SUPPLEMENTARY MATERIAL

Evidence For a Water-Stabilised Ion Radical Complex: Photoelectron Spectroscopy and Ab Initio Calculations

Timothy R. Corkish,^A Christian T. Haakansson,^A Allan J. McKinley,^A and Duncan A. Wild^{A,B}

 ^ASchool of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Crawley, WA 6009, Australia.
^BCorresponding author. Email: duncan.wild@uwa.edu.au

The supporting information presented here comprises results of *ab initio* calculations performed on the $I^- \cdots H_2 O \cdots CH_3 CH_2$ gas phase anion radical complex. Included are the structure, energies, vibrational data, and cartesian coordinates predicted at the MP2 and CCSD(T) levels of theory, with aug-cc-pVDZ, TZ, and QZ basis sets. The aug-cc-pVXZ PP basis sets were used for iodine. Collectively, these basis sets will be referred to as AVXZ.

1 Structure and Energetics

Figure S1: Schematic of the $C_1 I^- \cdots H_2 O \cdots CH_3 CH_2$ gas phase anion radical complex at the MP2/AVQZ level of theory.

Table S1: Structural parameters of the C_1 I⁻...H₂O...CH₃CH₂ gas phase anion radical complex predicted from MP2/AVQZ calculations.

$r(I\cdots H1)$	\angle (I···H1-C)	$r(I\cdots H4)$	$r(I\cdots H2)$	$\angle(I \cdots H2 - O)$	$r(I\cdots C)$	$r(C\cdots H3)$	∠(C…H3−O)	r(O-H2)	r(O-H3)	∠(Н2−О−Н3)	r(C-H1)
[Å]	[°]	[Å]	[Å]	[°]	[Å]	[Å]	[°]	[Å]	[Å]	[°]	[Å]
3.198	125.1	3.042	2.579	161.7	3.919	2.510	152.9	0.976	0.961	100.9	1.079

		E _{(CCSD(T))}	VDE	Experimental SO*	Split	Literature ${}^2P_{3/2}$ VDE †	Shift [‡]
		$[E_h]$	[eV]	[eV]	[eV]	[eV]	[eV]
I- I	AVDZ	-294.8832577 -294.7690618	3.107		2.793 3.735		+0.266
	AVTZ	-294.9822875 -294.8654128	3.180		2.866 3.808		+0.193
	AVQZ	-295.0612422 -294.9399753	3.300		2.986 3.928		+0.073
	CBS	-295.1101156 -294.9859544	3.379	-0.314 +0.628	3.065 4.007	3.059	-0.006

Table S2: Energies of the bare iodide anion and iodine radical determined from CCSD(T) calculations.

* Values from http://www.nist.gov/pml/data/handbook/index.cfm

† Values from http://webbook.nist.gov

‡ Shift refers to the difference between the predicted and literature Electron Detachment Energy

Table S3: Energies of the C_1 I⁻…H₂O…CH₃CH₂ gas phase anion radical complex and neutral triplet counterpart predicted from CCSD(T) calculations.

		$Anion_{(CCSD(T))}$	Triplet _{(CCSD(T))}	zpe	VDE^{\dagger}
		$[E_h]$	$[E_h]$	$[kJ mol^{-1}]$	[eV]
$I^- \cdots H_2 O \cdots C H_3 C H_2$	AVDZ	-450.1147176	-449.9792055		
	AVTZ	-450.3608651	-450.2225428		
	AVQZ	-450.4802765	-450.3378633	223.0*	
	CBS	-450.5522276	-450.4073746		3.59 4.53

* MP2/AVQZ value

† Determined using CCSD(T)/CBS energies and MP2/AVQZ zpe

2 Vibrational Data

Table S4: Vibrational frequencies for the C ₁ I ⁻ …H ₂ O…CH ₃ CH ₂ gas phase anion radical complex from MP2/AVQZ calcula-
tions. Frequencies in cm ⁻¹ , zero point energies (zpe) in kJ mol ⁻¹ . All mode symmetries are a .

-		-
		$I^- \cdots H_2 O \cdots C H_3 C H_2$
	ω_1	3855
	ω_2	3572
	ω_3	3302
	ω_4	3181
	ω_5	3150
	ω_6	3090
	ω_7	3014
	ω_8	1664
	ω_9	1502
	ω_{10}	1491
	ω_{11}	1473
	ω_{12}	1403
	ω_{13}	1208
	ω_{14}	1089
	ω_{15}	994
	ω_{16}	824
	ω_{17}	602
	ω_{18}	516
	ω_{19}	331
	ω_{20}	268
	ω_{21}	233
	ω_{22}	139
	ω_{23}	98
	ω_{24}	87
	ω_{25}	85
	ω_{26}	67
	ω_{27}	39
	zpe	223.0

3 Cartesian Coordinates

		Ι	2	
		Х	у	Ζ
	С	-2.645564	-1.025988	-0.641130
	С	-2.699495	-0.634855	0.788895
	Н	-1.668661	-0.781082	-1.053586
	Н	-3.422253	-0.534866	-1.228752
	Н	-2.790976	-2.104988	-0.764038
C_1 Anion	Н	-1.777283	-0.515802	1.335625
	Н	-3.636352	-0.608740	1.323610
	0	-1.367616	2.347509	-0.135700
	Н	-0.546415	1.820972	-0.170869
	Н	-1.979436	1.705146	0.235072
	Ι	1.110050	-0.147088	0.009848

Table S5: Cartesian coordinates of the geometry of the $I^- \cdots H_2 O \cdots CH_3 CH_2$ gas phase anion radical complex optimised at MP2/AVQZ, in Å.