucalyptus patens,
E. rudis and E. megacarpa co-occur with the forest-wide
dominants jarrah and marri in the upper stratum of riparian
communities (Fig. S2, Table S3 of the Supplementary
material). Mid-stratum species Trymalium ledifolium and
X. preissii co-occur widely with both upland and riparian
taxa. The major communities (26–30) were not well
separated in ordination space, but 16 small groups
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(<20 sites) and uncommon taxa occurred as outliers, associated
with restricted or distinct topographic features (Fig. 4). Kunzea
micrantha (KUNMIC) and Aotus cordifolia (AOTCOR) are
shrubs found in peaty soil, marshes and swamps, and
K. micrantha forms a community with other riparian taxa
including Melaleuca preissiana, E. megacarpa and
Lepidosperma squamatum. The outlier Philydrella
drummondii (PHDRU) is a perennial herb of freshwater
swamps. Community 23 contains species associated with
granite outcrops including the fern Cheilanthes
austrotenuifolia (CHEAUS), Neurachne alopecuroidea
(NEUALO) and Hakea petiolaris (HAKPET; FloraBase, see
https://florabase.dpaw.wa.gov.au/). Several other outlier
species are likely because of low records numbers or data-
cleaning errors (e.g. E. microcorys and Stylidium calcaratum,
an alien and annual species respectively; Fig. 4).

Overall, there were significant differences (MCAO < 5%)
among the community groups in species richness, the number
of stumps (a measure of logging disturbance), mean annual
rainfall and aspect (northness; Table 2). Mean annual rainfall
explained the most variation among groups (R2 = 0.32, MCAO
= 0%), whereas northness (R2 = 0.3, MCAO = 0%) and years
since fire (R2 = 0.28, MCAO = 0%) were also significant
(Table 2). At the supergroup level, Supergroup B was
associated with higher wetness and valley depth values
(a negative corollary of elevation) on reduced slopes
(Fig. 3, Table S2). Both eastness and northness were
positive for Supergroup A (0.32, 0.35; indicating north-east-
facing slopes) and were slightly negative in Supergroup B

(–0.04, –0.03; indicating a very slight south-west-facing
tendency; Fig. 3, Table S2).

Comparison to current mapping in the forest

Nine forest ecosystem units have been mapped for the
study area (Fig. 5c). Broadly, they are comparable to the
supergroups, there being geographic overlap between
Supergroup A and the non-dominant forest ecosystem units
(e.g. shrub, herb and sedgelands), whereas Supergroup B
corresponds to the jarrah–north-west unit (Fig. 5c). The
community (30 group) and 77 type classifications showed
additional heterogeneity not captured by the forest
ecosystem units (Table 3). For example, jarrah woodlands
contains 15 communities and 50 types, whereas the shrub, herb
and sedgelands unit incorporates 13 communities and 45 types
(Table 3). Alternatively, the western wandoo woodland unit
corresponds with a single community and only two swamp
communities were described for the larger swamp unit.

At the community scale, previous mapping for the forest
has been conducted using site vegetation types (SVT), with
11 being described in the study area (Table 4, Fig. 5a). There is
some overlap between previous mapping and an 11-group cut
of the current classification, with the majority of historic types
(SVT) clustering into one major and two minor groups (overall
accuracy = 45%, Table 4). Over half of the SVTs are found in
the S and T groups (64% of plots); however, the current
11-group classification is even more unbalanced, with
95% of plots falling into Group 11 and seven groups

Table 1. NVIS hierarchical description for Supergroups A and B, from Class to Subassociation
Supergroup A includes the dominant riparian species in the forest (1421 sites), and Supergroup B contains the majority of species and sites (27 000 sites),
including the common upland taxa. U, tree layer; M, shrub layer; G, ground species. Symbology and naming conventions follow the Australian
Vegetation Attribute Manual (ver. 7.0, NVIS Technical Working Group 2017). �, the species may or may not occur in that vegetation type; ^, a second

genus is co-dominant within a stratum (NVIS Technical Working Group 2017, p. 42)

