Supplementary Material

Phote-HrTH (*Phormia terraenovae* hypertrehalosaemic hormone), the Metabolic Hormone of the Fruit Fly: Solution Structure and Receptor Binding Model

Ibrahim A. Abdulganiyyu, ^A *Marc-Antoine Sani*, ^C *Frances Separovic*, ^C *Heather Marco*, ^B *and Graham E. Jackson* ^{A,D}

^ADepartment of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa.

^BBiological Sciences, University of Cape Town, Private Bag, Rondebosch, Cape Town, 7701, South Africa.

^CSchool of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia.

^DCorresponding author. Email: graham.jackson@uct.ac.za

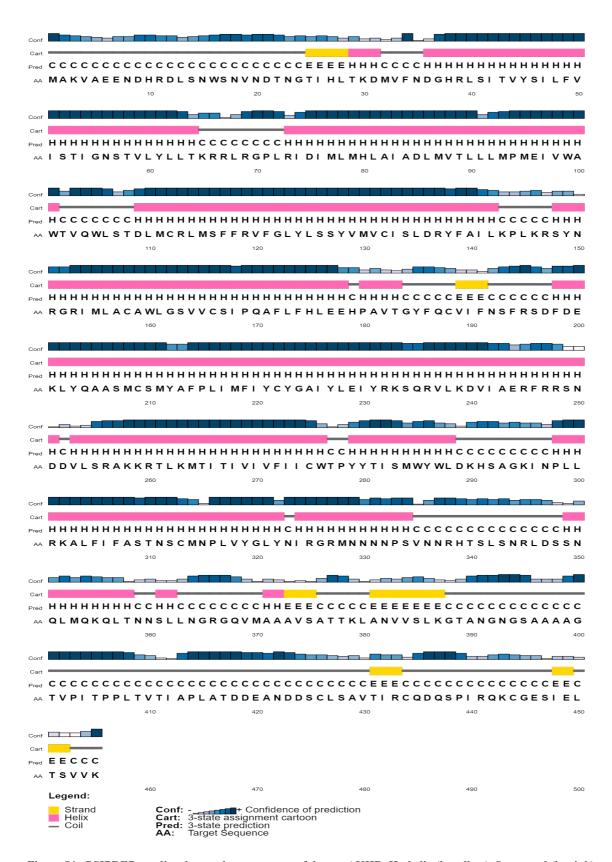


Figure S1. PSIPRED predicted secondary structure of drome-AKHR. H= helix (in yellow), S = strand (in pink) and C =coil (ash)

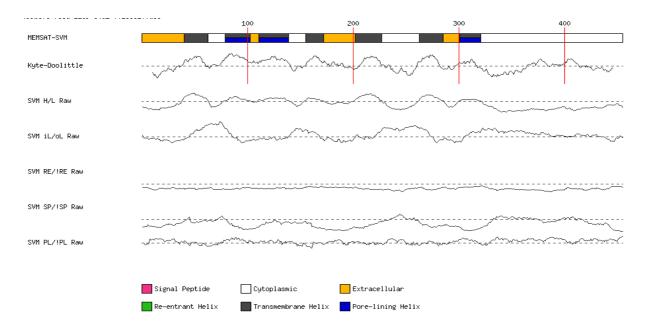


Figure S2. Schematic diagram of the MEMSAT-SVM predictions for the query sequence of Drome-AKHR. Traces indicate the RAW outputs for the prediction SVMs. Dashed lines indicate the prediction threshold. PL: Pore lining residue SP: Signal peptide residue RE: Re-entrant helix residue iL/oL & H/L: Helix prediction.

