Supplementary Material

Operationally simple regioselective 5'-phosphorylation of unprotected 5-ethynyl-2'deoxyuridine analogues

David H. Hilko,^{A,B} Laurent F. Bornaghi,^A and Sally-Ann Poulsen^{A,B}

^AGriffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, Nathan, Qld 4111, Australia.

^BCorresponding authors. Email: d.hilko@griffith.edu.au; <u>s.poulsen@griffith.edu.au</u>

Table of Contents

Material Page Synthesis of 3',5'-O-bis-acetyl-2'-dideoxy-2'-difluoro-5-(ethynyl(2-trimethylsilyl))-Synthesis of (2'R)-3',5'-O-bis-acetyl-2'-deoxy-5-(ethynyl(2-trimethylsilyl))-2'-fluoro-

Compound 5 1 H and 13 C NMR (DMSO- d_6)	S16
Compound 5 ${}^{31}P{H}$ NMR (DMSO- d_6)	S17
Compound 6 ¹ H and ¹³ C NMR (DMSO- d_6)	S18
Compound 6 ${}^{31}P{H}$ NMR (DMSO- d_6)	S19
Compound 7 ¹ H and ¹³ C NMR (DMSO- d_6)	S20
Compound 7 ${}^{31}P{H}$ NMR (DMSO- d_6)	S21
Compound 8 1 H and 13 C NMR (DMSO- d_6)	S22
Compound 8 ${}^{19}F{H}$ and ${}^{31}P{H}$ NMR (DMSO- d_6)	S23
Compound 9 ¹ H and ¹³ C NMR (DMSO- d_6)	S24
Compound 9 19 F{H} and 31 P{H} NMR (DMSO- d_6)	S25
Compound 10 ¹ H and ¹³ C NMR (DMSO- <i>d</i> ₆)	S26
Compound 10 19 F{H} and 31 P{H} NMR (DMSO- d_6)	S27
Compound 11 ¹ H and ¹³ C NMR (DMSO- <i>d</i> ₆)	S28
Compound 11 ${}^{19}F{H}$ and ${}^{31}P{H}$ NMR (DMSO- d_6)	S29
Compound 12 ¹ H and ¹³ C NMR (DMSO- d_6)	S30
Compound 12 ${}^{31}P{H}$ NMR (DMSO- d_6)	S 31
Compound 13 ¹ H and ¹³ C NMR (DMSO- <i>d</i> ₆)	S32
Compound 13 ${}^{31}P{H}$ NMR (DMSO- d_6)	S33
Compound 14 ¹ H and ¹³ C NMR (DMSO- <i>d</i> ₆)	S34
Compound 14 ${}^{31}P{H}$ NMR (DMSO- d_6)	S35
Compound 15 ¹ H and ¹³ C NMR (DMSO- d_6)	S36
Compound 15 ${}^{19}F{H}$ and ${}^{31}P{H}$ NMR (DMSO- d_6)	S37
Compound 20 ¹ H and ³¹ P{H} NMR (CDCl ₃)	S38
Compound 24 ¹ H and ¹³ C NMR (CDCl ₃)	S39
Compound 24 ³¹ P{H} NMR (CDCl ₃)	S40
Compound 25 ¹ H and ¹³ C NMR (CDCl ₃)	S41
Compound 25 ³¹ P{H} NMR (CDCl ₃)	S42
Compound 26 ¹ H and ¹³ C NMR (CDCl ₃)	S43
Compound 26 ³¹ P{H} NMR (CDCl ₃)	S44
Compound S1 ¹ H NMR MeOD- d_4) and ¹³ C NMR (DMSO- d_6)	S45
Compound S1 ¹⁹ F NMR (MeOD- d_4)	S46
Compound S2 ¹ H and ¹³ C NMR (CDCl ₃)	S47
Compound S2 $^{19}F{H}$ NMR (CDCl ₃)	S48
Compound S3 ¹ H and ¹³ C NMR (CDCl ₃)	S49
	S2

