10.1071/CH19341_AC

©CSIRO 2019 Australian Journal of Chemistry 2019, 72(12), 983-989

Supplementary Material

Supramolecular Interaction Between Cucurbit[8]uril and the Quinolone Antibiotic Ofloxacin

Chun-Rong Li,^A Hua-Ming Feng,^B Jin-Yi Zhao,^C Zhu Li,^C Bing Bian,^D Tie-Hong Meng,^A Xian-Yun Hu,^A Heng Wang,^A and Xin Xiao^{B,E}

^APublic Course Teaching Department, Qiannan Medical College for Nationalities, Duyun 558000, China.

^BKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.

^CCollege of Life Science, Guizhou University, Guiyang 550025, China.

^DCollege of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 550025, China.

^ECorresponding author. Email: gyhxxiaoxin@163.com

Figure S1 p*K*_a studies. Fluorescence emission spectra of OFLX ($2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$) and in the presence of 1.0 equiv of Q[8] at different pH values.

Figure S2 ¹H NMR spectra of free OFLX (A), OFLX in the presence of 0.03 equiv of Q[8] (B), 0.09 equiv of Q[8] (C), 0.15 equiv of Q[8] (D), 0.20 equiv of Q[8] (E), 0.58 equiv of Q[8] (F), 1.02 equiv of Q[8] (G) and host Q[8] (H) in pD = 2.5.

Figure S3 ¹H NMR spectra of free OFLX (A), OFLX in the presence of 1.05 equiv of Q[8] (B), and host Q[8] (C) in pD = 8.0.

Figure S4 The 1 H- 1 H COSY spectrum (400MHz, D₂O) of Q[8]@OFLX.

Figure S5 MALDI-TOF mass spectrum of the complex OFLX@Q[8]

MALDI-TOF mass spectrometry is a common technique used for assessing the interaction between host and guest molecules. As demonstrated in Figure 5, the principal mass spectrometry signal was observed at m/z 1689.809, and identified as OFLX@Q[8] (calculated m/z: 1689.536). These data provide direct support for the formation of a 1:1 stoichiometric Q[8]-OFLX inclusion complex.

Figure S6. (a) UV absorption of OFLX $(2.0 \times 10^{-5} \text{mol} \cdot \text{L}^{-1})$ upon the addition of increasing amounts (0, 0.1, 0.2...2.8, 3.0 equiv) of Q[8], (b) plot of maximum absorption *vs*. N_{Q[8]}/N_{OFLX}.

Figure S7 ITC profile of Q[8] with OFLX in aqueous solution at 298.15 K

Figure S8. (a) Fluorescence emission spectra of OFLX $(2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1})$ upon the addition of increasing amounts (0, 0.1, 0.2...2.8, 3.0 equiv.) of Q[8] at pH 3.5; (b) plot of maximum intensity vs. N_{Q[8]}/N_{OFLX} at pH 3.5.

Figure S9. (a) UV absorption of OFLX $(2.0 \times 10^{-5} \text{mol} \cdot \text{L}^{-1})$ upon the addition of increasing amounts (0, 0.1, 0.2...2.8, 3.0 equiv) of Q[8] at pH 3.5, (b) plot of maximum absorption vs. $N_{Q[8]}/N_{OFLX}$ at pH 3.5.

Figure S10. (a) UV absorption of OFLX $(2.0 \times 10^{-5} \text{mol} \cdot \text{L}^{-1})$ upon the addition of increasing amounts (0, 0.1, 0.2...2.8, 3.0 equiv) of Q[8] at pH 10.0

Figure S11. (a) Fluorescence emission spectra of OFLX $(2.0 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1})$ upon the addition of increasing amounts (0, 0.1, 0.2...2.8, 3.0 equiv.) of Q[8] at pH 10.0

 Table S1. The thermodynamic parameters of Q[8]@OFLX.

Complex	$K_{\rm a} ({ m M}^{-1})$	$\Delta H^{\circ} (\text{kJ mol}^{-1})$	$T\Delta S^{\circ}$ (kJ mol ⁻¹)
Q[8]@OFLX	$(9.07 \pm 0.64) \times 10^5$	(-17.97 ± 1.23)	(18.82 ± 1.49)

Table S2 Binding constant values of some hosts with ofloxacin and other fluoroquinolones at different pH values.

Host	guest	$K_{a} (M^{-1})$	Calculated from	Ref
			determined data	
methyl β-cyclodextrin	Ofloxacin	7.8×10 ³	Fluorescence	[22](c)
(Me-β-CD)				
methyl β-cyclodextrin	Ofloxacin	1.0×10 ³	Fluorescence	[26]
(Me-β-CD)			(pH=7.53)	
methyl β-cyclodextrin	Ofloxacin	0.2×10^{3}	Fluorescence	[26]
(Me-β-CD)			(pH=10.53)	
methyl β-cyclodextrin	Ofloxacin	0.167×10^{3}	Fluorescence	[26]
(Me-β-CD)			(pH=3.05)	
β-CD	Ofloxacin	4.5×10^{5}	Fluorescence	[27]
β-CD	Ofloxacin	$1.17 imes 10^4$	UV-Vis	[28]
Q[7]	Danofloxacin	$(2.1 \pm 0.2) \times 10^4$	Fluorescence	[21]
	(DOFL)		(pH=3.5)	
Q[7]	Danofloxacin	$(1.6 \pm 0.9) \times 10^5$	Fluorescence	[21]
	(DOFL)		(pH=7.5)	
Q[7]	Danofloxacin	$(6.5 \pm 0.5) \times 10^3$	Fluorescence	[21]
	(DOFL)		(pH=10.2)	
Q[7]	Danofloxacin	$(2.1 \pm 0.2) \times 10^5$	ITC	[21]
	(DOFL)		(pH=3.5)	
Q[7]	Danofloxacin	$(1.7 \pm 0.1) \times 10^5$	ITC	[21]
	(DOFL)		(pH=7.5)	
Q[7]	Danofloxacin	$(7.3 \pm 0.5) \times 10^{3}$	ITC	[21]
	(DOFL)		(pH=10.2)	
Q[8]	Ofloxacin	$(9.07 \pm 0.64) \times 10^{5}$	ITC (pH=7.0)	In this work
Q[8]	Ofloxacin	$7.24\times10^4~M^{-1}$	UV-Vis (pH=7.0)	In this work
Q[8]	Ofloxacin	$1.18\times10^5~M^{-1}$	Fluorescence	In this work
			(pH=7.0)	
Q[8]	Ofloxacin	$4.76\times10^4~M^{-1}$	Fluorescence	In this work
			(pH=3.6)	
Q[8]	Ofloxacin	Not get K value	Fluorescence	In this work
			(pH=10.2)	