10.1071/CH19453_AC

©CSIRO 2020

Australian Journal of Chemistry 2020, 73(8), 813-821

Supplementary Material

Probe Intramolecular Hydrogen Bonding of Stereoisomers Using Computational Spectroscopy

Feng Wang,^{A,B} Shawkat Islam,^A and Frederick Backler^A

^ACentre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Vic. 3122, Australia.

^BCorresponding author. Email: fwang@swin.edu.au

Model	Fe-Cp (Δ)*	Fe-C (Δ)*	C-C (Δ)*	С-Н (∆)*	ΔE^{a}
B3LYP ^b	1.670 (0.010)	2.065 (0.001)	1.428 (0.012)	1.082 (0.022)	0.58 (35.5)
HF ^b	1.852 (0.192)	2.206 (0.142)	1.41 (0.030)	1.072 (0.027)	-0.01 (101.1)
MP2 ^b	1.484 (0.176)	1.924 (0.140)	1.441 (0.001)	1.084 (0.020)	2.40 (166.7)
MP2(Full) ^b	1.457 (0.203)	1.905 (0.159)	1.443 (0.003)	1.084 (0.020)	1.11 (23.3)
M06-2X ^b	1.734 (0.074)	2.113 (0.049)	1.420 (0.020)	1.081 (0.023)	0.08 (91.1)
CAM-B3LYP ^b	1.656 (0.004)	2.051 (0.013)	1.422 (0.018)	1.081 (0.023)	0.60 (33.3)
HFc[66]	1.865 (0.205)	2.219 (0.155)	1.413 (0.027)	1.074 (0.030)	0.10 (88.9)
MP2 ^{d[23]}	1.465 (0.195)	1.91 (0.154)	1.441 (0.001)	1.076 (0.028)	4.58 (408.9)
CCSD(T) ^{d [23]}	1.655 (0.005)	2.056 (0.008)	1.433 (0.007)	1.077 (0.027)	1.15 (27.8)
Exp ^[67]	1.660	2.064±0.003	1.440 ± 0.002	1.104±0.006	0.9 ±0.3

Table S1 Comparative performance evaluation of quantum mechanical methods for geometric (Å) and energy (kcal·mol⁻¹) properties of in Fc comformers.

*The values within parenthesis indicate the absolute deviation from experimental valuees for bond lengths, or percentage (%) deviation for ΔE .

^a $\Delta E = Etot(D5d) - Etot (D5h) in kcal·mol⁻¹.$

^bm6-31G(d); ^cDZP; ^dTZV2P+f basic set.

Table S2 Density functional effects with dispersion correction in energy differences $(\Delta(\Delta E_{e-s}))^*$ of gas

and solution phase of Fc (kcal·mol⁻¹).

Model ^a	gas	CCl ₄
B3LYP	-0.58	-0.54
B3LYP-D3	-0.10	-0.50
CAM-B3LYP	-0.60	-0.52
CAM-B3LYP-D3	-0.58	-0.53

* Energy difference, $\Delta(\Delta E_{e-s}) = \Delta(\Delta E(D_{5h} - D_{5d})).$

^a Using m6-31G(d) basic set. PCM solvation model.