Compound S3 ¹⁹ F{H} NMR (CDCl ₃)	S50
Compound S4 ¹ H and ¹³ C NMR (CDCl ₃)	S51
Compound S4 ${}^{19}F{H}$ NMR (CDCl ₃)	S52
Compound 34 1 H and 19 F{H} NMR (DMSO- d_6)	S53
Compound S6 ¹ H and ¹⁹ F{H} NMR (CDCl ₃)	S54
Compound S7 ¹ H and ¹³ C NMR (CDCl ₃)	S55
Compound S7 ¹⁹ F{H} NMR (CDCl ₃)	S56
Compound S8 ¹ H and ¹³ C NMR (CDCl ₃)	S57
Compound S8 ¹⁹ F{H} NMR (CDCl ₃)	S58
Compound 35 ¹ H and ¹³ C NMR (DMSO- <i>d</i> ₆)	S59
Compound 35 19 F{H} NMR (DMSO- d_6)	S60
Stacked spectra of Compound 2 ³¹ P{H} NMR and ³¹ P{H} NMR Crude reaction	mixutre
for synthesis of compound 2 (pyridine- <i>d</i> ₅)	S61

Fluorinated nucleosides 34 and 35 are novel and their synthesis is reported below. To the best of our knowledge, intermediate compounds S3, S4 and S8 are novel while spectroscopic data for 24 has not been reported previously.

We found that deamination of commercially available gemcitabine employing 4 diazotisation conditions proceeded efficiently at 0 °C to afford 2'-dideoxy-2'-difluoro-5 uridine (157) in 98% yield (Scheme S1). Compound S1 was subsequently acetylated with 6 Ac₂O, employing pyridine as base and solvent, to the give the 3',5'-protected intermediate 7 8 **S2** in quantitative yield. The synthesis then follows the synthetic strategies previously 9 developed for the synthesis of EdU. This involves iodination of the 5 position of S2 to give S3, followed by Sonogashira coupling with ethynyl-2-trimethysilane to give S4, and 10 11 lastly deprotection to afford dF-EdU (35) in 67% yield.

12

13

15

16 2'-Dideoxy-2'-difluoro-uridine (S1)

Gemcitabine (1.00 g, 3.093 mmol) was dissolved in H₂O (1.8 mL) and AcOH (3.5 mL) and cooled to 0 °C. NaNO₂ dissolved in a minimum amount of H₂O was slowly added to the reaction mixture with stirring. The mixture was stirred for 3 h at 0 °C at which point TLC analysis indicated complete conversion of starting material to a single product. The mixture was allowed to warm to rt and was then poured into acetone (100 mL). The

precipitated salts were filtered off and the solvent removed in vacuo. The residue was co-22 evaporated with EtOH $(2\times)$ then the residue dissolved in MeOH and adsorbed onto silica 23 24 gel. The crude product was purified by silica gel flash chromatography to afford the title 25 compound as a clear oil (quantitative). Spectroscopic data was consistent with literature values.¹ $R_f = 0.23$ (10% MeOH in CH₂Cl₂). ¹H NMR (500 MHz, MeOD- d_4) $\delta_H = 7.87$ (d, 26 27 J = 8.2 Hz, 1H), 6.17 - 6.12 (m, 1H), 5.73 (d, J = 8.2 Hz, 1H), 4.28 (td, J = 12.1, 8.1 Hz, 1H), 3.96 - 3.87 (m, 2H), 3.78 (dd, J = 12.5, 3.1 Hz, 1H). ¹H NMR (500 MHz, DMSO-28 d_6) $\delta_{\rm H} = 11.57$ (br s, 1H, NH), 7.79 (d, J = 8.2 Hz, 1H, H-6'), 6.06 (t, J = 7.9 Hz, 1H, H-29 1'), 5.72 (d, *J* = 8.1 Hz, 1H, H-5), 4.18 (td, *J* = 12.8, 8.4 Hz, 1H, H-3'), 3.83 (ddd, *J* = 8.4, 30 31 3.6, 2.5 Hz, 1H, H-4'), 3.76 (dd, J = 12.7, 2.4 Hz, 1H, H-5'_(α or β)), 3.62 (dd, J = 12.7, 3.6 Hz, 1H, H-5'_(α or β)). ¹⁹F NMR (470 MHz, MeOD- d_4) δ -118.6 (dd, J = 13.2, 4.8 Hz), -32 33 119.2 (dd, J = 13.3, 5.0 Hz), -120.0, -120.5. LRMS (ESI): $m/z = 265 [M + H]^+$, 263 [M -34 H^{-} , 309 $[M + HCO_2]^{-}$.

