10.1071/CH19314_AC

©CSIRO 2020

Australian Journal of Chemistry 2020, 73(1), 16-20

Supplementary Material

Assembly of Three Lanthanide Coordination Polymers from 2-(4-Carboxybenzyloxy) Benzoic Acid Ligand: Synthesis, Structure, and Fluorescent Properties

Shu-Ju Wang,^A Yi-Hui Jiang,^A Han-Lin Wu,^A Li-Xin You,^{A,B} Gang Xiong,^A Fu Ding,^A and Ya-Guang Sun^{A,B}

^AKey Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China.

^BCorresponding authors. Email: youlx@syuct.edu.cn; sunyaguang@syuct.edu.cn

Fig. S1 Tb³⁺ ion is at the center of a nine-coordinated three-crown prismatic configuration. Symmetry code: (A) 1-x,1-y, 2-z; (B) x, y, 1+z.

Fig. S2 Three-dimensional view of complex **3**.

Fig. S3 FT-IR spectra of complexes 1-3 and H₂cbb.

Fig. S4 Experimental (red) and simulated (black) PXRD for 1-3.

Fig. S5 TGA curves for complexes 1-3.

Fig. S6 The excitation and emission spectra of H₂cbb ligand.

Table S1Selected bond lengths(nm)and angles(°)

1						
	Sm(1)-O(1)	2.3766(14)	Sm(1)-O(2 ¹)	2.3977(14)	Sm(1)-O(4 ²)	2.5036(14)
	Sm(1)-O(5 ²)	2.5851(15)	Sm(1)-O(6)	2.3651(14)	Sm(1)-O(6 ¹)	2.6911(14)
	Sm(1)-O(7 ¹)	2.4177(14)	Sm(1)-O(10 ²)	2.5251(14)	Sm(1)-O(11)	2.4535(14)
	O(1)-Sm(1)-O(2 ¹)	136.95(5)	O(1)-Sm(1)-O(4 ²)	89.19(5)	O(1)-Sm(1)-O(5 ²)	126.96(5)
	O(1)-Sm(1)-O(6 ¹)	74.14(4)	O(1)-Sm(1)-O(7 ¹)	93.99(5)	O(1)-Sm(1)-O(10 ²)	70.92(5)
	O(1)-Sm(1)-O(11)	138.92(5)	O(2 ¹)-Sm(1)-O(4 ²)	123.21(5)	O(2 ¹)-Sm(1)-O(5 ²)	72.41(5)
	$O(2^1)$ -Sm(1)-O(6 ¹)	138.04(7)	O(2 ¹)-Sm(1)-O(7 ¹)	49.34(7)	O(2 ¹)-Sm(1)-O(10 ²)	142.03(5)

O(2 ¹)-Sm(1)-O(11)	80.92(5)	O(4 ²)-Sm(1)-O(5 ²)	51.22(4)	$O(4^2)$ -Sm(1)-O(6 ¹)	162.46(4)
O(4 ²)-Sm(1)-O(10 ²)	70.56(5)	O(5 ²)-Sm(1)-O(6 ¹)	136.68(4)	O(6)-Sm(1)-O(1)	72.15(5)
O(6)-Sm(1)-O(2 ¹)	77.61(5)	O(6)-Sm(1)-O(4 ²)	93.91(5)	O(6)-Sm(1)-O(5 ²)	76.70(5)
O(6)-Sm(1)-O(6 ¹)	76.06(5)	O(6)-Sm(1)-O(7 ¹)	126.67(5)	O(6)-Sm(1)-O(10 ²)	139.88(5)
O(6)-Sm(1)-O(11)	145.41(5)	O(7 ¹)-Sm(1)-O(4 ²)	138.21(5)	O(7 ¹)-Sm(1)-O(5 ²)	138.86(5)
O(7 ¹)-Sm(1)-O(6 ¹)	50.74(4)	O(7 ¹)-Sm(1)-O(10 ²)	71.28(5)	O(7 ¹)-Sm(1)-O(11)	74.86(5)
O(10 ²)-Sm(1)-O(5 ²)	114.71(4)	O(10 ²)-Sm(1)-O(6 ¹)	107.86(4)	O(11)-Sm(1)-O(4 ²)	75.68(5)
O(11)-Sm(1)-O(5 ²)	71.10(5)	O(11)-Sm(1)-O(6 ¹)	120.60(4)	O(11)-Sm(1)-O(10 ²)	68.05(5)

Symmetry transformations used to generate equivalent atoms for 1:(1) 1-x, 1-y, 2-z; (2) 1-x, 1-y, 1-z.