$Fc(D_{5h})$	Fe-C ₅ (Å)	Fe-C (Å)	C-C (Å)	C-H (Å)	C5-H (°)	$\Delta E(s-g)^{b}$	$v_1 (cm^{-1})$	α^{c}
ACN	1.670	2.066	1.429	1.083	0.70	-2.34	-12.7	148.41
DCM	1.670	2.066	1.429	1.083	0.70	-1.93	-12.5	141.71
THF	1.670	2.066	1.429	1.083	0.69	-1.83	-11.6	140.11
CCl ₄	1.670	2.066	1.429	1.082	0.68	-0.87	16.1	123.73
DOX	1.670	2.066	1.429	1.082	0.68	-0.86	16.2	123.59
HEX	1.670	2.065	1.428	1.082	0.66	-0.69	-15.9	120.53
Gas ⁷	1.670	2.065	1.428	1.082	0.66	-	17.3	107.90
Fc (D _{5d})	Fe-C ₅ (Å)	Fe-C (Å)	C-C (Å)	C-H (Å)	C5-H (°)	$\Delta E(s-g)^{b}$	$v_1(cm^{-1})$	α^{c}
Fc (D _{5d}) ACN	Fe-C ₅ (Å) 1.675	Fe-C (Å) 2.070	C-C (Å) 1.429	C-H (Å) 1.083	C5-H (°) 0.98	ΔE(s-g) ^b -2.25	$v_1(cm^{-1})$ -14.3	α ^c 148.76
Fc (D _{5d}) ACN DCM	Fe-C ₅ (Å) 1.675 1.675	Fe-C (Å) 2.070 2.070	C-C (Å) 1.429 1.429	C-H (Å) 1.083 1.083	C5-H (°) 0.98 0.97	ΔE(s-g) ^b -2.25 -1.90	v ₁ (cm ⁻¹) -14.3 -13.0	α ^c 148.76 142.05
Fc (D _{5d}) ACN DCM THF	Fe-C ₅ (Å) 1.675 1.675 1.675	Fe-C (Å) 2.070 2.070 2.070	C-C (Å) 1.429 1.429 1.429	C-H (Å) 1.083 1.083 1.083	C5-H (°) 0.98 0.97 0.97	$\Delta E(s-g)^{b}$ -2.25 -1.90 -1.81	v ₁ (cm ⁻¹) -14.3 -13.0 -12.9	α ^c 148.76 142.05 140.44
Fc (D _{5d}) ACN DCM THF CCl4	Fe-C ₅ (Å) 1.675 1.675 1.675 1.674	Fe-C (Å) 2.070 2.070 2.070 2.068	C-C (Å) 1.429 1.429 1.429 1.429	C-H (Å) 1.083 1.083 1.083 1.083	C5-H (°) 0.98 0.97 0.97 0.95	ΔE(s-g) ^b -2.25 -1.90 -1.81 -0.91	v ₁ (cm ⁻¹) -14.3 -13.0 -12.9 -26.0	α ^c 148.76 142.05 140.44 123.85
Fc (D _{5d}) ACN DCM THF CCl ₄ DOX	Fe-C ₅ (Å) 1.675 1.675 1.675 1.674 1.674	Fe-C (Å) 2.070 2.070 2.070 2.068 2.068	C-C (Å) 1.429 1.429 1.429 1.429 1.429 1.429	C-H (Å) 1.083 1.083 1.083 1.083 1.083	C5-H (°) 0.98 0.97 0.97 0.95 0.95	$\frac{\Delta E(s-g)^{b}}{-2.25}$ -1.90 -1.81 -0.91 -0.90	v ₁ (cm ⁻¹) -14.3 -13.0 -12.9 -26.0 -26.0	α ^c 148.76 142.05 140.44 123.85 123.71
Fc (D _{5d}) ACN DCM THF CCl ₄ DOX HEX	Fe-C ₅ (Å) 1.675 1.675 1.675 1.674 1.674 1.674	Fe-C (Å) 2.070 2.070 2.068 2.068 2.068	C-C (Å) 1.429 1.429 1.429 1.429 1.429 1.429 1.428	C-H (Å) 1.083 1.083 1.083 1.083 1.083 1.083	C5-H (°) 0.98 0.97 0.97 0.95 0.95 0.95	$\Delta E(s-g)^{b}$ -2.25 -1.90 -1.81 -0.91 -0.90 -0.74	v ₁ (cm ⁻¹) -14.3 -13.0 -12.9 -26.0 -26.0 -26.6	α ^c 148.76 142.05 140.44 123.85 123.71 120.74

Table S3 Comparison of selected calculated properties of eclipsed and staggered Fc conformers using PCM in different solvents.^a

^aThis work. Basis sets, m6-31G(d) for Fe, 6-31G(d) for others using PCM model.

 ${}^{b}\Delta E(s-g) = E_{tot}(sol) - E_{tot}(gas)$ in kcal·mol⁻¹.

