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Figure 1.) Reagents and conditions: (a) Phtalimide, K2CO3, DMF, r.t.; (b) Sec-Amine, NaI, acetone, reflux; (c) N2H4, MeOH, reflux;
(d) F3CCO2Et, CH3CN °0 C to r.t.; (e) Boc2O, CH2Cl2, r.t.; (f) K2CO3, MeOH, H2O, reflux. Pht = Phtaloyl; Tfa = Trifluoroacetyl.
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Experimental 

N-(3-Chloropropyl)phtalimide (12) was prepared according to a procedure reported by Nagarapu 
et al.[1] Phthalimide (3.30 g, 22.4 mmol) was dissolved in anhydrous DMF (50 mL) under argon and 
slowly added to a stirred solution of 1-bromo-3-chloropropane (11) (5.30 g, 33.7 mmol) and finely 
divided anhydrous K2CO3 (6.20 g, 44.9 mmol) in anhydrous DMF (25 mL). The reaction was stirred 
under argon at ambient temperature for 16 h. The reaction was then treated with ice water (50 mL) 
and the mixture stirred for 15 minutes. The mixture was transferred to a separation funnel and the 
aqueous phase was extracted three times with dichloromethane (3 × 25 mL).  The combined organic 
phases were dried over anhydrous sodium sulfate, filtered and evaporated under reduced pressure. 
The residue was extracted with diethyl ether (50 mL). The organic extract was washed with water (5 
× 25 mL) and brine (2 × 25 mL).  The organic phase was then evaporated under reduced pressure 
and the remaining crude product was purified by flash chromatography (silica gel, 0-30% EtOAc in 
hexanes) to provide the pure as a white crystalline solid (80% yield). 
 
Tertiary propyl amines (13) were prepared according to a general procedure. Thus, N-(3-
morpholin-4’-yl-propyl)phtalimide was obtained according to a protocol reported by Contreras et 
al.[2]  To a solution of compound 12 (1.5 g, 6.7 mmol) in acetone (50 mL) was added morpholine 
(1.26 g, 14.4 mmol) and sodium iodide (3.02 g, 20.1 mmol). The reaction mixture was heated under 
reflux for 24 h. The reaction mixture was cooled to ambient temperature and the acetone was 
removed under reduced pressure. Water (50 mL) was added and the mixture transferred to a 
separation funnel. The aqueous phase was extracted three times with diethyl ether (3 × 25 mL) and 
the combined organic phases were dried over anhydrous with sodium sulfate. After filtration the 
solvent was evaporated under reduced pressure and the crude product was purified by flash 
chromatography (silica gel, 100 % EtOAc) to provide N-(3-morpholin-4’-yl-propyl)phtalimide as 
a light beige oil (86% yield).   
 
Primary propyl amines (14) were prepared according to a general phthalimide deprotection 
procedure with hydrazine. Thus, 3-morpholin-4’-yl-propylamine was obtained from a protocol 
reported by Lukinavičius et al.[3] Hydrazine (0.36 g, 11 mmol) was added dropwise to compound 13 
(1.54 g, 5.63 mmol) dissolved in methanol (35 mL).  The reaction mixture was then heated on reflux 
for three hours. After the reaction mixture was cooled to ambient temperature the methanol was 
removed under reduced pressure. A mixture of ethanol and water (1:1, 35 mL) was added followed 
by the addition of 1M aqueous HCl and the pH adjusted to ~ 1.  The white precipitate was collected 
via filtration and was washed with water (4 × 20 mL).  The solid was then dissolved in 1M aqueous 
NaOH and transferred to a separation funnel. The aqueous phase was extracted with 
dichloromethane (3 × 25 mL) and the combined organic phases were dried over anhydrous sodium 
sulfate. After filtration, the solvent was evaporated under reduced pressure and the crude product 
was obtained as a colorless oil (82% yield).  This product was then used in the next step without 
further purification.  
 