_	2						
	Eu(1)-O(1)	2.3509(13)	Eu(1)-O(1 ¹)	2.6863(14)	Eu(1)-O(2 ¹)	2.4052(14)	
	Eu(1)-O(5 ²)	2.5170(14)	Eu(1)-O(6)	2.3647(14)	Eu(1)-O(7 ¹)	2.3843(14)	
	Eu(1)-O(8)	2.4380(14)	Eu(1)-O(9 ²)	2.4862(14)	Eu(1)-O(10 ²)	2.5812(14)	
	O(1)-Eu(1)-O(1 ¹)	76.02(5)	O(1)-Eu(1)-O(2 ¹)	126.73(5)	O(1)-Eu(1)-O(5 ²)	139.98(5)	
	O(1)-Eu(1)-O(6)	72.34(5)	O(1)-Eu(1)-O(7 ¹)	77.69(5)	O(1)-Eu(1)-O(8)	145.24(5)	
	O(1)-Eu(1)-O(9 ²)	93.66(5)	O(1)-Eu(1)-O(10 ²)	76.43(5)	O(21)-Eu(1)-O(1 ¹)	50.85(4)	
	O(2 ¹)-Eu(1)-O(5 ²)	71.16(5)	O(21)-Eu(1)-O(8)	75.00(5)	O(21)-Eu(1)-O(9 ²)	138.37(5)	
	O(2 ¹)-Eu(1)-O(10 ²)	138.93(5)	O(5 ²)-Eu(1)-O(1 ¹)	107.81(4)	O(5 ²)-Eu(1)-O(10 ²)	114.98(4)	
	O(6)-Eu(1)-O(1 ¹)	74.05(4)	O(6)-Eu(1)-O(2 ¹)	93.89(5)	O(6)-Eu(1)-O(5 ²)	70.82(5)	
	O(6)-Eu(1)-O(7 ¹)	137.08(5)	O(6)-Eu(1)-O(8)	138.83(5)	O(6)-Eu(1)-O(9 ²)	88.99(5)	
	O(6)-Eu(1)-O(10 ²)	126.99(5)	O(7 ¹)-Eu(1)-O(1 ¹)	69.34(4)	O(7 ¹)-Eu(1)-O(2 ¹)	80.03(5)	
	O(7 ¹)-Eu(1)-O(5 ²)	141.84(5)	O(7 ¹)-Eu(1)-O(8)	80.86(5)	O(7 ¹)-Eu(1)-O(9 ²)	123.34(5)	

O(7 ¹)-Eu(1)-O(10 ²)	72.35(5)	O(8)-Eu(1)-O(1 ¹)	120.85(5)	O(8)-Eu(1)-O(5 ²)	68.06(5)
O(8)-Eu(1)-O(9 ²)	75.80(5)	O(8)-Eu(1)-O(10 ²)	71.14(5)	O(9 ²)-Eu(1)-O(1 ¹)	162.11(4)
O(9 ²)-Eu(1)-O(5 ²)	70.73(4)	O(9 ²)-Eu(1)-O(10 ²)	51.41(4)	O(10 ²)-Eu(1)-O(1 ¹)	136.50(4)

Symmetry transformations used to generate equivalent atoms for **2**: (1) 1-*x*, 1-*y*, 2-*z*; (2) 1-*x*, 1-*y*, 1-*z*.

3					
Tb(1)-O(1)	2.3356(17)	Tb(1)-O(2 ¹)	2.3529(17)	Tb(1)-O(4 ²)	2.5755(19)
Tb(1)-O(5 ²)	2.4514(17)	Tb(1)-O(6 ¹)	2.6987(17)	Tb(1)-O(6)	2.3192(17)
Tb(1)-O(7 ¹)	2.3737(17)	Tb(1)-O(10 ²)	2.5003(18)	Tb(1)-O(11)	2.4058(17)
O(1)-Tb(1)-O(2 ¹)	137.09(6)	O(1)-Tb(1)-O(4 ²)	127.42(6)	O(1)-Tb(1)-O(5 ²)	88.76(6)
O(1)-Tb(1)-O(6 ¹)	73.93(6)	O(1)-Tb(1)-O(7 ¹)	93.29(6)	O(1)-Tb(1)-O(10 ²)	70.57(6)
O(1)-Tb(1)-O(11)	138.74(6)	O(2 ¹)-Tb(1)-O(4 ²)	72.33(6)	O(2 ¹)-Tb(1)-O(5 ²)	123.71(6)
O(2 ¹)-Tb(1)-O(6 ¹)	69.02(6)	O(2 ¹)-Tb(1)-O(7 ¹)	79.89(6)	O(2 ¹)-Tb(1)-O(10 ²)	141.62(6)
O(2 ¹)-Tb(1)-O(11)	80.70(6)	O(4 ²)-Tb(1)-O(6 ¹)	135.95(6)	O(5 ²)-Tb(1)-O(4 ²)	51.74(6)
O(5 ²)-Tb(1)-O(6 ¹)	135.95(6)	O(5 ²)-Tb(1)-O(10 ²)	71.05(6)	O(6)-Tb(1)-O(1)	72.61(6)
O(6)-Tb(1)-O(2 ¹)	78.24(6)	O(6)-Tb(1)-O(4 ²)	75.82(6)	O(6)-Tb(1)-O(5 ²)	92.46(6)
O(6)-Tb(1)-O(6 ¹)	76.38(6)	O(6)-Tb(1)-O(7 ¹)	127.22(6)	O(6)-Tb(1)-O(10 ²)	139.68(6)
O(6)-Tb(1)-O(11)	144.90(6)	O(7 ¹)-Tb(1)-O(4 ²)	139.13(6)	O(7 ¹)-Tb(1)-O(5 ²)	138.93(6)
O(7 ¹)-Tb(1)-O(6 ¹)	50.95(5)	O(7 ¹)-Tb(1)-O(10 ²)	71.09(6)	O(7 ¹)-Tb(1)-O(11)	75.31(6)
O(10 ²)-Tb(1)-O(4 ²)	115.32(6)	O(10 ²)-Tb(1)-O(6 ¹)	108.03(6)	O(11)-Tb(1)-O(4 ²)	71.16(6)
O(11)-Tb(1)-O(5 ²)	76.41(6)	O(11)-Tb(1)-O(6 ¹)	121.04(6)	O(11)-Tb(1)-O(10 ²)	68.21(6)

Symmetry transformations used to generate equivalent atoms for **3**: (¹) 1-*x*, 1-*y*, 2-*z*; (²) 1-*x*, 1-*y*, 1-*z*.