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water partition coefficients (log P) were measured using a shake-flask method. The resulting data was used to assess the
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MAD of 0.36 log units. Based on the present work and previous studies, the miLOGP and ALOGP empirical methods are
recommended for fast and moderately accurate prediction of log P for neutral organic solutes.
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Introduction

Lipophilicity refers to the tendency of a compound to partition
into a non-polar organic phase compared with an aqueous phase.
Therefore, it is an important physicochemical parameter for any

drug molecule as it has many implications in drug solubility,
bioavailability, and toxicity. The lipophilicity of a drug can
directly affect its absorption, distribution, metabolism, and
excretion (ADME) pathways in the body and is therefore a key

consideration in the overall pharmacokinetic profile. The most
common quantitative measure of lipophilicity is the partition
coefficient P (usually expressed as the logarithm log P) where P

represents the ratio of concentrations of a solute (S) in two
immiscible or partially miscible solvents (Eqn 1). The 1-octanol
and water system is traditionally used as 1-octanol is considered

to be an effective mimic of the phospholipid membrane.[1]

P ¼ S½ �organic
S½ �aqueous

ð1Þ

The log P value of a compound is commonly used in
medicinal chemistry and pharmacology as one of a set of

properties that can predict oral bioavailability. Lipinski’s ‘rule
of five’ states that the log P should be in the range of 0–5 if the
drug is to have a chance of being orally absorbed.[2] As such, an

accurate estimation of log P is central to the discovery and
development of successful drug molecules. It should be noted
that because many drug molecules contain ionisable groups, the

lipophilicity of these compounds are better described by the
distribution coefficient logD, which also accounts for all ionised
and neutral species at a given pH.

In addition to the standard shake flaskmethod, there are various

other techniques including photometry, gas chromatography (GC),

high-performance liquid chromatography (HPLC), and NMR

spectroscopy for the measurement of log P.[3,4] An advantage of

chromatographic techniques is that they can be automated for
high-throughput applications. This approach requires a calibra-
tion curve where the relationship between log P and retention

time is known.[5] A key underlying assumption in this approach
is that the intermolecular interactions that contribute to retention
in the column is similar to those responsible for 1-octanol and

water partition; this may not always be the case.[6] Furthermore,
many of these methods rely on UV-vis detection which hampers
the measurements of non-UV active compounds.

Despite the availability of different approaches to measuring

log P, the number of compounds for which log P measurements

are needed is significantly higher compared with the available

experimental log P data.[2] As noted above, this is due in part to
the fact that experimental determination of log P normally
entails synthesis, purification, and are less straightforward for
non-UV-active and sparingly soluble compounds.[7,8] As such,

computational prediction of logP values represents an attractive
alternative to experiment. Currently, the most popular methods
for fast log P predictions are empirical fragment-based

approaches. These models consider the molecule as a collection
of atoms or functional groups, and the overall logP is assembled
from a pre-determined contribution from each fragment. Typi-

cally, these contributions are determined from fitting to experi-
mental data and empirical fragment-based methods differ in
terms of the method used for fitting to experimental data (e.g.

linear regression, neural networks), size and diversity of the
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training set, and size of the fragments.[9] These empirical

methods are highly efficient and they are usually available to

users through free-to-use servers such as Molinspiration,[10]

SwissADME,[11,12] and VCClab.[13]

Other commonly used computational methods include
physics-based solvent models, which can be further categorised
into implicit and explicit solvent models. These models work by

calculating the transfer free energy (DGtransfer) between water
and 1-octanol which is related to the log P as shown in Eqn 2:

log P ¼ DGaq
S � DGoct

S

RT ln 10ð Þ ¼ DGtransfer

RT ln 10ð Þ ð2Þ

where DGS refers to the solvation free energy of the solute. In
implicit solvent models, the solute is placed inside a molecule-

shaped cavity embedded in a polarisable dielectric medium
that represents the solvent in an averaged and structure-less
manner.[14,15] These models contain parameters, e.g. atomic

radii used to construct the cavity, which have been optimised at
relatively modest levels of theory to reproduce experimental
data. For this reason, they are computationally efficient and

moderately accurate across a broad range of neutral solutes.
On the other end of the spectrum, explicit solvent models
involve simulation of the solute in a periodic box of solvent

molecules whereby the solute, solvent degrees of freedom, and
their interactions are modelled explicitly.[16–18] While these
are usually carried out using molecular mechanics force fields,
these models still come with a significant increase in compu-

tational time and resources compared with implicit solvent
models.[19]