N-Boc-N-methyl-1,3-trimethylenediamine (18, n=3).[4,5]  Ethyl trifluoroacetate (5.32 g, 37.4 
mmol) was slowly added to a solution of N-methyl-1,3-trimethylenediamine (15) (3.00 g, 34.0 
mmol) in acetonitrile (15 mL) at 0 °C.  The ice-water bath was removed and the reaction mixture 
was refluxed for 2 h and then stirred at ambient temperature for 20 h. The solvent was then removed 
under reduced pressure and subsequently azeotrope dried with benzene (2 × 20 mL) to provide N-
Trifluoroacetyl-N’-methyl-1,3-trimethylenediamine (16) (6.26 g, 99%) as a colorless oil. To a 

http://pubs.acs.org/action/doSearch?action=search&author=Lukinavi%C4%8Dius%2C+G&qsSearchArea=author
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solution of the product obtained (16) (6,26 g) in dichloromethane (20 mL) at 0 °C was dropwise 
added a solution of di-tert-butyl dicarbonate (8.15 g, 37.4 mmol) in dichloromethane (25 mL).  
Caution! CO2 formation! Once the formation of carbon dioxide ceased the ice-water bath was 
removed and the reaction mixture was stirred over night at ambient temperature. After the solvent 
was removed under reduced pressure, the crude product was purified by flash chromatography (silica 
gel, 30% EtOAc in hexanes) to provide N-trifluoroacetyl-N’-methyl-N’-tert-butoxycarbonyl-1,3-
trimethylenediamine (17) (8.23 g, 85%) as a colorless oil.  To a solution of 17 (500 mg, 1.76 
mmol) in methanol (10 mL), water was added (4 mL) followed by adding a solution of potassium 
carbonate (486 mg, 3.52 mmol) in water (10 mL) and the reaction mixture was stirred for 20 h at 
ambient temperature.  The methanol was removed under reduced pressure and the remaining 
aqueous phase diluted with brine (50 mL).  The mixture was transferred to a separation funnel, 
extracted with dichloromethane (2 × 25 mL) and the combined organic phases were dried over 
anhydrous sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and 
product 18 was obtained as a colorless oil (290 mg, 88%).  This product and was then used in the 
next step without further purification. 
 
Preparation of compounds 4-8: 
 
5-Chloro-2H-chromene-3-carboxaldehyde (4).[6] A mixture of 6-chlorosalicylaldehyde 3 (16.5 g, 
0.105 mol), DABCO (5.90 g, 0.053 mol), acrolein (10.5 mL, 0.158 mol), and dioxane (36 mL) was 
placed in a sealed vial and heated with stirring at 95 °C for 140 minutes. The reaction mixture was 
cooled to room temperature, diluted with CH2Cl2, washed with 10% aqueous HCl and then brine, 
dried with anhydrous Na2SO4, and evaporated. Chromatography on silica using a gradient of 25–
50% CH2Cl2 in hexanes gave 14.8 g (72%) of 4 as light yellow crystals. An analytical sample was 
recrystallized from EtOAc/hexanes: m.p. 65.5–66 °C. 1H NMR (DMSO-d6) δ 9.69 (s, CHO, 1H), 
7.77 (s, CH=CCHO, 1H), 7.34 (dd, J=8.0, 8.0 Hz, ArH, 1H), 7.13 (d, J=8.0 Hz, ArH, 1H), 6.88 (d, 
J=8.0 Hz, ArH, 1H), 4.94 (s, OCH2, 2H). 13C NMR (CDCl3) δ 189.7, 157.1, 137.0, 133.8, 133.0, 
132.3, 122.6, 119.2, 115.3, 63.0. HRMS (M+H)+: calc. for C10H8O2Cl, 195.0207; found, 195.0204. 
 