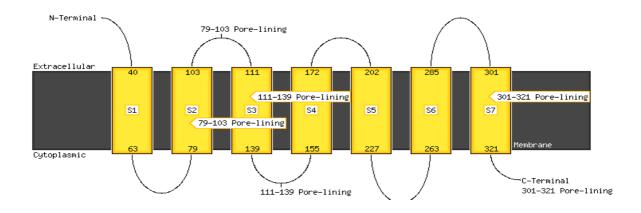


Figure S3. Prediction of transmembrane helices and the topology analysis of Drome-AKHR. The helices are represented in yellow and labelled S1-S7, the membrane (black) and the loops (thin black line) starting from the N-terminus (the extracellular region) and terminating at the C-terminus (the intracellular region)

Chain	1 5		1 1 1	11 1	1111	1111	1111		1 1 1	40	1111	50	111	55	11 1	1111	111	70	75	1111	1111
Consensus	RLSI	TVYS	ILF	VIST:	EGNST	VLYL	LTKRR	LRGF	LRID	IML	MHLAI	ADLM	VTL	LLMP	MEIV	WAWT	VQWL	STD	LMCR	LMSF	FRVFG
. 1: 2rodofrf.pdb.A	HRLSI	TVYS	ILF	VIST:	E G <mark>N</mark> S T	VLYL	LTKRR	<mark>l R</mark> G F	LRID	IML	MHLAI	A D L M	VTL	LLMP	MEIV	<mark>W</mark> AWT'	VQWL	STD	LMCR	LMSF	FRVFG
. 2: 2beta2frf.pdb.A	RLSI	TVYS	ILF	VIST:	E G <mark>N</mark> 5 T	VLYL	L T K R R	LRGF	PLR <mark>ID</mark>	IML	MHLAI	A <mark>D</mark> LM	VTL	LLMP	MEIV	M <mark>awt</mark> '	VQWL	STD	LMCR	LMSF	FRVFG
Chain	86 90		95	100	105	110	1111	1111	120	125	130	134	111	140	145	150	111	155	160	188	170
Consensus	LYLSS		CIS	LDRY	AILK	PLKR	SYNRG	RIMI	LACAW	LGS				LEEH	PAVT				RSDF	DEKL	
. 1: 2rodofrf.pdb.A	LYLSS			_																	
. 2: 2beta2frf.pdb.A	LYLSS	YVMV	CIS	DRY	A I L K	PLKR	S Y N R G	RIMI	LACAW	ILG51	/	PQAF	LFH	LEEH	PAVT	GYFQ	CVIF	NSF	RSDF	DEKL	YQAAS
Ch-i-	1111	111	ПП	1111	ш	ш	1111	1111	ПП	щ	ш		111	ПП	П	1111	111	ηп	ш	ш	ш
Chain	171 17	5 1	180	185	190	195			205	210	215	220)	225	230	235		240	245	250	
Consensus	MCSMY	AFPL	IMF:	I Y C Y (SAIYL	EIYR	KSQRV	LKD	/IAER	FRRS	SNDDV	LSRA	KKR	TLKM	TITI	VIVE	IICW	ITPY	YTIS	MWYW	LDKHS
. 1: 2rodofrf.pdb.A	MCSMY	AFPL	IMF	I Y C Y (GAIYL	EIYR	KSQRV	LKD	/IAER	FRRS	NDDV	L S <mark>R A</mark>	K K R	TLKM	TITI	VIVE	II <mark>CW</mark>	ITPY	YTIS	MWYW	LDKHS
. 2: 2beta2frf.pdb.A	MCSMY	AFPL	IMF:	IYCY(GAIY	EIYR	KSQRV	LKD	/IAER	FRRS	NDDV	L S <mark>R A</mark>	KKR	TLKM	TITI	VIVE	IICW	ITPY	YTIS	MWYW	LDKHS
	1111		1111	1111	1111		1111		1111	ı											
Chain	256 26	0 2	265	270	275	280	28	5	290 29	3											
Consensus	AGKIN	PLLR	KALI	FIFAS	STNSC	MNPL	VYGLY	NIRO	GRMNn												
. 1: 2rodofrf.pdb.A	AGKIN	PLLR	KAL	FIFA!	TNSC	MNPL	VYGLY	NIRO	GRMNN	I											
. 2: 2beta2frf.pdb.A	AGKIN	PLLR	KAL	FIFAS	5 T N S C	MNPL1	V Y <mark>G</mark> L Y	NIRO	GRMN												

Figure S4. Schematic diagram representing an alignment of both models constructed from both Rhodopsin and beta2 androgenic receptor templates of Drome-AKHR, the *Drosophila melanogaster* adipokinetic hormone receptor. Red indicates residues in the seven transmembrane helices, blue shows the extra-cellular regions, while the intra-cellular regions are represented in purple, yellow denotes cystine ionic lock, and green shows the highly conserved residues.