All three classes of methods, particularly fragment-based

methods, have been widely used for the prediction of log P,
although direct comparisons of these methods on a common
dataset is relatively scarce. Recent work by the Ho and Spoel

groups have indicated that empirical methods perform unexpect-
edly well, even when applied to relatively ‘exotic’ molecules

outside of their training set,[20,21] and that their performance are
comparable if not superior to physics-based implicit and explicit
solvent models. Similar observations were made in the very

recent SAMPL6 Partition Coefficient Challenge where several
empirical methods ranked highly in this challenge.[22]

The focus in this paper is to assess the performance of
empirical fragment-based and physics-based QM implicit sol-

vent models for predicting the log P of fluorinated drug-like
molecules. This is particularly important inmedicinal chemistry
because fluorination is often used as a strategy to improve the

biochemical properties of drug candidates.[23–25] While the
effects of fluorination on lipophilicity using simple model
compounds is well understood, the link between fluorination

and lipophilicity for more complex and conformationally flexi-
ble molecules is less straightforward. Notably, the presence of
other polar functional groups such as hydroxy and carbonyl

groups can significantly change the overall polarity.[26] Müller
et al. have identified flaws with existing generalised rules for
predicting the effect of fluorination on log P, and have instead
identified two competing effects that influence lipophilicity,

such as changes in polarity (as the C–F bond is highly polarised)
and the hydrophobicity of the surface (non-polarisable fluorine
atoms).[27] To this end, this paper reports the synthesis and

shake-flask log P measurements of a library of flexible mole-
cules with diverse fluorination patterns. This information is used
to benchmark a range of computational models with the view to

identifying a robust method for the log P prediction of novel
fluorinated compounds.

Results and Discussion

Dataset and Synthesis

A library of 11 fluorinated compounds containing a variety of
scaffold structures and fluorination patterns is shown in Fig. 1.

All of these compounds were secured through chemical
synthesis. Some of the library compounds (i.e. M1–M6)
were prepared specifically for this project; see Experimental.
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Fig. 1. Dataset of 11 flexible fluorinated molecules.
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The other library compounds (i.e. LT1, LT2, LE1, IT1, IE1)

were available in-house from a separate research project on
bacterial quorum sensing inhibition,[28] the details of which will
be reported elsewhere.

Experimental log P Measurements

The shake-flask and 19F NMR method developed by Linclau
et al. was used to determine the log P values for the compounds
in this study.[29] This method has several advantages, notably

the compensation effect of the determination of a ratio, where
systematic errors are eliminated (see experimental details) and
there is no requirement to control the absolute amounts of

material or NMR aliquot volumes. Also, analytes can in prin-
ciple be investigated even if they are only minor components of
mixtures, assuming that the solutions are ideal.

The protocol and data processing reported by Linclau et al.
goes to sophisticated lengths to optimise the NMR method and
ensure excellent repeatability (� 0.01 log units).[29] However,

these careful parameters may not be practical or efficient for
chemists seeking fast acquisition and results. We tested a
modified procedure which involved a shorter partitioning time
(stir and settle for 1 h each) and employed routine NMR

acquisition parameters. This potential time-saving method was
tested in triplicate with two literature compounds with known
log P values: 1,1,1,3,3,3-hexafluoroisopropanol and 2,2,3,3-

tetrafluoro-1,4-butanediol. The fluorinated internal standard
used for these log P calculations was 2,2,2-trifluoroethanol
(TFE). The experimental log P values were determined

(Table 1) and the results indicate that the modified technique
is valid and has good reproducibility, albeit with a slightly larger
error compared with the original protocol. The effect of the
number of NMR scans (NS) was also investigated, and minimal

difference in log P (�0.01 log units) was observed between
128 and 256 scans by 19F{1H} NMR spectroscopy. Therefore,
these control tests indicate that our ‘accelerated’ procedure is

capable of reproducing literature values to within 0.05 log units
while significantly reducing the time needed for the log P

measurements.

Having established an efficient and reproducible method for
log Pmeasurement, this procedure was applied to the collection
of 11 fluorinated molecules (Fig. 1) and the data is presented in

Table 2. It was not possible to obtain a measurement for
aldehydes M1 and M2 presumably because the aldehydes
reacted with water during partitioning; however, any distinct
19F signals from this could not be identified.