5-Chloro-2H-chromene-3-carboxylic acid (5).[6] To absolute ethanol (195 mL) in a round-
bottomed flask was added a solution of sodium hydroxide (12.2 g, 305 mmol) in water (97 mL). A 
solution of silver nitrate (27.2 g, 160 mmol) in water (97 mL) was then added dropwise with 
vigorous stirring. To the resulting suspension of Ag2O was added aldehyde 4 (14.8 g), and the 
mixture was heated and stirred at 85 °C for 75 minutes. The mixture was cooled to room temperature 
and the clear supernatant was decanted. The solid was washed with a 1:1 ethanol/water solution (3 × 
20 mL), and the washings were combined with the decanted supernatant. Dilution with an excess of 
1M aq. HCl gave a voluminous white precipitate which dissolved upon extraction with CH2Cl2. The 
resulting CH2Cl2 solution was dried with Na2SO4, filtered, and evaporated to give 15.5 g (97%) of 5 
as cream-colored fluffy crystals.  An analytical sample was recrystallized from EtOAc/hexanes: m.p. 
192.5–193 °C. 1H- NMR (DMSO-d6) δ 13.10 (bs, CO2H, 1H), 7.54 (m, CH=CCHO, 1H), 7.28 (dd, 
ArH, J = 8.2, 8.2 Hz, 1H), 7.09 (dd, ArH, J = 8.2, 1.1 Hz, 1H), 6.87 (ddd, ArH, J = 8.2, 1.1, 1.1 Hz, 
1H), 4.92 (s, OCH2, 2H). 13C NMR (CDCl3) δ 168.7, 156.6, 133.8, 132.3, 132.1, 122.7, 122.5, 119.4, 
115.1, 64.0. HRMS (M–H)–: calc. for C10H6O3Cl, 209.0011; found, 209.0012. 
 
5-Chlorochroman-3-carboxylic acid (6). To a solution of 5 (7.50 g) in 10% aqueous NaOH (193 
mL) was added 3% sodium amalgam (103 g). The mixture was stirred overnight at room 
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temperature. The supernatant was decanted from the liquid mercury, and the mercury was washed 
twice with small portions of 10% aq. NaOH. The washings were combined with the supernatant, 
acidified to a pH of 2 with conc. HCl, and extracted with CH2Cl2. The CH2Cl2 solution was dried 
with Na2SO4, filtered, and evaporated to give 7.51 g (99%) of 6 as a white crystalline solid. An 
analytical sample was recrystallized from EtOAc/hexanes: m.p. 129.5–130 °C. 1H NMR (DMSO-d6) 
δ 12.70 (bs, CO2H, 1H), 7.10 (dd, J=8.0, 8.0 Hz, ArH, 1H), 6.99 (dd, J=8.0, 1.2 Hz, ArH, 1H), 6.75 
(dd, J=8.0, 1.2 Hz, ArH, 1H), 4.28 (dd, J=10.8, 4.3 Hz, OCH2CH, 1H), 4.16 (dd, J=10.8, 7.0 Hz, 
OCH2CH, 1H), 3.05 (m, CHCO2H, 1H), 2.90 (d, J=6.6 Hz, ArCH2CH, 2H). 13C NMR (CDCl3) δ 
178.3, 155.2, 134.6, 127.8, 121.7, 119.0, 115.4, 65.8, 38.2, 25.4. HRMS (M–H)–: calc. for 
C10H8O3Cl, 211.0167; found, 211.0166. 
 
5-Chloro-N,N-dimethylchroman-3-carboxamide (7). A mixture of 6 (1.50 g, 7.06 mmol), 
dimethylamine hydrochloride (1.44 g, 17.6 mmol), HOBt (1.43 g, 10.6 mmol), N-methylmorpholine 
(3.88 mL, 35.3 mmol), and EDC hydrochloride (2.03 g, 10.6 mmol) in dichloromethane (65 mL) 
was stirred at room temperature for 50 hours. The reaction mixture was diluted with additional 
CH2Cl2, and an equal volume of saturated aq. NaHCO3 was added. The CH2Cl2 phase was separated, 
and the aqueous phase was washed 3 × with CH2Cl2. The CH2Cl2 phases were combined, dried with 
Na2SO4, and evaporated. Chromatography on silica (25–75% EtOAc in hexanes) gave 1.56 g (92%) 
of 7 as a pale yellow oil. 1H NMR (DMSO-d6) δ 7.12 (dd, J=8.2, 8.0 Hz, Ar-H, 1H), 7.01 (dd, J=8.0, 
1.1 Hz, Ar-H, 1H), 6.79 (dd, J=8.2, 1.1 Hz, Ar-H, 1H), 4.31 (m, OCH2CH, 1H), 3.84 (dd, J=10.8, 
10.8 Hz, OCH2CH, 1H), 3.37–3.30 (m, partly hidden, CHCONMe2, 1H), 3.11 (s, NCH3, 3H), 2.89 
(dd, partly hidden, J=16.8, 5.7 Hz, ArCH2CH, 1H), 2.86 (s, NCH3, 3H), 2.79 (dd, J=16.8, 10.2 Hz, 
ArCH2CH, 1H). 13C NMR (CDCl3) δ 171.7, 155.3, 134.6, 127.6, 121.3, 119.9, 115.2, 67.0, 37.2, 
35.6, 35.4, 26.9. HRMS (M+H)+: calc. for C12H15NO2Cl, 240.0786; found, 240.0792. 
 