35

36 3',5'-O-Bis-acetyl-2'-dideoxy-2'-difluoro-uridine (**S2**)

Compound S1 was dissolved in pyridine (3.3 mL, 30.93 mmol, 10 equiv) and Ac₂O (0.73 37 mL, 7.73 mmol, 2.5 equiv) and the mixture stirred at rt for 8 h. EtOAc (50 mL) was added 38 39 and the organic material washed with 5% HCl_(aq) (20 mL), NaHCO_{3(satd, aq)} (20 mL), brine (20 mL) and dried over MgSO₄. The solvent was removed to give the title compound as 40 a yellow gum (quantitative). $R_f = 0.16$ (30% EtOAc in CH₂Cl₂). ¹H NMR (500 MHz, 41 CDCl₃) $\delta_{\rm H} = 9.40$ (br s, 1H, NH), 7.36 (dd, J = 8.2, 2.4 Hz, 1H, H-6), 6.26 (dd, J = 11.9, 42 6.3 Hz, 1H, H-1'), 5.81 (d, J = 8.2 Hz, 1H, H-5), 5.25 (ddd, J = 13.8, 5.5, 3.0 Hz, 1H, H-43 3'), 4.39 (d, J = 4.2 Hz, 2H, H-5'_(α and β)), 4.29 (q, J = 4.4 Hz, 1H, H-4'), 2.20 (s, 3H, Ac), 44 2.12 (s, 3H, Ac). ¹³C NMR (126 MHz, CDCl₃) $\delta_{C} = 170.4$ (H₃CCO₂), 169.1 (H₃CCO₂), 45 162.6 (C-4), 150.2 (C-2, 139.8 (d, J = 3.7 Hz, C-6), 120.5 (dd, J = 266.4, 259.1 Hz, C-46 2'), 103.4 (C-5), 83.1 (dd, J = 38.0, 20.8 Hz, C-1'), 78.0 (dd, J = 4.6, 2.5 Hz, C-4'), 70.7 47 $(dd, J = 34.2, 17.0 \text{ Hz}, \text{C}-3'), 62.1 (\text{C}-5'), 20.8 (\text{H}_3\text{CCO}_2), 20.5 (\text{H}_3\text{CCO}_2).$ ¹⁹F NMR (470) 48 MHz, CDCl₃) $\delta_{\rm F} = -116.8$ (dt, J = 247.4, 12.3 Hz), -121.4 (d, J = 250.4 Hz). LRMS (ESI): 49 50 $m/z = 349 [M + H]^+$, 347 [M - H]⁻. HRMS (ESI⁺) $m/z [M + Na]^+$ calcd. for C₁₃H₁₄F₂N₂NaO₇ 371.0661, found 371.0634. 51

52

53 3',5'-O-Bis-acetyl-2'-dideoxy-2'-difluoro-5-iodo-uridine (S3)

54 Compound S3 was synthesised from compound S2 (0.980 g, 2.815 mmol) according to adapted literature procedures.² The crude product was purified by silica gel flash 55 chromatography (5 - 20%) EtOAc in CH₂Cl₂) to afford the title compound as a pale yellow 56 foam/gum (1.20 g, 90%). $R_f = 0.52$ (30% EtOAc in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) 57 $\delta_{\rm H} = 8.90$ (br s, 1H, NH), 7.80 (d, J = 2.2 Hz, 1H, H-6), 6.24 (dd, J = 10.5, 6.9 Hz, 1H, 58 59 H-1'), 5.29 (ddd, J = 13.3, 5.7, 3.9 Hz, 1H, H-3'), 4.42 (d, J = 3.5 Hz, 2H, H-5'(α and β)), 4.35 - 4.29 (m, 1H, H-4'), 2.21 (2× s, 6H, Ac). ¹³C NMR (126 MHz, CDCl₃) $\delta_{C} = 170.4$ 60 (H₃CCO₂), 169.1 (H₃CCO₂), 159.3 (C-4), 149.5 (C-2), 144.1 (H-6), 120.6 (dd, *J* = 265.7, 61 260.0 Hz, C-2'), 83.4 (dd, J = 38.2, 20.7 Hz, C-1'), 78.3 (d, J = 2.1 Hz, H-4'), 70.5 (dd, J 62 = 33.8, 17.0 Hz, H-3'), 69.4 (C-5), 61.9 (C-5'), 21.0 (H₃CCO₂), 20.5 (H₃CCO₂). ¹⁹F NMR 63 64 $(470 \text{ MHz}, \text{CDCl}_3) \delta_F = -116.3 \text{ (dt}, J = 247.9, 11.8 \text{ Hz}), -120.6 \text{ (d}, J = 247.7 \text{ Hz}). \text{ LRMS}$ (ESI): $m/z = 475 [M + H]^+$, 473 [M - H]⁻. HRMS (ESI⁺) $m/z [M + Na]^+$ calcd. for 65 C₁₃H₁₃F₂IN₂NaO₇ 496.9628, found 496.9590. 66

