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Introduction: Lewis, Langmuir, Louis, London, Linus and
Linnett

In 1902, Gilbert Lewis wrote down the beginnings of what
would later become the familiar ‘octet rule’ of chemistry (see

Fig. 1).[1] He imagined that electrons were fixed to the vertices
of a cube, and that the vertices were sequentially filled in as one
moved across the periodic table. The concept of core electrons
was accounted for by cubes-within-cubes, written by Lewis as

‘Probably some kernel inside the atom thus’. The tetrahedral

geometry of carbon could be accounted for, to some extent, by
the way that the vertices were occupied.

In 1916 Lewis published his seminal paper, in which he laid

out the basis for much of the pictorial description of chemical
structure still used today. As shown in Fig. 2, Lewis rationalised
the covalent bond as the sharing of two electrons, which we
would later understand as having opposing spins. He conceded

that the cubical view of atoms was unable to reconcile the free
rotation of single bonds, nor the triple bond, and thus proposed a
variation in which the electrons were located at the vertices of a

tetrahedron:

‘y two tetraheda, attached by one, two or three corners of

each, represent respectively the single, the double and the

triple bond. In the first case one pair of electrons is held in

common by the two atoms, in the second case two such pairs,

in the third case three pairs.’

Lewis goes on to state that:

‘The triple bond represents the highest possible degree of

union between two atoms’,

a notion that would largely stand the test of time. Finally,
Lewis accounted for the colours of various compounds by

reasoning that the electrons vibrate about their equilibrium
positions.

In 1919 Langmuir built upon Lewis’ ideas and proposed
structures for a great number of compounds, including ozone

(Fig. 3).[3] He proposed structures for water and CO2 which
required devations from the cubic atoms model.

But this was an exciting time for electronic structure theory.

Louis de Broglie published the wave-postulate in 1925,[4] and
Schrödinger outlined the basis of wave-mechanics in a series of
papers in 1926.[5] By 1927Heitler and London had proposed that

a resonance between alternate occupancy of atomic orbitals in
Fig. 1. Gilbert Lewis’ notes from 1902 showing the beginnings of his

thoughts on electronic structure theory. This was published in ref. [1].
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H2, by up and down-spin electrons, gave rise to the chemical
bond.[6] This is the basis of valence bond theory. Quantum

mechanics was on the ascendancy.
Work by Lennard-Jones,[7] Hund,[8] Mulliken,[9] and

Hückel[10] established molecular orbital (MO) theory as a rival

theory to valence-bond (VB) theory. Due to algorithmic simplic-
ity for computational purposes, MO theory has won out. And,
because of its popularity with computational chemists, it has been

regarded by many chemists as ‘more correct’. However, as
Pauling points out,[11] they are both based on the same concept,

‘y the principle that the correct wave function for a state of

a system (such as the normal state) can be expressed as a sum

of functions constituting a complete set.’

As such, it does not matter what those functions are.
Linus Pauling laid out his vision in a series of papers entitled

‘The Nature of the Chemical Bond’ in 1931. In the first

installment[12] we are introduced to the idea of orbital hybridisa-
tion (‘bond eigenfunctions’), which for four electrons lie at the
corners of a tetrahedron (Fig. 4).

In 1962, Linnett picked up on the simple theories of Lewis,
Langmuir and Pauling and developed his double-quartet theory
(DQT).[13,15] This idea is based on the fact that themost probable

disposition of four valence electrons of the same spin about an
atom is a tetrahedron.[16] The two spin sets are considered
separately, and the electronic structures of many molecules are

explained in this way. Fig. 5 reproduces double-quartet structures
of F2, ethylene, and O2, as redrawn in our first paper.