5-Chloro-3-(N,N-dimethylcarboxamide)-6-nitrochroman (8). Substrate 7 (5.36 g, 22.4 mmol) 
was dissolved in anhydrous dichloroacetic acid (270 mL) in a 500 mL round bottomed fitted with an 
egg-shaped stir-bar. The resulting solution was stirred at +20 °C and finely divided powder of 
sodium nitrate (5.70 g, 67.1 mmol) was added. Anhydrous trifluoroacetic acid (624 µL, 8.16 mmol) 
was added via a micro syringe, the reaction flask was capped with a stopper and mixture was stirred 
for 20 hours at +20 °C.  The stopper was removed and the resulting dark crude reaction mixture was 
then slowly poured into a rapidly stirred solution of sodium carbonate (10%, 4L) (Caution CO2 
liberated). After rapid stirring for 15 minutes, the crude reaction mixture was transferred to a 5L 
separation funnel and the aqueous phase was extracted with ether (3 × 350 mL).  The combined ether 
extracts were dried over anhydrous magnesium sulfate, filtered and evaporated under reduced 
pressure. The resulting crude material was purified on silica (100% Et2O) gave 4.07 g (64%) of the 
nitrated product 8 as a yellow oil. 1H NMR spectroscopy showed 1:5 ratio of the para- and ortho-
substituted nitrated isomers. The major isomer is the essential ortho-substituted product 8. A small 
sample of regioisomers were separated and characterized below. Major isomer: 1H NMR (DMSO-
d6) δ 7.86 (d, J=9.0 Hz, Ar-H, 1H), 7.00 (d, J=9.0 Hz, Ar-H, 1H), 4.39 (m, OCH2CH, 1H), 4.01 (dd, 
J=11.0, 8.8 Hz, OCH2CH, 1H), 3.40 (m, CHCO2H, 1H), 3.10 (s, NCH3, 3H), 2.88 (dd, J=17.0, 5.3 
Hz, ArCH2CH, 1H), 2.85 (s, NCH3, 3H), 2.84 (dd, partly hidden, J=17.0, 9.2 Hz, ArCH2CH, 1H). 
13C NMR (CDCl3) δ 170.8, 158.2, 141.6, 128.7, 124.9, 122.1, 115.4, 67.4, 37.3, 35.7, 34.7, 27.3. 
Minor isomer: The undesired minor para-isomer (eluted just before compound 8) was isolated as 5-
Chloro-3-(N,N-dimethylcarboxamide)-8-nitrochroman as a pale yellow oil, 1H NMR (DMSO-d6) 
δ 7.79 (d, J=8.8 Hz, Ar-H, 1H), 7.21 (d, J=8.8 Hz, Ar-H, 1H), 4.48 (m, OCH2CH, 1H), 4.06 (dd, 
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J=10.9, 9.1 Hz, OCH2CH, 1H), 3.46 (m, CHCO2H, 1H), 3.11 (s, NCH3, 3H), 2.95 (dd, J=17.0, 5.8 
Hz, ArCH2CH, 1H), 2.86 (s, NCH3, 3H), 2.86 (dd, partly hidden, J=16.7, 10.0 Hz, ArCH2CH, 1H). 
13C NMR (CDCl3) δ 170.5, 149.3, 139.8, 137.6, 124.0, 123.1, 120.6, 67.8, 37.2, 35.7, 34.4, 27.2. 
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FRET Compound Screening Experiments and EC50 d 
HCV IRES IIa RNA constructs were obtained by annealing terminally Cy3/Cy5 dye-conjugated 
oligonucleotides from commercial custom synthesis, purified by HPLC (Integrated DNA 
Technologies). Oligonucleotide stock solutions were prepared by dissolving lyophilized nucleic 
acid in 10 mM sodium cacodylate buffer, pH 6.5. Annealing of RNA target constructs was 
performed by heating oligonucleotide mixtures in cacodylate buffer with 2 mM MgCl2 added, to 
65°C for 5 min followed by cooling on ice. FRET measurements were performed in 96-well 
plates, at 120 μL well filling volume, on a Spectra Max Gemini monochromator plate reader 
(Molecular Devices) at 25°C at a final RNA concentration of 100 nM in 10 mM sodium 
cacodylate buffer, pH 6.5, containing 2 mM MgCl2. Ligand induced FRET changes were 
monitored for terminally Cy3/Cy5-labelled IIa RNA target construct in the presence of 
increasing ligand concentration. To measure FRET signal, the Cy3 label was excited at 520 nm 
and transferred fluorescence was read as Cy5 emission at 670 nm. For each compound, FRET 
signal at each concentration was tested in triplicate. Data sets were analyzed and FRET 
calculated as described previously.[7] Binding selectivity for the HCV IIa RNA was tested, as 
described previously,[8] by repeating titrations and EC50 determination in the presence of an 
unlabeled competitor RNA (wheat germ total tRNA, Sigma) at a 20x excess (2 μM) over target. 
HCV target EC50 shift in the presence of competitor RNA was not observed for the 2-
aminobenzimdazole analogs, indicating selectivity for the IIa RNA. 