Level Description Supergroup A Supergroup B

I CLASS Tree Tree
II STRUCTURAL FORMATION Woodland Woodland
III BROAD FLORISTIC FORMATION Eucalyptus and Corymbia woodland Eucalyptus and Corymbia woodland
IV SUB-FORMATION Eucalyptus and Banksia^ woodland; Taxandria and

Hypocalymma^; Pteridium
Eucalyptus and Corymbia^ woodland; Macrozamia

and Banksia^; Hibbertia and Lomandra^
V ASSOCIATION U Eucalyptus patens, Eucalyptus marginata,

Corymbia calophylla (tree); M Taxandria
linearifolia, Xanthorrhoea preissii, Banksia
littoralis (shrub, tree, monocot); G Hypocalymma
angustifolium, Macrozamia riedlei, Pteridium
esculentum (shrub, cycad, fern)

UEucalyptusmarginata,Corymbia calophylla (tree);
M Banksia grandis, Persoonia longifolia,
Trymalium ledifolium (shrub); G Macrozamia
riedlei, Lasiopetalum floribundum, Hibbertia
commutata (shrub, cycad)

VI SUB-ASSOCIATION U Eucalyptus patens, Eucalyptus marginata,
Corymbia calophylla, ±Eucalyptus megacarpa,
±Eucalyptus rudis (tree);MTaxandria linearifolia,
Xanthorrhoea preissii, Banksia littoralis,Mirbelia
dilatata, Melaleuca preissiana (shrub, tree,
monocot); G Hypocalymma angustifolium,
Macrozamia riedlei, Pteridium esculentum,
Tetraria capillaris, Thomasia paniculata (shrub,
cycad, fern, sedge)

U Eucalyptus marginata, Corymbia calophylla,
±Allocasuarina fraseriana (tree); M Banksia
grandis, Persoonia longifolia, Trymalium
ledifolium, Xanthorrhoea preissii (shrub,
monocot); G Macrozamia riedlei, Lasiopetalum
floribundum, Hibbertia commutata, Boronia
fastigiata, Lomandra sonderi (shrub, cycad, herb)
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having <10 quadrats each (Table 4). Group 1 contains the
largest proportion of historic types associated with wet and
riparian conditions (A, C, W; Table 4).

Discussion

Reserve systems are a key societal tool for balancing
development with conservation (Pressey et al. 2007;
Volenec and Dobson 2020). Reserve selection in Australia
is based on systematic conservation planning (with the goal
of being CAR), and a percentage area, regional approach is
used to define comprehensiveness and representativeness
(Commonwealth of Australia 2010; Kukkala and Moilanen
2013). This study used the classification of a large floristic
database (~30 000 sites) to define vegetation types at several
scales and test the representativeness of current units. Overall,
two large supergroups (upland v. riparian) and 30 communities
were described. The community classification includes rarer
types that occur in topographically distinct (e.g. granite
outcrops) or riparian areas, within a matrix of commonly
occurring species across the uplands and plateaus. Tests of
representativeness found that up to 15 communities occur
within the regional-level units currently used for decision-
making. Results demonstrated that community-level
heterogeneity is not adequately captured by the
conservation reserve system. Although it currently meets
national CAR targets, additions are required to meet the
criteria of representative at the community scale.

Explaining heterogeneity

The drivers of broad floristic patterns in the NJF are
topography and climate, and the strong differences found
between the riparian and upland supergroups in this study
were to be expected on the basis of previous work (Havel
1975a, 1975b, 2000). Whereas key dominants occur across the
full gradients of the forest, a distinct suit of species has been
described for the valleys and creeks. Fire is also important, but
its influence on community composition is less understood
(Havel 2000; Burrows and Wardell-Johnson 2003; Williams
et al. 2009; Enright et al. 2011, 2014; Wardell-Johnson et al.
2017; Burrows et al. 2019).