[14] Though
not a quantitative theory, DQT forms a bridge between Lewis’

original ideas and chemical observations. For example, the triplet
structure of O2 can be seen to separate the two spin sets, thus

reducing the electron repulsion energy. This structure may be
compared to that drawn by Langmuir (Fig. 3). It was happy
chance that one of us (TWS) foundLinnett’s bookon a shelf in the

underground laser laboratory of Prof. John P.Maier in Basel. The
structures of Linnett bore a striking resemblence to structures
which emergewhen attempting to perform quantumMonte Carlo

calculations for fermions, without guiding functions.
The rivalry between MO and VB theory continues,[17–19]

with much of chemistry explained on the basis of VB concepts

with local bonds constructed from (hybrid) atomic orbitals,
augmented with resonance where necessary, and most quantita-
tive calculations being performed usingMOs. It is because most
modern calculations generate MOs that many chemists leap

to interpret them as somehow real.† Indeed, a case in point is
the interpretation of photoelectron spectra which are often
(over)-interpreted in terms of molecular orbitals.[20]

The simplest wavefunction which obeys the Pauli exclusion
principle (in its crudest form) is a product of one-electron
functions, known as the Hartree product.

cH ¼
YN

n

fnðrnÞ: ð1Þ

The Hartree product, where each electron has a correspond-
ing orthogonal one-electron function is the view of wavefunc-
tions that most chemists hold. However, this function does not

Fig. 2. Some figures from Lewis’ seminal work from 1916.[2] In (his) fig. 2, the valency of atoms is shown as sequential

occupancy of corners of a cube. The tetrahedral valence of carbon is acknowledged. In (his) fig. 3, we see a depiction of

bond formation as the sharing of one edge of two cubes. Fig. 4 shows formation of a double bond as the sharing of the face of

two cubes. A shorthand notation for the structures of ethylene and ammonium is shown,whichwe recognise today as Lewis

Structures. Fig. 5 shows the distortion of the cubical occupancy of eight electrons to account for tetrahedral geometries.

†For the record, the authors do not regard anything as ‘real’, except that which can be measured. However, there is a solution to the many-body Schrödinger

equation and we have set it as our task to interpret this solution in terms of canonical chemical concepts.
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obey the underlying origin of the Pauli principle, namely that
the wavefunction is antisymmetric upon exchange of electrons

(fermions).
To achieve this property, a determinant is constructed such

that the diagonal of the matrix is the Hartree product. Exchange
of any two rowswill change the sign of the determinant, and thus

the wavefunction itself. The simplest molecules are reasonably
well-described in terms of a single-determinant wavefunction.
The determinant, named for Slater, is written

cS ¼

f1ðr1Þ f2ðr1Þ . . . fN ðr1Þ
f1ðr2Þ f2ðr2Þ . . . fN ðr2Þ

..

. ..
. . .

. ..
.

f1ðrN Þ f2ðrN Þ . . . fN ðrN Þ

����������

����������

: ð2Þ

The structure of this wavefunction does not resemble the one-

electron functions in any way. Indeed, it is invariant to a unitary
rotation of the occupied orbitals: Any orthogonal set of linear
combinations of the canonical orbitals, which are eigenfunc-

tions of a fictitious one-electron operator, yield the same
many-electron wavefunction. But, it is the antisymmetrised
wavefunction which has the properties acknowledged by
Linnett that keeps four valence electrons of the same spin at

an average tetrahedral disposition.

Fig. 3. Several chemical structures fromLangmuir’s seminar work from1919.[3] Two structures of CO2 are given, one of

which accords with the assumed tetrahedral valence.

Fig. 4. The tetrahedra that emerge from orbital hybridization according to

Linus Pauling in ref. [12]. Top: The tetrahedral carbon atom. Bottom: Two

tetrahedral atoms sharing an edge, representing ethylene. Reprinted with

permission from ref. [12]. Copyright 1931, American Chemical Society.
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In just one spatial dimension, the ‘two like-spin-particles in a
box’ problem illustrates the differences between the (canonical)

Hartree product, the Slater determinant, the canonical orbitals,
and localised orbitals. In Fig. 6, the two lowest one-particle
eigenfunctions are plotted and labelled ‘canonical orbitals’. This

is the standard chemists’ view of chemical structure. The two-
dimensional function that results from this way of thinking is
plotted as a colour map and labelled ‘canonical Hartree prod-

uct’. However, thiswavefunction does not obey the property that
the wavefunction changes sign upon exchange of like-spin
electrons. The Slater determinant is plotted in Fig. 6 and labelled

thus. One can see that this function is indeed antisymmetric, and
that it in no way resembles the canonical orbitals. However, it
does resemble a ‘jaffle’ – a toasted sandwich with two equiva-
lent halves.