67

68 3',5'-O-Bis-acetyl-2'-dideoxy-2'-difluoro-5-(ethynyl(2-trimethylsilyl))-uridine (S4)

69 Compound S4 was synthesised from compound S3 (1.400 g, 2.953 mmol) using Sonagashira conditions. S3 was combined with CuI (0.056 g, 0.295 mmol, 0.1 equiv), 70 71 $Pd(PPh_3)_4$ (0.154 g, 0.148 mmol, 0.05 equiv) under an atmosphere of argon. The mixture 72 was suspended in anhydrous CH₂Cl₂ (10 mL) and ethynyl-2-trimethysilane (2 ml, 14.7 73 mmol, 5 equiv) added immediately, followed by Et₃N (0.8 mL, 5.9 mmol, 2 equiv). Upon 74 addition of Et₃N the reaction mixture clarified and developed a yellow-orange colour. The mixture was stirred at rt until complete consumption of S3 was evident by TLC (2 - 3 h). 75 76 The solvent was removed in vacuo and the residue dissolved in EtOAc. The EtOAc 77 fraction was washed with 5% HCl_(aq) (20 mL), NaHCO_{3(satd. aq)} (20 mL), 1.0 M EDTA-Na $(3 \times 20 \text{ mL})$ and brine (20 mL) then dried over MgSO₄ and concentrated *in vacuo*. The 78 79 crude product was purified by silica gel flash chromatography (10 - 20% EtOAc in 80 CH_2Cl_2) to afford the title compound as a colourless foam (1.246 g, 95 %). $R_f = 0.66$ (30%) 81 EtOAc in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H} = 8.98$ (br s, 1H, NH), 7.66 (d, J =2.0 Hz, 1H, H-6), 6.26 (t, J = 8.4 Hz, 1H, H-1'), 5.31 (dt, J = 12.9, 5.8 Hz, 1H, H-3'), 4.44 82 $(dd, J = 12.7, 3.1 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.38 (dd, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)})), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)})), 4.31 (dt, J = 12.7, 3.5 Hz, 1H, H-5'_{(\alpha \text{ or }\beta)}))$ 83 J = 6.4, 3.3 Hz, 1H, H-4'), 2.20 (s, 3H, Ac), 2.18 (s, 3H, Ac), 0.22 (s, 9H, Si(CH₃)₃). ¹³C 84

85 NMR (126 MHz, CDCl₃) $\delta_{\rm C} = 170.2$ (H₃CCO₂), 169.1 (H₃CCO₂), 160.3, 148.9 (C-2), 86 142.4 (d, J = 2.7 Hz, C-6), 120.6 (dd, J = 264.4, 261.3 Hz, C-2'), 101.5 (C-5), 100.6 87 (C=C), 94.6 (C=C), 83.7 (dd, J = 39.5, 21.6 Hz, C-1'), 78.0 (d, J = 5.6 Hz, C-4'), 70.3 (dd, 88 J = 32.9, 17.0 Hz, C-3') 61.8 (C-5'), 20.9 (H₃CCO₂), 20.5 (H₃CCO₂), -0.1 (Si(CH₃)₃). ¹⁹F 89 NMR (470 MHz, CDCl₃) $\delta_{\rm F} = -115.9$ (dt, J = 247.6, 10.8 Hz), -119.6 (d, J = 249.6 Hz). 90 LRMS (ESI): m/z = 445 [M + H]⁺, 443 [M - H]⁻. HRMS (ESI⁺) m/z [M + Na]⁺ calcd. for 91 C₁₈H₂₂F₂N₂NaO₇Si 467.1057, found 467.1018.