For M5, M6, IT1, and IE1, it was also not possible
determine an exact log P because these compounds were only
observable in the organic layer. While the simplified NMR

method used in this project reduces valuable spectrometer
time, it may limit the detection for very lipophilic or hydro-
philic compounds. Therefore, the measureable log Pwindow is

smaller than reported in the literature. Linclau et al. report that
this method is valid for compounds with log P values�,3,
with the maximum log P measured in the study being 3.21 log
units employing 32768 scans with no replicates.[29] This

indicates that detection of highly lipophilic compounds by
19F NMR spectroscopy is difficult under even carefully
optimised conditions. Therefore, it is concluded that the Linclau

technique may not applicable for very lipophilic compounds
including M5, M6, IT1, and IE1.

In order to get a lower-bound value (i.e. the lowest possible

log P value for M5, M6, IT1, and IE1), the limit of detection

was determined for the specific NMR instrument. Serial dilu-
tions of the reference compound TFE in water were conducted,

simulating the shake-flask water layer. Each dilution was
measured with the same NMR parameters (NS¼ 256) and
aliquot volumes (0.4mL in 0.1mL acetone-d6). The limit of

detection where no TFE resonance was observed by NMR
analysis was concluded to be 1.37� 10�5 mmol mL�1. Since
TFE contains three chemically equivalent fluorine atoms and the

shake-flask protocol uses 2mL of water, this was taken into
account and the limit of detection ofM5 andM6was determined
to be 9.15� 10�6 mmol mL�1. With this detection limit deter-

mined, raq could be inferred (see experimental details) and used
to calculate the lower-bound log P values of 3.17, 3.09, 4.13,
and 3.96 forM5,M6, IT1, and IE1 respectively. An assumption
made in this step is that the intensities of signals in 19F NMR

spectra correspond exactly to the relative number of fluorine
atoms that are responsible for said signals.

Experimental logP values forM3 andM4were determined

to be 1.36� 0.15 and 1.81� 0.15 respectively (Table 2). The
large error bars for these two measurements can be attributed to
the poor signal to noise ratio (S/N) in the water layers, which

caused difficulty when integrating signals. The recommended
S/N for quantitative analysis is recommended to be above
300 : 1;[29] however, both water layers of M3 and M4 were

significantly below this (,70 : 1 on average). Comparing
M3 andM4, it can be seen that incorporating a second fluorine
atom increases the logP by 0.45 log units. This is consistent with
the results of Linclau et al. who compared several monofluori-

nated compounds with the analogous gem-difluorinated
compounds and found that the addition of the second fluorine
generally increased the log P by between 0.19 to 0.48 log

units.[26,27,29] Müller et al. have rationalised this trend using

Table 1. Control experiments with literature compounds

Compound Experimental

log PA

Literature

log P[29]

1,1,1,3,3,3-hexafluoroisopropanol 1.64� 0.04 1.69

2,2,3,3-tetrafluoro-1,4-butanediol �0.15� 0.01 �0.11

AError bars correspond to two times the standard deviation of three inde-

pendent measurements.

Table 2. Experimental log P results for dataset

Compound Log P (� 2s)A

M1 —B

M2 —B

M3 1.36� 0.15

M4 1.81� 0.15

M5 .3.17C

M6 .3.09C

LT1 0.46� 0.18

LT2 0.48� 0.09

LE1 0.45� 0.09

IT1 .4.13C

IE1 .3.96C

An¼ 3 except IT1 and IT2 where n¼ 1. Error bars correspond to two times

the standard deviation of three independent measurements.
BNo product signals in either layer.
CLower-bound log P limit.
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vector analysis (Fig. 2): adding a second fluorine atom gives a

fairly modest increase in polarity since the two C–F dipoles are
not parallel, and counteracting this increase in dipole is a larger
molecular volume which makes the surface more hydrophobic

overall.[27]

Finally, the three lactone diastereomers (LT1, LT2,
and LE1) were found to have log P values that are very similar
to one another (Table 2), suggesting that the lipophilicity is

not strongly affected by the fluorine stereochemistry in this
scaffold.

