Supplementary Material

Improved Access to Linear Tetrameric Hydroxamic Acids with Potential as Radiochemical Ligands for Zirconium(IV)-89 PET Imaging

Christopher J. M. Brown,^A Michael P. Gotsbacher,^A and Rachel Codd^{A,B}

^ASchool of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia. ^BCorresponding author. Email: <u>rachel.codd@sydney.edu.au</u>

Improved Access to Linear Tetrameric Hydroxamic Acids with Potential as Radiochemical Ligands for Zirconium(IV)-89 PET Imaging

Electronic Supplementary Material

INDEX

Item	Title	Pg
Index	Index	1
Figure S1a	¹ H NMR spectrum of 2	2
Figure S1b	¹³ C NMR spectrum of 2	2
Figure S2a	¹ H NMR spectrum of 3	3
Figure S2b	¹³ C NMR spectrum of 3	3
Figure S2c	¹ H- ¹ H COSY NMR spectrum of 3	4
Figure S2d	¹ H- ¹³ C HSQC NMR spectrum of 3	4
Figure S2e	HRMS of 3	5
Figure S3a	¹ H NMR spectrum of 4	6
Figure S3b	¹³ C NMR spectrum of 4	6
Figure S3c	¹ H- ¹ H COSY NMR spectrum of 4	7
Figure S3d	¹ H- ¹³ C HSQC NMR spectrum of 4	7
Figure S3e	HRMS of 4	8
Figure S4a	¹ H NMR spectrum of 5	9
Figure S4b	¹³ C NMR spectrum of 5	9
Figure S4c	¹ H- ¹ H COSY NMR spectrum of 5	10
Figure S4d	¹ H- ¹³ C HSQC NMR spectrum of 5	10
Figure S4e	HRMS of 5	11
Scheme S1	Complexes between Fe(III) and 1–4	12

Figure S2b. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) for DFOB-PPH (**3**).

Figure S2c. ¹H-¹H COSY NMR spectrum (600 MHz, DMSO-*d*₆) for DFOB-PPH (**3**).

Figure S2d. ¹H-¹³C HSQC NMR spectrum (600 MHz, DMSO-*d*₆) for DFOB-PPH (3).

Figure S2e. Experimental (top) and calculated (bottom) isotope patterns for the $[M+H]^+$ adduct of DFOB-PPH (3).

Figure S3b. ¹³C NMR spectrum (150 MHz, DMSO- d_6) for DFOB-PPH^NO^CO (4).

Figure S3c. $^{1}H^{-1}H$ COSY NMR spectrum (600 MHz, DMSO- d_{6}) for DFOB-PPH^NO^CO (4).

Figure S3d. ¹H-¹³C HSQC NMR spectrum (600 MHz, DMSO-*d*₆) for DFOB-PPH^NO^CO (4).

Figure S3e. Experimental (top) and calculated (bottom) isotope patterns for the $[M+H]^+$ adduct of DFOB-PPH^NO^CO (4).

Figure S4b. ¹³C NMR spectrum (150 MHz, DMSO-*d*₆) for DFOB-PPH-*p*-Bn-SCN (5).

Figure S4c. ¹H-¹H COSY NMR spectrum (600 MHz, DMSO-*d*₆) for DFOB-PPH-*p*-Bn-SCN (**5**).

Figure S4d. ¹H-¹³C HSQC NMR spectrum (600 MHz, DMSO-*d*₆) for DFOB-PPH-*p*-Bn-SCN (5).

Figure S4e. Experimental (top) and calculated (bottom) isotope patterns for the $[M+H]^+$ adduct of DFOB-PPH-*p*-Bn-SCN (**5**).

Scheme S1. Complexes between Fe(III) and **1–4** as formed in a metal:ligand stoichiometry of (a) 1:1 or (b) 4:3.