92

93 2'-dideoxy-2'-difluoro-5-ethynyl-uridine (**35**)

94 Compound S4 (0.466 g, 1.049 mmol) was dissolved in MeOH (15 mL) and sodium methoxide (4.6 M) (0.187 mL, 0.0404 mmol) added. The mixture was stirred at rt for 3 95 hours after which TLC analysis indicated complete consumption of the starting material 96 and formation of a single product. The mixture was neutralised with Amberlite IRA-120 97 98 H⁺ resin and filtered. The crude compound was adsorbed onto silica and purified by solid 99 addition silica gel flash chromatography (10 % MeOH in CH₂Cl₂) to afford the title 100 compound as a pale yellow solid (0.257 g, 85%). Spectroscopic data was consistent with 101 literature.¹ $R_f = 0.11$ (5% MeOH in CH₂Cl₂). Darkens at 190-205 °C, mp = 210-215 °C. 102 ¹H NMR (500 MHz, DMSO) $\delta_{\rm H} = 11.91$ (br s, 1H, NH), 8.26 (s, 1H, H-6), 6.32 (d, J =103 6.6 Hz, 1H, OH-3'), 6.04 (t, J = 7.3 Hz, 1H, H-1'), 5.42 (t, J = 5.2 Hz, 1H, OH-5'), 4.22 104 (tdd, J = 12.4, 10.6, 8.3, 5.6 Hz, 1H, H-3'), 4.17 (s, 1H), 3.86 (dt, J = 8.6, 2.7 Hz, 1H, H-4'), 3.79 (dt, J = 12.8, 3.0 Hz, 1H, H-5'(α or β)), 3.64 (ddd, J = 12.7, 5.4, 3.1 Hz, 1H, H-5'(α 105 or β). ¹⁹F NMR (470 MHz, DMSO) δ_F = -116.3, -116.5 (d, J = 12.3 Hz), -116.83 (d, J = 106 107 13.5 Hz), -117.00 (d, J = 13.1 Hz), -117.18, -117.70. LRMS (ESI): m/z = 289 [M + H]⁺, 108 287 [M - H]⁻.

110

109

Scheme S2. Synthesis of 2'-F-*ribo*-EdU (34) from commercially available 2'-deoxy-2'-fluorodeoxyuridine (S5) employing an adapted procedure for the synthesis of EdU.

113

114 (2'*R*)-3',5'-*O*-Bis-acetyl-2'-deoxy-2'-fluoro-uridine (**S6**)

Compound S6 was synthesised from commercially available (2'R)-2'-deoxy-2'-fluoro-115 uridine (S5) (2.000 g, 8.127 mmol). Compound S5 was dissolved in pyridine (8.8 mL, 116 117 81.0 mmol, 10 equiv) then Ac₂O (1.92 mL, 20.3 mmol, 2.5 mmol) was added and mixture stirred for at rt 16 h. The reaction mixture was dissolved in EtOAc (50 mL) and washed 118 119 with 5% HCl_(aq) (20 mL), NaHCO_{3(satd. aq)} (20 mL), brine (20 mL) and dried over MgSO₄ to give the title compound as a yellow gum (2.623 g, 98%). The spectroscopic data was 120 consistent with literature values.²⁻³ $R_f = 0.21$ (30% EtOAc in CH₂Cl₂). ¹H NMR (500 121 MHz, DMSO- d_6) $\delta_{\rm H} = 11.47$ (s, 1H, NH), 7.72 (d, J = 8.1 Hz, 1H, H-6), 5.87 (dd, J =122 22.4, 2.1 Hz, 1H, H-1'), 5.68 (d, J = 8.0 Hz, 1H, H-5), 5.53 (ddd, J = 52.6, 5.3, 2.1 Hz, 123 1H, H-2'), 5.26 (ddd, J = 17.2, 7.9, 5.3 Hz, 1H, H-3'), 4.34 (dd, J = 12.1, 2.9 Hz, 1H, H-124 $5'_{(\alpha \text{ or } \beta)}$, 4.27 (ddd, J = 8.2, 5.7, 2.9 Hz, 1H, H-4'), 4.16 (dd, J = 12.1, 5.7 Hz, 1H, H- $5'_{(\alpha \beta)}$ 125 or β), 2.11 (s, 3H, Ac), 2.04 (s, 3H, Ac). ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ = 9.30 (br s, 1H), 126 127 7.39 (d, *J* = 8.1 Hz, 1H), 5.83 – 5.74 (m, 2H), 5.37 (ddd, *J* = 52.2, 4.9, 1.7 Hz, 1H), 5.15 (ddd, J = 17.8, 8.3, 5.0 Hz, 1H), 4.44 (dd, J = 12.3, 2.6 Hz, 1H), 4.40 (ddd, J = 7.6, 4.5, 1H)128 129 2.6 Hz, 1H), 4.30 (dd, J = 12.3, 4.6 Hz, 1H), 2.15 (s, 3H), 2.11 (s, 3H). ¹³C NMR (126) MHz, DMSO) δ 170.1, 169.5, 150.6, 142.5, 102.1, 90.8 (d, J = 187.0 Hz), 90.5 (d, J = 130