^cPolarizability.

]	D_{5h} (gas)	$D_{5h}(CCl_4)$ $D_{5d}(gas)$		D_{5d} (gas)	$D_{5d}(CCl_4)$	Fc (CCl ₄)	Assig.
Mode	$v(I)^{[8],\$}$	υ(I) ^{\$}	Mode	$v(I)^{[8],\$}$	υ(I) ^{\$}	Exp ^{[34],e}	
No	Sym.	Sym.	No	Sym.	Sym.		
2,3	166 (0.63), e ₁ '	164 (1.33), ?a	2,3	156 (0.45), e _{1u}	155 (0.82), a _{2u}	170 (m)	FeCp bending
7	471 (17.75), a ² "	469 (23.15), a ² "	7,8 ^g	459 (25.54), e _{1n}	458 ^g (33.28), ?b	478 (s)	v FeCp
8,9	488 (22.30), e ₁ '	$487 (28.01), e_1'$	9 ^h	461 (17.39),	460 ^h (22.73), ?b	492 (s)	ηFeCp
18	844(60.31), a2"	844(76.59), ?b	18	848 (60.85), a2u	848 (76.99), ?d	811 (s)	ωCH
22,23	$870 (1.58), e_1'$	869 (1.39), ?c	22,23	871 (1.92), e_{1u}	869 (1.68), ?d	834 (w)	asym. ωCH
30,31	1035 (17.04), e ₁ '	1032 (23.21), e ₁ '	30,31	1035 (16.29), e ₁₀	1034 (22.52), e ₁₀	1002 (s)	βССН
37	1141(20.23), a2"	1137(27.52), a2"	36	1139 (20.46),	1138 (27.70),	1108 (s)	δСр
46,47	1470 (1.55),	1467 (1.62),	44,45	1469 (1.37),	1468 (1.41),	1411 (s)	βССН, хСС
54,55	3257 (23.63),	3257 (28.94),	54,55	3256 (23.88),	3256 (29.90),	3085 (s)	vee vCH
56	3268 (2.75),	3268 (3.50), a2"	57	3267 (2.54),	3267 (3.27), ?f		νCH

Table S4 Comparison of measured and calculated IR frequencies of Fc conformers in CCl₄ solution and the assignment in the entire IR region up to 3300 cm⁻¹.*

*v= stretch; δ =breathing; γ = asym. stretch; β =in plane bending; ω =out of plane bending; η =MCp tilting; The question marks ? refer to certain distortions without being assigned to a particular symmetry. The PCM solvent model is employed in the simulation.

 $v(cm^{-1}) (I(km \cdot mol^{-1}))$

 e w = weak, m = medium, s = strong.

 $^{\rm g}$ Assignment differs from D_{5h} and is v FeCp here.

^h Assignment differs from D_{5h} and is ring tilt here.

Cartesian Coordinates (in Å) for the compounds in this article (global minimum structures unless stated):

Ferrocene (Fc, gas phase)

Fe	0.00000000	0.00000000	0.00000000
С	0.00000000	1.21485700	1.66956500
С	-0.71407500	-0.98284000	1.66956500
С	0.71407500	-0.98284000	1.66956500
С	1.15539800	0.37541100	1.66956500
С	-1.15539800	0.37541100	1.66956500
С	0.00000000	1.21485700	-1.66956500
С	-0.71407500	-0.98284000	-1.66956500
С	0.71407500	-0.98284000	-1.66956500
С	1.15539800	0.37541100	-1.66956500
С	-1.15539800	0.37541100	-1.66956500
Н	0.00000000	2.29720800	1.65953100
Н	-1.35026500	-1.85848000	1.65953100
Н	1.35026500	-1.85848000	1.65953100
Н	2.18477500	0.70987600	1.65953100
Н	-2.18477500	0.70987600	1.65953100
Н	0.00000000	2.29720800	-1.65953100
Н	-1.35026500	-1.85848000	-1.65953100
Н	1.35026500	-1.85848000	-1.65953100
Н	2.18477500	0.70987600	-1.65953100
Н	-2.18477500	0.70987600	-1.65953100