The antisymmetrised wavefunction for two like-spin elec-
trons must have two equivalent halves, because for every point
(x1, x2), there is a point (x2, x1) with the same magnitude of the

wavefunction. The repeating structure of a many-electron

wavefunction is the ‘tile’, the subject of this manuscript. Each

half of the jaffle is a wavefunction tile. A set of localised
orbitals, found by a p/4 rotation of the canonical orbitals, may
be multiplied together to obtain a very crude representation of

one tile (localised Hartree product), and one can see that the
localised orbitals resemble the projections of the tile, R, onto
each electron’s dimension, fðxiÞ ¼

R
R
cðxi; xjÞdxj.

It is all well and good to explore the wavefunctions of one-

dimensional particles, but how would one visualise the many-
electron wavefunction in higher dimensions? One approach is to
explore the wavefunction using a Monte Carlo algorithm.

Quantum Monte Carlo

As contemporary undergraduates, TWS and TJF were exposed
to the idea of diffusion quantum Monte Carlo‡ (DMC), an
intriguing theory which promises to return the ground state
energy of a many-body quantum system, including the corre-

lation energy. The trick is that because electrons are fermions,
the wavefunction must change sign upon the swap of two
electrons of the same spin. But there is no ‘sign’ inDMC, there is

only the density of the diffusing ‘walkers’. In order to introduce
nodes, armies of walkers can be diffused, with their interpene-
tration rendered forbidden. The armies need to consist of all like-

spin permutations of the ‘principal walker army’, which is the
set of walkers under diffusion (and breeding/execution) orders
from a random-number generator.

This principle can be illustrated by the toy quantum problem
of two like-spins, a and b, on the end of a stick of fixed length
(Fig. 7a). The configuration is defined by the orientation of the
stick as defined by the vector connecting the origin (stick

midpoint) to, say, spin a. As an army of walkers commences
at the North pole (y¼ 0), it diffuses South, while a ‘ghost’ army
representing the permutation a 2 b diffuses North. For every

walker, there is a permuted, antipodean walker. After some
(imaginary) time, the armies meet at the equator. As they are
prohibited from interpenetrating, the principal walker army

remains in the Northern hemisphere and the permuted walker
army, representing the negatively-signed part of the wavefunc-
tion, remains in the Southern hemisphere. At equilibrium, the
walker distribution will represent the spherical harmonic of the

pz atomic orbital, which is the J¼ 1, MJ¼ 0 rotational wave-
function of ortho-hydrogen – two like-spins (protons) on a stick!
Because the distribution in the Southern hemisphere depends

solely on that in the Northern hemisphere, all of the information
of the system is contained in the latter, and the former can be
regenerated from the latter. This is the basis of the ‘wavefunc-

tion tile’, the repeating unit of the wavefunction which is the
subject of the present manuscript. It is important to note that the
walkers define the tile. The positions of the walkers define the

node (for instance, as a Voronoi diagram of the walker ensem-
ble, including permuted walkers).

In the case of two like-spins at a fixed distance, the starting
point of the problem will determine the outcome in the limit of

infinite walkers. Starting at the North pole results in the node
appearing at the equator. In the absence of a potential, starting the
ensemble anywhere else will result in the node appearing on a

Great Circle 908 from the starting point. Statistical fluctuations
will cause deviations. The non-uniqueness of the solution is on
account of the threefold degeneracy of the J¼ 1 state:MJ¼ 0,�1.

Because the solutions are real, the MJ¼�1 solutions will be

×

×

×

×

×

×

×

× ×

××

×
×

Fig. 5. Linnett’s double-quartet theory structures of F2 (top), ethylene

(middle), and O2 (bottom). In F2, only one spin set is shown, with the nuclear

positions as open circles and electrons as solid circles. For ethylene, each

spin set is shown as small open circles and crosses. The carbon nuclei are

shown as large open circles. For O2, the spin sets are respectively solid

circles and crosses, with the open circles showning the nuclear positions. The

original depiction is in ref. [13], redrawn in ref. [14]. Reproduced from

ref. [14] with permission from the PCCP Owner Societies.