 

 

FRET compound titration curves used for EC50 determination of compound binding at the 
IIa RNA target. Error bars represent ±1σ calculated from triplicate measurements. 
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In silico docking and quantitative structure activity relationship (QSAR) methodology. The x-ray 
crystal structure of inhibitor 1a in complex with the IRES of HCV RNA (PDB: 3TZR) was used for these 
studies.[9] Compounds 1a-1g were drawn using Chemdraw (Cambridgesoft, Inc.) and then imported 
into MOE (Chemical Computing Group). The two-dimensional structures were converted to three 
dimensions and minimized using the MMFF94x gas phase potential.[10] The bound x-ray 
conformation of 1a from 3TZR was used to define the binding pocket in the IRES. Docking 
experiments were performed with the Dock function in MOE by using the Amber12:EHT 
forcefield[11] with parameterized solvation and the default Dock parameters and fitness functions. In 
order to verify that poses resulting from in silico docking represent correctly bound conformations, 
each pose was visually inspected and compared to the experimentally determined binding modes and 
conformations of 1a. The docking score output for each of the top scoring poses were exported to 
Molegro Data Modeller (Molegro, APS.) for QSAR analysis. Feature selection was performed and 
artificial neural net (ANN) models were generated using default settings. The top scoring 
backpropagation trained ANN had 5-4-1 architecture (R2= 0.99). To test the generalizability of these 
models on held-out samples, leave-one-out (LOO) cross validation was performed (R2= 0.78). 
 
Figure S5. Docked poses of: a). 1a with < 1.0 Å rmsd from bound x-ray conformation; b). 1b; c). 
1c; d). 1d; e). 1e; f). 1f; g). 1g. 
 
 
 



Supplementary Material  

 

Figure S5a. 1a 3.4 µM  
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Figure S5b. 1b 75 µM 
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Figure S5c. 1c 58 µM 
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Figure S5d. 1d 25 µM 
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Figure S5e. 1e 22 µM 

  

G52 

G110 

A109 

A53 



Supplementary Material  

 

Figure S5f. 1f 89 µM 
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Figure S5g. 1g 35 µM 
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Figure S6. a). Correlation of 5-4-1 artificial neural net (ANN) generated from 5 output scores 
from MOE docking. b). Correlation of 5-4-1 artificial neural net (ANN) with Leave-One-Out 
analysis generated from same 5 output scores from MOE docking. 

A).  
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