Fc Eclipsed conformer (D5h Opt B3LYP/m6-31G(d))

Fc Staggered conformer (D5d Opt B3LYP/m6-31G(d))

Fe	0.00000000	0.00000000	0.00000000
С	-0.71407200	-0.98283600	1.67361400
С	0.71407200	0.98283600	-1.67361400
С	0.00000000	1.21485200	1.67361400
С	-1.15539300	0.37541000	1.67361400
С	1.15539300	0.37541000	1.67361400
С	0.71407200	-0.98283600	1.67361400
С	1.15539300	-0.37541000	-1.67361400
С	0.00000000	-1.21485200	-1.67361400
С	-1.15539300	-0.37541000	-1.67361400
С	-0.71407200	0.98283600	-1.67361400
Н	0.00000000	2.29721300	1.65952200
Н	-2.18477900	0.70987800	1.65952200
Н	2.18477900	0.70987800	1.65952200
Н	-1.35026800	-1.85848400	1.65952200
Н	1.35026800	-1.85848400	1.65952200
Н	2.18477900	-0.70987800	-1.65952200
Н	0.00000000	-2.29721300	-1.65952200
Н	1.35026800	1.85848400	-1.65952200
Н	-2.18477900	-0.70987800	-1.65952200
Н	-1.35026800	1.85848400	-1.65952200

GUA (2-MP) (AS, B3LYP/6-311++G(d,p), gas phase)

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z

1 6 0 0.168543 2.845857 0.000000

```
280-0.6304801.6683600.000000
3 6 0 0.000000 0.446701 0.000000
4 6 0 1.373869 0.235572 0.000000
5 6 0 -0.884084 -0.648333 0.000000
6 6 0 1.873227 -1.071832 0.000000
7600.999798-2.1529400.000000
8 6 0 -0.380814 -1.941256 0.000000
980-2.231636-0.4402000.000000
10 1 0 -0.528609 3.682044 0.000000
11 1 0 0.797420 2.894807 0.894794
12 1 0 0.797420 2.894807 -0.894794
13 1 0 2.059650 1.072753 0.000000
14 1 0 2.944882 -1.231496 0.000000
15 1 0 1.384891 -3.165869 0.000000
16 1 0 -1.079275 -2.769620 0.000000
17 1 0 -2.382680 0.514686 0.000000
  _____
```

Mequinol (4-MP) (AS, B3LYP/6-311++G(d,p), gas phase)

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z

1 6 0 -0.004455 0.018012 0.000956 2800.0000490.0242951.419590 3 6 0 1.207965 0.002015 2.065303 4 6 0 1.153690 -0.003371 3.464467 5 6 0 2.448986 -0.021527 1.430945 6 6 0 2.317975 -0.019682 4.215842 7603.621715-0.0508812.193849 8 6 0 3.564085 -0.023738 3.582472 9804.682463-0.1089734.380743 10 1 0 0.467425 -0.887267 -0.398097 11 1 0 0.501796 0.900822 -0.406340 12 1 0 -1.052194 0.036996 -0.295211 13 1 0 0.183177 0.007333 3.945709 14 1 0 2.527259 -0.029907 0.352217 15 1 0 2.279133 -0.024421 5.298429 16 1 0 4.582680 -0.092584 1.689863 17 1 0 5.437415 0.272878 3.921116

Furfural (B3LYP/6-311++G(d,p), gas phase)

O -0.63351 -1.10871 0.00015

O 2.59441 0.35923 -0.00007 C 0.27738 -0.07934 0.00013 C -0.38534 1.12027 0.00021 C -1.77385 0.81473 -0.00025 C -1.86202 -0.54866 0.00004 C 1.68562 -0.44574 -0.00014 H 0.08353 2.09113 0.00046 H -2.60028 1.50734 -0.00044 H -2.69449 -1.23276 -0.00034 H 1.87326 -1.5375 -0.00026