‡In a seminar by Prof. Bob Watts at The University of Sydney in the case of TWS; by Dr Harry Schranz in the case of TJF.
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obtainedas real linear combinations, analogous to the chemist’spx
and py orbitals, which are not eigenfunctions of the lz operator.

The Voronoi Diagram

Once three like-spins interact, there becomes the possibility of
non-trivial permutations that do not result in a sign change. Any
permutation that can be constructed from an even number of
electron exchanges, such as a three-way cyclic permutation,

preserves the sign of the wavefunction. Take, as an example,
three like-spins affixed to a wheel at points y¼ a, 2p/3þ a, and
4p/3þ a radians (Fig. 7b). This quantum system can be solved

in the single degree of freedom, a, and as there are no nodes that
form between the three like-signed armies (corresponding to the
principal army and two cyclic permutations), they can, in
principle, interpenetrate. The resulting solution represents

cðaÞ ¼ 1=
ffiffiffiffiffiffi
2p

p
, with no orientational preference. So where did

the tiles go?
To generate tiles in this case, one must create artificial

boundaries.Herewedo thiswith theVoronoi diagram.AVoronoi

diagram is a map which divides a space into regions which lie
closest to various sites. A real-world example might be a forest
divided into regions closest to a set of water towers (sites). For the
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Fig. 6. The Hartree product and Slater determinant of two particles of the same spin in a box of length L. Only the Slater determinant obeys

antisymmetry, f (x1, x2)¼�f (x2, x2). Both the canonical and localised orbitals give rise to the same Slater determinant.
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three-spin wheel, we define the sites as the average position of a

diffusing army, and its permutations. The permuted armies are
not permitted to interpenetrate by crossing the boundaries of their
Voronoi cell, but the position of the sites defining the Voronoi

diagram can move as the army diffuses, shifting the Voronoi
cells. Over time the armies and their Voronoi cells find a self-
consistent arrangement and settle into three populations occupy-
ing one-third of a rotation each. Each of the Voronoi cells

represents a tile. Any one solution is not unique. However, a
three-fold cyclic potential with minima at, say a¼ 0, 2p/3, and
4p/3 radians would result in a unique solution.

Nodal Regions and Tiles

In 2004, TWS published a paper which described the use of the

Voronoi diagram to delineate the same-signed permutation cells
(as he then called ‘tiles’) of simple atomic, many-electron

wavefunctions.[21] It was found that if a local maximum of the

wavefunction (and its permutations) was designated as the
Voronoi site(s), the resulting wavefunction tile led to localised
electrons (Fig. 8). For the c¼ jf1sf2pj triplet wavefunction of

helium, the electrons occupied diametrically opposed regions,
like sp-hybrid orbitals. In this case, the hybridisation is a result
of antisymmetry. The c¼ jf1sf2sj triplet wavefunction of
helium yielded a core, and a valence electron, one always further

from the nucleus than the other. The c¼ jf1sf2sf2pj quartet
wavefunction results in a core, and two sp-hybrid like electrons.
And so on, the quintet and sextet wavefunctions reveal the

emergence of core-sp2 and core-sp3-like tiles, suggesting a
relationship to Linnett’s tetrahedra in the latter case.

TWSwas then distracted by lasers and spectroscopy until his

move to UNSW allowed a degree of academic freedom to
pursue this idea further.

Permuted walker army

τ = early

τ = long

Principal Voronoi site

Permuted Voronoi site

Permuted Voronoi
site

Principal walker army

τ = intermediate

(a) (b)