Additional factors that may influence patterns, but were not
well investigated in this study, include soil pH, stochastic or
random effects and biotic interactions. Laliberté et al. (2014)
found that variation in plant species richness was almost
entirely explained by soil pH, acting as an environmental
filter between regional and local species pools (although
this is not likely to be a driver in the NJF; Havel 1975a).
In the kwongan heathlands of south-western Australia,
multiple environmental factors did not explain differences
among restored sites, with unmeasured stochastic or random
effects being important (Riviera 2019). Finally, biotic
interactions (e.g. below-ground facilitative relationships)
may be important and are being incorporated into models
where traditional variables cannot fully explain observations
(Araújo and Luoto 2007; Wisz et al. 2013; le Roux et al. 2014;
Pausas and Bond 2019).
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Methodological challenges

Defining clear groups at the community scale was difficult
(Fig. 4). This was likely to be due to the nature of vegetation
patterns and a lack of environmental gradients, exacerbated by
the survey method (rapid sampling focused on upland areas of
interest to mining). Previous work in the forest by J. Havel
described the vegetation as a multidimensional continuum
with semi-continuous patterns (Havel 1975a, 1975b). Havel
also did not find clear community groups, despite surveying
across larger environmental gradients than did this study and
collecting site-based attributes (soil pH, N, K) for semi-
supervised classification. Because patterns are not discrete,
regression and other forms of gradient analysis may be more
useful than the community concept for understanding
vegetation in this system (Whittaker 1967; Ferrier et al.
2007; Austin 2013).

One type of regression that is well tested in ecological data
is generalised dissimilarity modelling (GDM). GDM is a
multivariate regression method that has been applied widely
in conservation planning and biodiversity assessment (Mokany
and Ferrier 2011; House et al. 2012; Molloy et al. 2016; Ferrier

et al. 2020; Mokany et al. 2020). Abiotic variables are used to
model patterns in species turn-over at the community level and
the following three methods are possible: predict then
assemble, assemble then predict, or predict and assemble
simultaneously (Ferrier 2002; Ferrier and Guisan 2006).
Combining remotely sensed and modelled data
(e.g. Sentienal-2, Landsat, the soil and landscape grid of
Australia) with floristic information in GDM may enable
community groups to be better separated across the upland
and plateau areas of the NJF. Conversely, given the historic
difficulties in defining vegetation communities in this system
and findings from work in other Australian systems with
gradual environmental gradients, supervised classification
may not improve cluster separation (Havel 1975a, 1975b;
Addicott and Laurance 2019).

Finally, decisions made during the definition of vegetation
communities, including survey design and the type of field
data collected (i.e. intuitive mapping v. full floristic plots),
with the data analysis approach used, influence how
community patterns are delineated (McKenzie 2008; Kent
2011). In systems such as the NJF, with many widespread,
co-occurring species, subtle changes in less common species
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will be hard to detect using rapid-survey methods. Because
these species are necessary to detect site differences
(indicators species), unique community types will be
difficult to describe (De Cáceres and Legendre 2009). These
factors are likely to have had an impact on the results of this
study and precipitate the creation of large units that do not
accurately represent the complexity of a system.

A conservation conundrum

This study has highlighted the following two issues with the
conservation reserve system in the NJF: (1) that the forest
ecosystem units are not sufficient for the conservation of
community-level heterogeneity; and (2) the limitations of a
percentage-area approach.

Forest ecosystem units are the basis of a CAR reserve
system in the NJF, despite being based largely on structural
attributes and overlooking significant floristic heterogeneity
(Table 3, Fig. 5c; JANIS 1997; Ecoscape 2002). Although
work has been undertaken in the forest to account for
community-scale patterns in decision-making (vegetation
complexes, Fig. 5b), it is not legislated (Mattiske and Havel
1997, 1998). This study has provided additional evidence that
vegetation heterogeneity is not sufficiently captured by the
forest ecosystem units (Table 3, Fig. 5c). More broadly,
heterogeneity is acknowledged as not being dealt with well
in the conservation planning literature (Possingham et al.
2005; Kukkala and Moilanen 2013). Adaptive conservation
management and policy is needed, with the flexibility to
incorporate scientific developments (Reside et al. 2018). To
ensure our reserve systems are CAR, data products and
assessments at the community scale are required.