Definition of an Acceptable Error Margin

Before we examine the computational calculations, it is
important to first define what is considered an acceptable error
margin for the computational models. As noted in Eqn 2, the log

P is related to the transfer free energy which is simply the
difference in solvation free energies in 1-octanol and water.
Typically, implicit solvent models can predict the solvation free

energies of neutral solutes in aqueous and organic solvents to
within 5 kJmol�1 of experiment[30,31] so the transfer free energy
is estimated to have an error bar of no less than 10 kJ mol�1 or
1.75 log units at room temperature. However, a recent study by

one of us has found that many implicit solvent models incur
errors of the same sign in both solvents which means there
should be some cancellation of errors in the calculated transfer

free energy.[20] In particular, the mean absolute error in calcu-

lated transfer free energies and the standard deviation in the
error were,1.94 and 1.67 kJ mol�1 respectively, averaged over
five different implicit solvent models. If we assume the error is

normally distributed, then the error is ,1.94� 3.34 kJ mol�1

based on the 95% confidence interval (2s). Thus, the
5.28 kJ mol�1 should be considered as the upper boundary
of the errormargin for implicit solventmodels and this translates

to ,1 log unit. Finally, we note that the errors in empirical
models are typically estimated through cross-validation
studies and will vary between models. For this reason, we

define 1 log unit to be the acceptable error margin for all models.

Conformational Searches

The compounds in Fig. 1 are conformationally flexible and

systematic conformer searches were carried out to locate their
lowest energy conformers in water and 1-octanol using the SMD
implicit solvent model. This entails the consideration of all

rotatable bonds in the molecule and generating a pool of con-
formers by rotating about these bonds at 1208 or 1808 resolution.
Generated conformers that result in two or more short inter-
atomic distances are removed and the rest are subject to

geometry optimisation at the M06-2X/6-31G(d) level of theory
(see Experimental).

This is an important step because the energies of the con-

formers can span a range as large as 30 kJ mol�1 so choosing the
incorrect conformer may introduce an error of more than 5 log
units in the calculated log P. This is because a 6 kJ mol�1 error in

DGtransfer (see Eqn 2) translates to an error of 1 log unit at 298K.
In most cases, the implicit solvent calculations predict that the
molecules adopt the same lowest energy conformer in water and
in 1-octanol, and Fig. 3 depicts the lowest energy conformer and
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Fig. 2. C–F bond vector of gem-difluorinated alcohol M4.

M3 lowest energy conformer (0 kJ mol–1) A high energy conformer (31 kJ mol–1)

LT1 lowest energy conformer (0 kJ mol–1) A high energy conformer (24 kJ mol–1)

M6 lowest energy conformer (0 kJ mol–1) A high energy conformer (36 kJ mol–1)

1.88

Fig. 3. The lowest energy conformers forM3,M6, andLT1 in the aqueous phase based on theM06-2X/6-31G(d) and

SMD implicit solvent model. A high energy conformer is shown on the right and the values in parentheses refer to their

relative energies.
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a high energy one forM3,M6, and LT1. As shown, the lowest
energy conformers are typically characterised by intramolecular

hydrogen bonding or aromatic p-stacked interactions and it is
not always straightforward to predict the lowest energy con-
formers on the basis of chemical intuition. In this work, all log P
calculations are based on the lowest energy conformer located in

the respective phases. This approach is a good approximation to
Boltzmann averaging over energetically low-lying conformers
because the Boltzmann average will be dominated by the lowest

energy conformer. To illustrate this point, we considered a
hypothetical molecule with Nconf and Nconf’ number of confor-
mers in 1-octanol and water respectively. Eqn 3 shows the

Boltzmann average for the solution phase energies in 1-octanol
and water and the transfer free energy can be calculated from the
difference in the two averaged energies. In the extreme case
where allNconf andNconf’ conformers were degenerate, the error

of not performing a Boltzmann average is at most RTln(Nconf’/
Nconf). Thus, it is reasonable to base the log P calculation using
lowest energy conformers in the respective phases.

Eocth i ¼ �RT ln
XNconf

i¼1

e�
Ei;oct
RT

 !

Eaq

� � ¼ �RT ln
XN

0
conf

i¼1

e�
Ei;aq
RT

0
@

1
A

DDGtransfer ¼ Eaq

� �� Eocth i

ð3Þ

Assessment of Computational Methods

For the dataset of 11 molecules, theoretical values of log Pwere
obtained using both empirical fragment-based methods and QM
implicit solvent models. These values are provided in Table 3,
while Fig. 4 presents the signed error in the calculations for the

five compounds with well defined log P measurements. As
shown, the best performing empirical methods are miLOGP,
ALOGPS, and ALOGP where the deviations are consistently

below 0.5 log units. Interestingly, XLOGP3, which was

Table 3. Collated log P predictions for all methods

MAD, mean absolute deviation; ADmax, maximum absolute deviation

Compound miLOGP iLOGP XlogP3 WLOGP MLOGP SILICOS-IT ALOGPS ALOGP SMD SM12-MK SM12-CM5