Fig. 7. (a) A cartoon representation of the diffusion Monte Carlo solution to the problem of two like-spins at a fixed

distance. The configuration is defined by spherical polar coordinates, so the walkers diffuse on the surface of a sphere,

starting in this case at the North pole. Due to the antisymmetry requirements, a replicate permuted walker army diffuses

from the South pole and at equilibrium the equator emerges as the node. Either hemisphere can be taken as a wavefunction

tile. Random fluctuations would result in the node deviating from the equator but it would remain a Great Circle. (b) A

cartoon representation of the diffusion Monte Carlo solution to the problem of three like-spins arranged on a wheel 1208

apart. The configuration is defined by the angle of rotation of the wheel, so the walkers diffuse on a circle. The permuted

walker armies are of the same sign, so there are no nodes but the wavefunction tile is defined by a Voronoi diagram with

sites given by the average position of the principal walker army.
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1s2s2p3 configuration. The wavefunctions were sampled using the Metropolis algorithm.[22] Reprinted from ref. [21] with permission from Elsevier.
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Fig. 9. (a) Depictions of the electronic structure of O2 by Langmuir (top), Linnett (middle) and Liu (bottom). There is a clear link between the ideas of Linnett

and the results of the DVMS algorithm. (b) Structures of water, formaldehyde, dinitrogen, and difluorine from DVMS. (c) The structure of C2 from DVMS

compared to Shaik et al.’s quadruple-bonded structure.[25] (d) Depictions of bonding in ethylene by Pauling (top), Linnett (middle) and Liu (bottom).
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Lüchow and Liu

Lüchow and Petz applied the Voronoi diagram to molecules in
2011, showing that, by using a wavefunction maximum as the
reference site, as done by TWS in 2004, localised electrons

result.[23] The emergent 3N-dimensional wavefunction tile,
projected onto the three spatial coordinates of each of the N

electrons, in turn, results in the ‘single electron densities’. The
lone-pairs of water and the banana-bond description of double

bonds emerged as natural motifs. An update to the method,
whereby the Voronoi sites were defined by the average position

of walkers was reported in 2012 as ‘self-consistent centres of
charge’ (SCCC).[24] In order to avoid the factorially expensive
search over Voronoi sites necessary to contain walkers, Lüchow

and Petz implemented the Hungarian assignment algorithm
(also known as the Munkres algorithm). However, this neces-
sitates the Voronoi diagram to not only delineate like-signed
tiles but also differently-signed tiles.We feel it ismore natural to

allow the node to form this boundary.
In 2016 we published our first paper on molecules, where the

SCCC algorithm was tweaked to allow the nodes to form the

boundary between differently signed tiles.[14] A modified
Hungarian algorithm (which we call the Canberran) was
designed by Philip Kilby of CSIRO’s Data 61 in Canberra, to

allow efficient searching of only like-signed tiles. Our method
was designated ‘dynamic Voronoi Metropolis sampling’
(DVMS), which describes how the Voronoi diagram updates

itself as the walkers sample the electronic wavefunction
(squared) according to theMetropolis algorithm.[22]We showed
that this algorithm produced structures where the Voronoi site
corresponded closely to Linnett’s DQT (Fig. 9a).Many standard

molecules such as water, formaldehyde, dinitrogen, and difluor-
ine were found to have DVMS structures in accord with the
VSEPR and Linnett models (Fig. 9b). A triumph of sorts was the

demonstration that correlated wavefunctions could be illustated
in a simple and intuitive manner. C2, after the primary doubly-
excited determinant was included, was found to demonstrate an

asymmetric triple-bond, and the singlet-coupled non-bonding
electrons (which Shaik identifies as the fourth bond, Fig. 9c).

Reactions

Since any wavefunction may be analysed in terms of tiles, we
sought to apply the DVMS algorithm to chemical reaction paths.

The smooth variation of the Voronoi diagram along the reaction
path corresponds closely to the ‘curly arrow’ notation of organic
chemists.[26] We found that SN2 and nucleophilic carbonyl

addition proceeded as per chemistry textbooks. In the attack of
hydroxide on formaldehyde, one of the double-bonding sites

Fig. 10. Amovie strip for the attack by hydroxyl radical on formaldehyde.

One of the double bonds peels off to become a lone pair, as per the classical

mechanism based on Lewis structures. Figure adapted from ref. [26].

