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█EXPERIMENTAL SECTION 

Fig. S1  Powder X-ray diffraction analysis of A (a) simulation and (b) experiment. 



 
Fig. S2  TG (top) and DTA (bottom) curves obtained for A under N2. 

 

 
 

Fig. S3  The sorption isotherms of N2 at 77 K using a micrometrics ASAP2020HD88 automated 
sorption analyzer. ( ■ symbol=adsorption and, ●=desorption of A.) 

 
 

 



Table S1  A general survey of loading A with 15 FGs to form luminescent assemblies FG@As: (first 
column) FGs and (second column) the fluorescence spectra of the solid FGs, FG@As. 
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Fig. S4  A general survey of the fluorescence spectra of FG1@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG1@A in response to the 12 selected VOCs. 
 



 
Fig. S5  A general survey of the fluorescence spectra of FG2@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG2@A in response to the 12 selected VOCs. 
 



 

Fig. S6  A general survey of the fluorescence spectra of FG3@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG3@A in response to the 12 selected VOCs. 



 
Fig. S7  A general survey of the fluorescence spectra of FG4@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG4@A in response to the 12 selected VOCs. 
 
 



 
Fig. S8  A general survey of the fluorescence spectra of FG5@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG5@A in response to the 12 selected VOCs. 
 
 



 

Fig. S9  A general survey of the fluorescence spectra of FG6@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG6@A in response to the 12 selected VOCs. 



 
Fig. S10  A general survey of the fluorescence spectra of FG7@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG7@A in response to the 12 selected VOCs. 
 



 
Fig. S11  A general survey of the fluorescence spectra of FG8@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG8@A in response to the 12 selected VOCs. 
 



 
Fig. S12  A general survey of the fluorescence spectra of FG9@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG9@A in response to the 12 selected VOCs. 
 



 
Fig. S13  A general survey of the fluorescence spectra of FG10@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG10@A in response to the 12 selected VOCs. 
 



 

Fig. S14  A general survey of the fluorescence spectra of FG11@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG11@A in response to the 12 selected VOCs. 
 



 
Fig. S15  A general survey of the fluorescence spectra of FG12@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG12@A in response to the 12 selected VOCs. 



 
Fig. S16  A general survey of the fluorescence spectra of FG13@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG13@A in response to the 12 selected VOCs. 
 



 
Fig. S17  A general survey of the fluorescence spectra of FG14@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG14@A in response to the 12 selected VOCs. 
 



 
Fig. S18  A general survey of the fluorescence spectra of FG15@A loaded with the 12 selected 
VOCs. The relative fluorescence intensities of FG15@A in response to the 12 selected VOCs. 



 

 
Fig. S19  The 1H NMR spectra recorded in deuterated acetonitrile of: (a) 0.5 mL of 0.01 M FG3, (b) 
0.5 mL of 0.01 M FG3+10 mg A; (c) 0.5 mL of 0.01 M FG10 and (d) 0.5 mL of 0.01 M FG10+10 mg 
A. 
 

 
Fig. S20  Titration 1H NMR spectra of TMeQ[6] with a gradual increase of FG3. 
 



 
Fig. S21  Titration fluorescence spectra of (a) FG3 and (b) FG10 with gradual increase of 
TMeQ[6]; titration absorption spectra of (c) FG3 and (d) FG10 with gradual increase of TMeQ[6]; 
titration fluorescence spectra of (e) FG3 and (f) FG10 with gradual increase of the solid assembly 
A, respectively. 
 

 

 
Fig. S22  Titration fluorescence spectra of (a) FG3 and (b) FG10 with a gradual increase of 
methanol. 
 



 
Fig. S23  Lifetime experiments for the change in the fluorescence emission of (a) FG3@A and 
(b) FG10@A. 
 

 
Fig. S24  Lifetime experiments for methanol adsorption using (a) FG3@A and (b) FG10@A. 
 



 
Fig. S25  The XRD spectra of FG3, assembly A, FG3@A and FG3@A during the adsorption 
and desorption of methanol. 
 

 
Fig. S26  The XRD spectra of FG10, assembly A, FG10@A and FG10@A during the 
adsorption and desorption of methanol. 
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