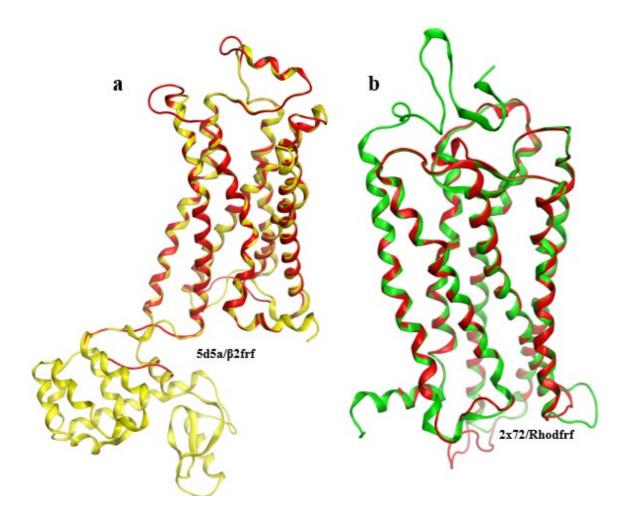
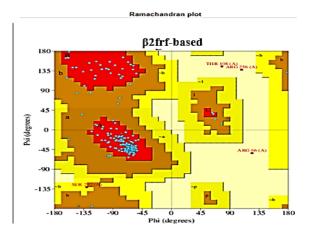



Figure S5. a) An overlay of β 2frf-based-AKHR (the constructed model, in red) and 5d5a (the template used for constructing the model, in yellow). b) shows an overlay of Rhodfrf-based-AKHR (the constructed model, in red) and 2x72 (the template used for constructing the model, in green).

1. Ramachandran Plot statistics for 62frf-based

		No. of residues	8-tage
Most favoured regions [Additional allowed regions Generously allowed regions Disallowed regions [a,b,1,p]		93.0% 5.6% 0.4% 1.1%*
Non-glycine and non-proline	residues	270	100.0%
End-residues (excl. Gly and	Pro)	2	
Glycine residues Proline residues		10 9	
Total number of residues		291	

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and *R*-factor no greater than 20.0 a good quality model would be expected to have over 90% in the most favoured regions [A,B,L].

b)

2. Ramachandran Plot statistics for Rhodfrf-based

		No. of residues	8-tage	
Most favoured regions	[A,B,L]	244	89.7%*	
Additional allowed regions	[a,b,l,p]	19	7.0%	
Generously allowed regions	[-a,-b,-1,-p]	7	2.6%	
Disallowed regions	[XX]	2	0.75*	
Non-glycine and non-proline	residues	272	100.0%	
End-residues (excl. Gly and	Pro)	2		
Glycine residues		10		
Proline residues		9		
		293		

Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and R-factor no greater than 20.0 a good quality model would be expected to have over 90% in the most favoured regions [A,B,L].

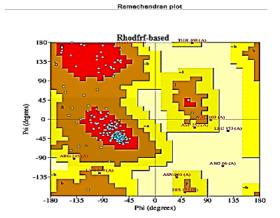


Figure S6. Ramachandran plots of a) \(\beta 2 \) frf-based and b) Rhodfrf-based models

Table S1. Comparison of helical sequences of Drome-AKHR with β2AR and rhodopsin.

Helix	% sequence	identity with	% sequence similarity with						
	β2AR (β2frf)	rhodopsin (rhodfrf)	β2AR(β2frf)	rhodopsin (rhodfrf)					
1	16	20	60	61					
2	25	16	58	52					
3	29	30	68	60					
4	28	40	76	80					
5	23	17	65	60					
6	34	23	83	74					
7	43	45	88	88					