132 198.76 - -199.06 (m). LRMS (ESI): $m/z = 353 [M + Na]^+$, 331 $[M + H]^+$, 329 $[M - H]^-$.

133

134 (2'R)-3',5'-O-Bis-acetyl-2'-deoxy-2'-fluoro-5-iodo-uridine (S7)

Compound S7 was synthesised from compound S6 (2.68 g, 8.11 mmol) according to 135 literature procedures.² Briefly, compound **S6**, ceric ammonium nitrate (4.45 g, 8.11 136 137 mmol, 1 equiv), and I₂ (1.64 g, 6.49 mmol 0.8 equiv) were combined and dissolved in CH₃CN (40 mL) and heated to 50 °C for 16 h. The solvent was then removed in vacuo 138 and the residue dissolved in EtOAc (20 mL) and washed with NaHCO_{3(satd, aq.)} (20 mL) 139 140 and brine (20 mL) then dried over MgSO₄. The crude product was purified by silica gel flash chromatography $(10 - 30\% \text{ EtOAc in CH}_2\text{Cl}_2)$ to afford the title compound as a pale 141 142 red solid (3.330 g, 90%). $R_f = 0.52$ (30% EtOAc in CH₂Cl₂). mp 135-140 °C. The spectroscopic data was consistent with literature values.³ ¹H NMR (500 MHz, CDCl₃) δ 143 8.97 (s, 1H, NH), 7.89 (s, 1H, H-6), 5.89 (dd, J = 18.2, 1.7 Hz, 1H, H-1'), 5.30 (ddd, J = 144 51.7, 4.7, 1.7 Hz, 1H, H-2'), 5.10 (ddd, J = 18.1, 8.0, 4.8 Hz, 1H, H-3'), 4.49 - 4.41 (m, 145 146 2H, H-5'(α or β) and H-4'), 4.36 (dd, J = 13.2, 4.0 Hz, 1H, H-5'(α or β)), 2.22 (s, 3H, Ac), 2.16 147 (s, 3H, Ac). ¹³C NMR (126 MHz, CDCl₃) $\delta_{\rm C} = 170.5$ (H₃CCO₂), 170.0 (H₃CCO₂), 160.0 148 (C-4), 149.6 (C-2), 144.5 (C-6), 91.1 (d, *J* = 193.0 Hz, C-2'), 90.3 (d, *J* = 35.6 Hz, C-1'), 149 78.9 (C-4', 69.3 (d, J = 15.6 Hz, C-3'), 61.9 (C-5'), 21.3 (H₃CCO₂), 20.5 (H₃CCO₂). ¹⁹F NMR (470 MHz, CDCl₃) δ -200.2 (dt, J = 51.9, 18.2 Hz). LRMS (ESI): m/z = 457 [M + 150 $H]^+, 455 [M - H]^-.$ 151

152

153 (2'*R*)-3',5'-*O*-Bis-acetyl-2'-deoxy-5-(ethynyl(2-trimethylsilyl))-2'-fluoro-uridine (**S8**)