1
1Bu ← 1

1Ag 

3
1Ag ← 1

1Ag

Fig. 11. The vectors describing the motion of the centroids for a wave-

function mixed between the ground state and excited states of trans-

butadiene. The 11B2u and 31Ag states are in- and out-of-phase vibrations of

the localised double bonds. Figure adapted from ref. [27].
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‘peels off’ to smoothly morph into a non-bonding site on the
carbonyl oxygen (Fig. 10). Our most intriguing finding was that
the Diels-Alder reaction of ethylene and cis-butadiene proceeds

with anti-correlated up- and down-spins.

Excited States

Excited-state wavefunctions also exhibit antisymmetry but
will have more nodes and/or different nodes to the ground
state. In the spirit of semiclassical theories of spectroscopy,

we calculated the DVMS stuctures of ground state molecules
and then investigated the motions of the average electron
positions as a function of the phase of a superposition of the

ground and excited states.[27] The ‘quantum beats’ manifest
as the electrons vibrating about their equilibrium positions, as
postulated by Lewis![2] In trans-butadiene, the two double
bonds were found to combine as in- and out-of-phase vibrations,

corresponding to excitation to the 11B1u and 31Ag states
respectively (Fig. 11).

Bent Bonds

The Voronoi sites generated by DVMS represent average

electron positions within the tile, as defined by those average
positions. As such, they are a self-consistent solution, but not
always a unique solution. Nevertheless, for simple closed-

shell molecules the solution is unique, and reproduces motifs
such as core electrons, single bonds, double bonds
(represented as ‘banana bonds’), and lone-pairs. But, there is
more. In cyclopropane, the strain on the single-bonds can be

visualised, as seen in Fig. 12. Unlike in unstrained systems, the
C-e-C angle in cyclopropane is calculated to be 1438, and far
from being 608, the e-C-e angle is 978, not too far off the tetra-

hedral angle. The DVMS structure is compared to that of
cyclohexane in Fig. 12.

Configuration Interaction: BeOBe

Boldyrev and Simons demonstrated that a multiconfigurational

wavefunction is required to correctly describe the BeOBe
molecule.[28]We investigated the nature of this usingDVMS, by
implementing the algorithm with single and two-determinant

wavefunctions.
The equilibrated state of BeOBe obtained from DVMS

applied to a single-determinant wavefunction is given in
Fig. 13. The molecule is a linear structure with oxygen at the

centre, possessing an octet of electrons in a cubical arrangement,

as Lewis would have drawn. The single-configurational DVMS,
on account of a lack of electron correlation, can ‘accidentally’

result in both non-bonding electrons being on the same atom.
Such an asymmetric structure is unexpected.

The two-configurational DVMS calculation results in the

two non-bonding electrons occupying alternative atoms. Where
the wavefunction is calculated using MO theory, this sort of
correlation results from a doubly-excited determinant whereby
the two electrons are promoted from a sg orbital to a su orbital.
The upshot is that, because the coefficient of this double
excitation is negative, the probability of occupancy of the same
atom is diminished while occupancy of alternate atoms is

enhanced. The same type of excitation is at work in C2, and as
we shall show in a future paper, allyl cation and ozone.

Conclusions

DVMS has been developed to define and explore the electronic

wavefunction tile. The Voronoi sites reproduce the DQT
structures of Linnett, and satisfy chemical intuition on many
levels. Reactions can be followed by DVMS, which reproduces
the ‘curly arrow’ notation of organic chemists. Bright excited

states are found to correspond to vibrating structures, as pro-
posed by Lewis in 1916. DVMS can be used to explore multi-
configurational wavefunctions in a way that orbital treatments

cannot, and is thus a general way to investigate electronic
structure.

Fig. 12. The DVMS structures of cyclopropane and cyclohexane. The strained nature of the cyclopropane C-C bonds is

apparent from the bent nature of the C-e-C connection. The e-C-e angle is 978, much wider than the 608 expected were the

electron to lie on the C-C axis.

Fig. 13. Top: Single-determinant DVMS structure of BeOBe. The struc-

ture is asymmetrical, which is unexpected. Bottom: The symmetrical

structure obtained with two configurations. The doubly excited determinant

suppresses the double-occupancy of the non-bonding site. Note the resem-

blance of the oxygen configuration to Lewis’ cubes.
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