M1 2.27 1.76 1.84 2.40 1.91 3.03 1.73 1.64 2.12 2.17 2.21

M2 2.62 1.80 2.10 3.12 2.05 3.18 2.27 2.24 2.58 2.50 2.51

M3 1.81 2.29 1.66 2.19 2.00 2.72 1.61 1.48 2.21 2.30 2.44

M4 2.17 2.30 1.92 2.91 2.14 2.88 1.81 2.13 2.37 2.07 2.58

M5 4.87 4.01 4.75 6.00 3.52 5.46 4.17 4.71 3.63 4.73 4.10

M6 4.87 2.84 4.75 6.00 3.52 5.46 4.17 4.71 3.73 5.87 5.28

LT1 0.26 1.85 1.70 1.73 1.05 2.03 0.72 0.79 0.28 0.66 0.76

LT2 0.26 1.88 1.70 1.73 1.05 2.03 0.72 0.79 0.63 0.70 0.87

LE1 0.26 1.62 1.70 1.73 1.05 2.03 0.72 0.79 0.51 0.82 1.01

IT1 4.95 2.83 4.96 5.90 3.52 5.42 4.31 4.75 3.87 4.75 5.08

IE1 4.95 2.65 4.96 5.90 3.52 5.42 4.31 4.75 3.50 5.23 5.59

MAD 0.28 1.08 0.82 1.15 0.55 1.43 0.20 0.28 0.36 0.40 0.62

ADmax 0.45 1.40 1.25 1.28 0.64 1.58 0.27 0.34 0.85 0.94 1.08
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previously identified as a reasonably robust method for

predicting the log P of simple fluorinated compounds,[20–22]

displayed a mean absolute deviation (MAD) of 0.82 and maxi-
mum absolute deviation (ADmax) of 1.25 log units, which is

beyond the acceptable error range. This highlights one of the
limitations of empirical methods as their performance can be
less predictable when they are applied to molecules dissimilar
to those in their training set, e.g. conformationally flexible

fluorinated molecules. Furthermore, these methods (with the
exception of iLOGP) cannot differentiate between diaster-
eomers but this is normally not a problem because the difference

in log P for stereoisomers are generally well within our
defined error margin. Nonetheless, we note that miLOGP,
ALOGPS, and ALOGP were also previously found to perform

very well in the prediction of log P of relatively smaller organic
molecules, and it is encouraging that these models retain a
similar level of accuracy when applied to more complex
molecules in this study. Notably, for the 11 protein kinase

inhibitor-like small molecules in the SAMPL6 log P challenge,
miLOGP andALOGP scored anMADof 0.49 and 0.32 log units
respectively.[22]

Of the implicit solvent models, the SMDmodel performed the
best with the lowest MAD value of 0.36 log units, although its
maximum absolute deviation is about two times larger than the

best performing empirical models. The results here echo the
observations from several recent studies where physics-based
implicit and explicit solvent models do not necessarily yieldmore

accurate logP predictions comparedwith empiricalmodels.[20,21]

An important consideration when evaluating the performance of
empirical models is whether there is significant overlap between
the test and training sets. Given that this is the first time

experimental log P values have been reported for the novel
fluorinated molecules in this study, the miLOGP, ALOGP, and
ALOGPS can be considered to be reasonably robust.

Fig. 4 shows the signed errors (calculated minus experiment)
for all the models. It is interesting to note that with the exception
of miLOGP and SMD, the deviations between calculations and

experiment are quite systematic in that the calculations consis-
tently overestimate experimental values, i.e. more positive logP
values. An explanation for this observation, at least for the
implicit solvent models, is that we have assumed that water and

1-octanol are completely immiscible. This is not necessarily the
case, and there have been suggestions that the calculation of
solvation free energies in ‘wet’ 1-octanol may improve the

calculated log P values.[32,33] This would require explicit solvent
simulations or amore sophisticated implicit solventmodel such as
COSMO-RS[34,35] where the water content in the 1-octanol layer

can be varied, and it is of interest to examine the effect of ‘wet’
1-octanol on the accuracy of calculated log P in the future.