154 Compound S8 was synthesised from compound S7 (1.700 g, 3.728 mmol) under Sonagashira conditions, similarly to S4 described above. The crude product was purified 155 by silica gel flash chromatography $(10 - 20\% \text{ EtOAc in } \text{CH}_2\text{Cl}_2)$ to afford the title 156 157 compound as an off-white solid (0.921 g, 58%). mp 195-198 °C. $R_f = 0.69$ (30% EtOAc in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H} = 8.74$ (s, 1H, NH), 7.79 (s, 1H, H-6), 5.95 158 159 (dd, J = 17.6, 1.5 Hz, 1H, H-1'), 5.26 (ddd, J = 51.6, 4.7, 1.5 Hz, 1H, H-2'), 5.07 (ddd, J = 18.9, 8.4, 4.7 Hz, 1H, H-3'), 4.49 - 4.43 (m, 2H, H-5'_($\alpha \text{ or } \beta$) and H-4'), 4.38 - 4.31 (m, 160 1H, H-5'_(a or β)), 2.19 (s, 3H, Ac), 2.16 (s, 3H, Ac), 0.21 (s, 9H, Si(CH₃)₃). ¹³C NMR (126 161

162 MHz, CDCl₃) $\delta_{\rm C} = 170.2$ (H₃CCO₂), 170.0 (H₃CCO₂), 160.6 (C-4), 148.7 (C-2), 142.5 163 (C-6), 101.1 (C=*C*-Si), 100.6 (C-5), 94.8 (*C*=*C*-Si), 91.2 (d, *J* = 193.4 Hz, C-2'), 89.9 (d, 164 *J* = 35.3 Hz, C-1'), 78.8, 69.1 (d, *J* = 15.7 Hz, C-3'), 61.6 (C-5'), 21.1 (H₃CCO₂), 20.5 165 (H₃CCO₂), -0.1 (Si(CH₃)₃. ¹⁹F NMR (470 MHz, CDCl₃) $\delta_{\rm F} = -201.4$ (dt, *J* = 51.8, 18.2 166 Hz). LRMS (ESI): *m*/*z* = 427 [M + H]⁺, 425 [M - H]⁻. HRMS (ESI⁺) *m*/*z* [M + Na]⁺ calcd. 167 for C₁₈H₂₃FN₂NaO₇Si 449.1151, found 449.1122.

168

169 (2'R)-2'-Deoxy-5-ethynyl-2'-fluoro-uridine (**34**)

170 Compound S8 (0.880 g, 1.049 mmol) was dissolved in MeOH (30 mL) and sodium 171 methoxide (4.6 M) (0.368 mL, 1.70 mmol) added. The mixture was stirred at rt for 2 h after which TLC analysis indicated complete consumption of the starting material and 172 173 formation of a single product. The mixture was neutralised with Amberlite IRA-120 H⁺ 174 resin and filtered. Silica gel was added to the filtrate and the solvent removed in vacuo. 175 The compound was purified by solid addition silica gel flash chromatography (10% 176 MeOH in CH₂Cl₂) to afford the title compound as an off-white foam (0.280 g, 50%). R_f 177 = 0.27 (10% MeOH in CH₂Cl₂). ¹H NMR (500 MHz, DMSO-*d*₆) $\delta_{\rm H} = 11.69$ (br s, 1H, NH), 8.41 (s, 1H, H-6), 5.86 (dd, J = 16.9, 1.3 Hz, 1H, H-1'), 5.60 (d, J = 6.6 Hz, 1H, 178 179 OH-3'), 5.36 (t, J = 4.7 Hz, 1H, OH-5'), 5.03 (ddd, J = 53.1, 4.3, 1.4 Hz, 1H, H-1'), 4.24 -4.11 (m, 1H, H-3'), 4.08 (s, 1H, =C-H), 3.89 (dt, J = 8.3, 2.5 Hz, 1H, H-4'), 3.81 (ddd, 180 J = 12.4, 4.4, 2.3 Hz, 1H, H-5'(α or β), 3.60 (ddd, J = 12.3, 4.4, 2.5 Hz, 1H, H-5'(α or β). ¹³C 181 NMR (126 MHz, DMSO- d_6) $\delta_C = 162.0$ (C-4), 149.5 (C-2), 144.5 (C-6), 97.6 (C-5), 93.9 182 (d, J = 185.3 Hz, C-2'), 87.7 (d, J = 34.2 Hz, C-1'), 83.7 (C=C-H), 83.2 (C-4'), 76.5 (C=C-H)183 H), 66.9 (d, J = 16.3 Hz, C-3'), 58.7 (C-5'). ¹⁹F NMR (470 MHz, DMSO- d_6) $\delta \delta$ -202.5 184 (ddd, J = 53.0, 23.5, 16.8 Hz). LRMS (ESI): $m/z = 293 \text{ [M + Na]}^+, 271 \text{ [M + H]}^+, 269 \text{ [M}$ 185 $-H^{-}$. HRMS (ESI⁺) m/z [M + Na]⁺ calcd. for C₁₁H₁₁FN₂NaO₅ 293.0544, found 293.0542. 186