This study has also highlighted the limitations of
using percentage-area targets for reserve system design. In
addition to not sufficiently capturing fine-scale ecological
heterogeneity, percentage targets can overlook ecological
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Fig. 4. nMDS with Bray–Curtis index for the community (30-group) classification, with selected species (red) and groups (black). Stress = 0.172. Red
dots are species scores, with labels removed to aid overall readability.

Table 2. Evaluation statistics for the community (30-group) partition
Mean annual rainfall, northness and years sincefire are significantly different
among groups (MCAO < 5%), as is species richness and diversity. Principal-
component correlation (PCC), Kruskall–Wallis (KW), Monte-Carlo

attributes in an ordination (MCAO)

Environmental variable PCC (R2) MCAO (%) KW

Species richness 0.53 0 50.5
Number of stumps 0.44 0 60.4
Mean annual rainfall 0.32 0 38.4
Northness 0.30 0 59.0
Years since fire 0.28 0 48.2
Shannon diversity index 0.25 0 60.6
Distance to valley depth 0.21 0 49.2
Curvature 0.08 11 46.1
Convexity 0.05 22 56.1
Eastness 0.04 35 58.1
SAGA wetness index 0.04 45 51.7
Topographic wetness index 0.02 68 55.6
Longitudinal curvature 0.02 82 45.8
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processes, climate change and other threats (Woinarski et al.
2007; Carwardine et al. 2009; Klein et al. 2009). These limits
are being recognised and efforts made to improve the realism
of conservation prioritisation models (Carwardine et al. 2009;
Runge et al. 2016; Woodley et al. 2019). In the NJF, minimum
reserve requirements have been met (15% of pre-1975 extent is
reserved), but the impacts of climate change are measurable
(16% decrease in average rainfall since 1970). Modelling the
impacts of drying and changing fire regimes to identify refugia
and incorporating these areas into the reserve network would
provide a bridge from percentage-area targets to an adaptive

management approach (Klein et al. 2009; Keppel et al. 2012,
2015; Kukkala and Moilanen 2013; McLaughlin et al. 2017;
Morelli et al. 2020; Stralberg et al. 2020).

Conclusions

This study has highlighted that representativeness (a measure
of heterogeneity at fine scales) is not well accounted for by the
forest ecosystem units currently used for reserve selection in
the NJF. On average, six community groups occur within each
unit, with 13 being described in the shrub, herb and sedgelands
unit and 15 in the jarrah woodland. The current reserve system
of the NJF, although meeting its target of 15%, is not likely
to capture an equal portion of each community group within
these areas.

There are several means to improve measures of
representativeness in both the NJF and national reserve
systems. One is the incorporation of high-quality survey data
collected at the optimal time of year (full floristics) to capture
non-dominant species, which may be important indicators of
unique community types. The second is the re-analysis
of existing datasets to develop and test measures of
representativeness. Critiquing current systems and defining
limitations will provide a basis for adaptive management and
prioritising improvements in reserve selection. The third is
improvements in the pipeline from data collection and
analysis to policymaking. Decisions made during the
definition of vegetation communities, including survey design
and the type of field data collected (i.e. intuitive mapping v. full
floristic plots), with the data analysis approach used, influence
how community patterns are delineated. Finally, a multi-scale
approach to reserve selection, based on a quantitative, floristic,
hierarchical classification system will improve the scientific
rigour underlying decision-making. Although defined targets
are practical for administration purposes, better incorporation
of complexity will bring us closer to truly comprehensive,
adequate and representative reserve systems.
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