Supplementary Material

Enhanced Activity in the Tosylation of Tolanophanes via Supramolecular HgCl₂ Recognition

^A Nano and Organic Synthesis Lab, Chemistry and Chemical Engineering Research Center of Iran, Pajoohesh Blvd, km 17, Karaj Highway, Tehran 14968-13151, Iran.

^B Corresponding author. Email: darabi@ccerci.ac.ir

Fig S1. ^1H NMR spectrum of isomeric mixture of 5a (E/Z = 95:5).
Fig S2. 1H NMR spectrum of 5a (E/Z = 95:5).

Fig S3. 13C NMR spectrum of 5a
Fig S4. 1H NMR spectrum of 5b ($E/Z = 75:25$).

Fig S5. 1H NMR spectrum of 5b ($E/Z = 75:25$).
Fig S6. 13C NMR spectrum of 5b.

Fig S7. 1H NMR spectrum of 5c (E/Z = 40:60).
Fig S8. 1H NMR spectrum of 5c (E/Z = 40:60).
Fig S9. Mass spectrum and LC-Mass spectrum of 5a
Fig S10. Mass spectrum and LC-Mass spectrum of 5b
Fig S11. Mass spectrum and LC-Mass spectrum of 5c

Fig S12. 13C NMR spectrum of 1b
Fig S13. 13C NMR spectrum of 1b@HgCl$_2$.

Fig S14. UV–vis spectrum of 1a upon addition of HgCl$_2$ in CH$_3$CN. Above inset: the changes in absorbance intensity of the solution. Below inset: Job Plot.
Fig S15. UV−vis spectrum of 1c upon addition of HgCl$_2$ in CH$_3$CN. Above inset: the changes in absorbance intensity of the solution. Below inset: Job Plot.

Scheme S1. Plausible mechanism of hydration of alkyne.

Scheme S2. Proposed mechanism for HgCl$_2$-catalyzed synthesis of 5.
Fig S16. 1H-NMR spectrum of 4b
Fig S17. 13C-NMR spectrum of 4b
Fig S18. HH-COSY spectrum of 4b
Fig S19. HSQC spectrum of 4b
Fig S20. Mass spectrum of 4b

Fig S21. 1HNMR spectrum of 4c
Fig S22. 13CNMR spectrum of 4c

Fig S23. Mass spectrum of 4c
Fig S24. The reaction rate (K_2 / K_1) of 1 at 50 °C (blue) and room temperature (red) conditions (The first run).

Fig S25. The reaction rate (K_2 / K_1) of 1 at 50 °C (blue) and room temperature (red) conditions (The second run).
Fig S26. The reaction rate \((K_2 / K_1)\) of 1 at 50 ºC (blue) and room temperature (red) conditions (The third run).

Fig S27. The comparison of three runs and their average reaction rate \((K_2 / K_1)\) of 1 at 50 ºC.
The comparison of three runs and their average reaction rate (K_2 / K_1) of 1 at room temperature.

Fig S28. The comparison of three runs and their average reaction rate (K_2 / K_1) of 1 at room temperature.