187

188 **References**

189 1. Neef, A. B.; Pernot, L.; Schreier, V. N.; Scapozza, L.; Luedtke, N. W., A Bioorthogonal 190 Chemical Reporter of Viral Infection. *Angew. Chem.* **2015**, *127* (27), 8022-8025.

191 2. Brunner, K.; Harder, J.; Halbach, T.; Willibald, J.; Spada, F.; Gnerlich, F.; Sparrer, K.;

192 Beil, A.; Möckl, L.; Bräuchle, C.; Conzelmann, K.-K.; Carell, T., Cell-Penetrating and

- 193 Neurotargeting Dendritic siRNA Nanostructures. Angew. Chem. Int. Ed. 2015, 54 (6), 1946-
- 194 1949.

- 195
- 3. Kniess, T.; Grote, M.; Noll, B.; Johannsen, B., Synthesis and Enzymatic Evaluation of Nucleosides Derived from 5-Iodo-2'-Halo-2'-Deoxyuridines. In *Zeitschrift für Naturforschung B*, 2003; Vol. 58, p 226. 196 197

198

Compound $\mathbf{2}$ ¹H and ¹³C NMR (DMSO- d_6)

50 130 -230 -25 -30 -70 110 70 50 30 10 -10 -50 -90 -110 -130 90 -150 -170 -190 -210

Compound 5¹H and ¹³C NMR (DMSO-*d*₆)

S18

Compound **10** 1 H and 13 C NMR (DMSO- d_6)

Compound 11 ¹H and ¹³C NMR (DMSO-*d*₆)

-90 -100 -110 -120 -130 -140 -150 f1 (ppm) 10 ò -10 -190 -200 -210 -20 -30 -50 -60 -70 -80 -160 -170 -180 -40

Compound **12** ¹H and ¹³C NMR (DMSO-*d*₆)

Compound 14 ¹H and ¹³C NMR (DMSO-*d*₆)

Compound **15** ¹H and ¹³C NMR (DMSO-*d*₆)

S37

Compound **20** ¹H and ³¹P NMR (CDCl3)

Compound 24 ¹H and ¹³C NMR (CDCl₃)

Compound 24 ³¹P NMR (CDCl₃)

Compound 25 ¹H and ¹³C NMR (CDCl₃)

Compound 26 ¹H and ¹³C NMR (CDCl₃)

Compound S1 19 F{H} NMR (MeOD- d_4)

Compound S2 ¹⁹F NMR (CDCl₃)

-115.98 -116.00 -116.03 -116.53 -116.53 -116.53 -116.53 -116.53

Compound S3 ¹H and ¹³C NMR (CDCl₃)

115.9 115.9 116.0 116.5 116.5 116.5 120.3 120.3

Compound S4¹H and ¹³C NMR (CDCl₃)

Compound S4¹⁹F NMR (CDCl₃)

-114.82 -114.84 -114.84 -115.34 -115.37 -115.39 -115.39 -115.39

Compound **34** ¹H and ¹⁹F NMR (DMSO-*d*₆)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

Compound S6 ¹H and ¹⁹F NMR (CDCl₃)

S54

Compound S7 ¹H and ¹³C NMR (CDCl₃)

-200.87 -200.91 -200.95 -200.98 -201.02

Compound S8 ¹H and ¹³C NMR (CDCl₃)

-202.06 -202.09 -202.13 -202.16 -202.20

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Compound **35** ¹H and ¹³C NMR (DMSO-*d*₆)

Compound 2 ${}^{31}P{H}$ NMR (pyridine- d_5)

-202.06 -202.09 -202.13 -202.16 -202.20 -202.20