10.1071/CH19386_AC

©CSIRO 2020

Australian Journal of Chemistry 2020, 73(4), 312-320

SUPPLEMENTARY MATERIAL

The Single Disulfide-Directed β -Hairpin Fold. Role of Disulfide Bond in Folding and Effect of an Additional Disulfide Bond on Stability

Balasubramanyam Chittoor,^A Bankala Krishnarjuna,^{A,B} Rodrigo A. V. Morales,^{A,Č} and Raymond S. Norton^{A,D,E}

^A Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.

^B Current address: Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.

^c Current address: CSL Limited (Bio21) 30 Flemington Road, Parkville, Victoria 3010, Australia

^D ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia

^E Corresponding author. Email: ray.norton@monash.edu

Residue	H^{N}	H ^α	H^{β}	Ν	other
Cys1	ND	4.42	3.40,3.54	ND	
Trp2	8.90	4.96	3.44,3.37	126.2	H ⁸ 1 7.45 H ^e 1 10.19 H ^e 3 7.80 q H ^z 2 7.63 q H ^z 3 7.67 q N ^e 129.2
Cys3	8.17	4.95	2.66,3.25	121.2	-
Gln4	8.67	4.48	1.96,2.31	121.6	H ^γ 2.42,2.50 H ^ε 7.31,7.41 N ^ε 111.9
Pro5	-	4.57	2.55,2.09	-	H ^γ 2.39, 2.25; H ^δ 3.86, 4.03
Gly6	8.91	4.49,3.76	-	111.7	
Tyr7	8.23	5.14	2.76,3.43	120.1	H^{δ} 6.95; H^{ϵ} 6.94
Ala8	9.34	4.79	1.53	122.7	
Cys9	8.91	4.81	3.21,3.34	120.4	
Asn10	9.04	5.36	3.18	127.4	$H^{\delta}2$ 7.53, 8.05 N^{δ^2} 114.9
Pro11	-	4.56	2.51	-	$H^{\gamma} 2.25$; $H^{\delta} 4.22, 4.12$
Val12	7.89	4.1	2.33	118.7	H ^γ a 1.14; H ^γ b 1.22
Leu13	7.47	4.57	1.81		H^{γ} 1.66 H^{δ} a 1.09
Gly14	8.70	3.99,4.21	-	107.6	
Ile15	7.01	4.85	2.10	111.8	$H^{\gamma}1$ 1.54; H^{γ} 1.17; $H^{\delta}1$ 1.10
Cys16	8.86	5.42	2.96,3.17	122.1	
Thr17	9.42	5.04	4.45	117.1	Η ^γ 2 1.43
Ile18	8.63	3.89	1.65	124.9	$H^{\gamma}1 \ 0.94$; $H^{\gamma}2 \ 1.34$; $H^{\delta}1 \ 0.86$
Thr19	8.24	4.51	4.21	119.6	Η ^γ 2 1.28
Leu20	8.32	4.56	1.78	125.6	$H^{\delta}a 1.06; H^{\delta}b 1.04$

Table S1. Chemical shifts for contryphan-Vc1₁₋₂₂[Q1C, Y9C]) at pH 4.0, 313K

Ser21	8.41	4.61	4.03	117.0	
Arg22	8.46	4.53	1.95,2.09	123.7	H^{γ} 1.51; H^{δ} 3.40; H^{ϵ} 7.34; N^{ϵ} 117.1
$\overline{NH_2}$	7.7,7.3			107.7	

ND- not determined

Figure S1 A. Overlay of two-dimensional ¹H NMR spectra TOCSY and NOESY of contryphan-Vc1₁₋₂₂[Q1C, Y9C] recorded at 40°C. **B.** Region of two-dimensional NOESY spectra showing Gln4^{α} - Pro5^{δ} and Asn10^{α} - Pro11^{δ} cross peaks, suggesting that both prolines are in the *trans* conformation. **C.** ¹⁵N-HSQC spectra of 1 mM contryphan-Vc1₁₋₂₂[Q1C, Y9C] at pH 4.0 and 40°C in water containing 7% ²H₂O.

Con-Vc1₁₋₂₂[Z1Q]

Figure S2 Reversed-phase HPLC analyses of rCon-Vc1₁₋₂₂[Z1Q] treated with trypsin, α -chymotrypsin and pepsin. Details are given under Proteolysis Assays in the Experimental.