10.1071/CH19352_AC

©CSIRO 2020

Australian Journal of Chemistry 2020, 73(1), 49-60

Supplementary Material

Synthesis, Structure, and Biological Assays of Novel Trifluoromethyldiazepine-Metal Complexes

Mariana Rocha,^A Gustavo A. Echeverría,^{B,G} Oscar E. Piro,^{B,G} Jorge J. Jios,^C Rocío D. I. Molina,^D Mario E. Arena,^{D,G} Sonia E. Ulic,^{E,F,G} and Diego M. Gil^{A,G,H}

^AINQUINOA (CONICET – UNT), Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina.

^BDepartamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata), CC 67, 1900, La Plata, Argentina.

^CUNIDAD PLAPIMU-LASEISIC (UNLP-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, 1900, La Plata, Argentina.

^DINBIOFAL (Instituto de Biotecnología Farmacéutica y Alimentaria)-CONICET y Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT), Avenida Kirchner 1900, Tucumán, 4000, Argentina.

^ECEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Bv. 120 Nº 1465, 1900, La Plata, Argentina.

^FDepartamento de Ciencias Básicas, Universidad Nacional de Luján, Rutas 5 y 7, 6700, Luján, Buenos Aires, Argentina.

^GMembers of the research Career of CONICET.

^HCorresponding author. Email: dmgil@fbqf.unt.edu.ar

Figure S1: IR spectra of HDZP and [Cu(DZP)₂]·2H₂O

Figure S2: IR spectra of HDZP and [Ni(DZP)₂].

Figure S3: IR spectra of HDZP and $[Co(DZP)_2(H_2O)_2] \cdot 2H_2O$.

Figure S4: IR spectra of HDZP and [Mn(DZP)₃]·2H₂O.

Figure S5: Electronic spectra (in solid state) of HDZP ligand and Cu-DZP, Ni-DZP, Co-DZP and Mn-DZP complexes.

Figure S6: Crystal packing of $[Cu(DZP)_2]$ showing C-H··· π interactions.

Figure S7: Hirshfeld surface mapped over shape index for [Cu(DZP)₂].

Figure S8: Hirshfeld surface mapped over curvedness for [Cu(DZP)₂].

Figure S10: Crystal packing of [Cu(DZP)₂] showing non-classical C-H…F intermolecular interactions.

Figure S11: TGA Curve for the thermal decomposition of [Cu(DZP)₂]·2H₂O.

Figure S12: TGA curve for the thermal decomposition of [Ni(DZP)₂].

Figure 13: TGA curve for the thermal decomposition of $[Co(DZP)_2(H_2O)_2] \cdot 2H_2O$.

Figure 14: TGA curve for the thermal decomposition of $[Mn(DZP)_3] \cdot 2H_2O$.

Figure S16: Distribution of bond and ring (red and yellow spheres) critical points in a dimer of [Cu(DZP)₂] complex.

HDZP	Cu-DZP	Ni-DZP	Co-DZP	Mn-DZP	Assignments ^a	
3242	3229	3226	-	3221	ν N2-H	
3054	3052	3051	3076	3080	νC-H	
2978	2971	2985	2978	2978	$\nu_a CH_2$	
2921	2935	2936	-	2930	$v_a CH_2$	
2866	2865	2870	-	2878	vs CH ₂	
2768	-	-	-	-	v N1-H	
1635	1624	1624	1628	1628	v C = O + v C 10 - C 11	
1615	1596	1596	1594	1598	ν C=C (R1)	
1540	1562	1565	1557	1558	v C-N	
1526	1539	1539	1537	1541	δ Ν2-Η	
1464	1469	1470	1469	1469	δCH_2	
1442	1438	1439	1437	1448	δCH_2	
1322	1312	1313	1313	1307	ωCH_2	
1302	1300	1301	1297	1295	ωCH_2	
1263	1291	1290	1254	1259	v C-C (R1)	
1243	1238	1236	-	1241	v C10-C12	
1211	1227	1208	1206	1227	τω CH ₂	
1189	1183	1183	1186	1188	$v_a CF_3$	
1136	1132	1134	1136	1145	$v_a CF_3$	
1036	1039	1040	1042	1044	$v_s CF_3$	
1028	1031	1030	1033	1034	ρCH ₂	
987	-	-	-	-	γ N1-H	
934	937	937	937	938	γ N2-H	
861	865	865	870	866	δ CCC (R2) + δ CCN	
					(R2)	
788	793	796	798	797	δ CCN (R2)	
750	752	751	754	755	δ C=O	
708	714	715	716	715	$\delta_s CF_3$	
673	681	-	681	674	γ NCC (R2)	
563	564	-	579	565	$\delta_a CF_3$	
536	552	552	552	552	δ CCO (R1)	
-	590	597	594	591	v M-N	
-	487	451	489	487	ν М-О	

Table S1: Main FTIR bands (in cm⁻¹) and tentative assignment free ligand HDZP and itscomplexes $[Cu(DZP)_2] \cdot 2H_2O$ (Cu-DZP), $[Ni(DZP)_2]$ (Ni-DZP), $[Co(DZP)_2(H_2O)_2] \cdot 2H_2O$ (Co-DZP) and $[Mn(DZP)_3] \cdot 2H_2O$ (Mn-DZP).

^a v: stretching, δ : bending, ω : wagging, $\tau \omega$: twisting, γ : out-of-plane bending modes; a: antisymmetric, s: symmetric.

Complex	UV-Vis bands (nm)	Assignment	
$[Cu(DZP)_2]\cdot 2H_2O$	231	$\pi \rightarrow \pi^*$	
	290	$\pi ightarrow \pi^*$	
	337	$n \rightarrow \pi^*$	
	387	Charge transfer	
	492	$^{2}\mathrm{B}_{1\mathrm{g}} \rightarrow ^{2}\mathrm{B}_{2\mathrm{g}}$	
	674	$^{2}B_{1g} \rightarrow ^{2}A_{1g}$	
[Ni(DZP)2]	234	$\pi ightarrow \pi^*$	
	268	$\pi ightarrow \pi^*$	
	334	$n \rightarrow \pi^*$	
	389	Charge transfer	
	563	$^{1}A_{1g} \rightarrow ^{1}B_{1g}$	
[Co(DZP)2(H2O)2]·2H2O	273	$\pi ightarrow \pi^*$	
	354	$n \rightarrow \pi^*$	
	418	${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{1g}(P)$	
	629	${}^{4}T_{1g}(F) \rightarrow {}^{4}A_{2g}(F)$	
[Mn(DZP)3]·2H2O	232	$\pi ightarrow \pi^*$	
	290	$\pi ightarrow \pi^*$	
	408	${}^{6}A_{1g} \rightarrow {}^{4}E_{g}, {}^{4}A_{1g} ({}^{4}G)$	

Table S2: Electronic spectral data of $[Cu(DZP)_2] \cdot 2H_2O$, $[Ni(DZP)_2]$, $[Co(DZP)_2(H_2O)_2] \cdot 2H_2O$ and $[Mn(DZP)_3] \cdot 2H_2O$ complexes.

Table S3: Hydrogen bonds for [Cu(DZP)₂]·2H₂O [Å and °].

D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
C(11)-H(11A)····O#1	0.97	2.47	2.984(3)	113
N(2)-H(2N)····O#2	0.86	2.17	2.871(3)	139

Symmetry transformations used to generate equivalent atoms: (#1) -x+1, -y+1, -z+2; (#2) -x+1, y-1/2, -z+3/2.