For the compounds with estimated lower-bound log P values

(M5, M6, IT1, and IE1), it appears that the calculated log P

values are in accord with the experimental observation that these
molecules are significantly more lipophilic compared with the
othermolecules in the dataset.Notably, the predictions by the best

performing models (miLOGP, ALOGPS, ALOGP, and SM12-
MK) all predict that the logP of these compounds are at least 4 log
units (i.e. outside of the reported detection limit for the 19F NMR

technique), and the four models agree to within 1 log unit.

Summary and Conclusions

There is currently a bewildering array of log P prediction
methods in the literature, especially empirical models that have
been trained on very large datasets of experimental data. One of

the aims of this work is to identify robust computational meth-

ods that can provide relatively accurate and fast estimates of
log P for fluorinated drug-like compounds. Using the dataset
of 11 fluorinated molecules synthesised in this work, we were

able to determine the log P values of five of these compounds
(and we made lower-bound estimates of log P for another four
compounds). The experimental data was used to validate
computational models. To our surprise, three of the empirical

fragment-based methods (miLOGP, ALOGPS, and ALOGP)
outperformed the physics-based QM implicit solvent
models, and were able to predict the log P to within 1 log unit of

the experimental values measured in this study. This finding
is consistent with our recent work where we assessed the
performance of physics-based implicit and explicit solvent

models for the log P prediction of more than 90 fluorinated
and non-fluorinated organic molecules.[20] When we consider
these results collectively, it appears that the ALOGP and
miLOGP are reasonably robust empirical methods and are

recommended for not only fluorinated compounds but also
general neutral organic solutes.

Experimental and Computational Details

General Synthetic Methods

All reactions were performed in oven-dried glassware under a
nitrogen atmosphere, unless stated otherwise. All commercial
reagents and solvents were used as received. Anhydrous sol-

vents were obtained from a solvent purification system and dried
over 4 Å molecular sieves. Purified water was obtained from a
Millipore Milli-Q plus system. Solution phase reactions were

monitored by TLC using Merck aluminium backed silica gel 60
F254 (0.2mm) TLC plates. TLC spots were visualised under
short-wave UV light (254 nm) and potassium permanganate

stain. Purification by flash chromatography was performed
using Davisil 40–63 mesh silica gel. Eluent systems are quoted
as volume-to-volume ratios. NMR spectrawere obtained using a

Bruker Avance III 300MHz or 400MHz with Cryoprobe
spectrometer at 298K unless otherwise stated. 1H, 13C{1H}, 19F,
and 19F{1H} NMR spectra were analysed and assigned where
possible by Bruker Topspin software and internally calibrated

by residual solvent peaks. HRMS results were recorded at the
Bioanalytical Mass Spectrometry Facility (BMSF) at UNSW
using an Orbitrap LTQ XL ion trap MS in positive or negative

ion mode with an electrospray ionisation (ESI) ion source.

(S)-4-(Benzyloxy)-2-fluorobutanal (M1) and 4-(Benzyloxy)-
2,2-difluorobutanal (M2)

Step 1: To a solution of oxalyl chloride (0.4mL, 5.0mmol) in
dry DCM (3.6mL) at –788C was added DMSO (0.5mL,
6.7mmol). After 20min, a solution of 4-(benzyloxy)butan-1-ol

(0.5 g, 2.8mmol) in dry DCM (1.2mL) was added dropwise to
the reaction mixture before being left to stir for 2 h at –788C.
Triethylamine (1.6mL, 11mmol) was added and the reaction
waswarmed to room temperature and dilutedwith DCM (4mL).

The organic layer was washed with saturated NH4Cl solution
(5mL) and water (3� 5mL), dried over MgSO4, filtered, and
concentrated under reduced pressure. The crude product was

purified by flash chromatography eluting with hexane/EtOAc
(85 : 15) to yield 4-(benzyloxy)butanal as a green oil (2.21 g,
71%). dH (400MHz, CDCl3) 9.78 (t, J 1.6, 1H, CHO), 7.37–

7.27 (m, 5H, ArH), 4.49 (s, 2H, PhCH2), 3.51 (t, 2H, J 6.0,
BnOCH2), 2.55 (dt, J 7.1, 1.5, 2H, CH2CHO), 1.95 (q, J 13.2,
7.1, 2H, CH2CH2CHO). dC (100MHz, CDCl3) 202.3 (CHO),
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138.3 (ArCquat), 128.4 (meta-ArC), 128.4 (para-ArC), 127.6

(ortho-ArC), 73.0 (PhCH2), 69.2 (BnOCH2), 41.0 (CH2CHO),
22.6 (CH2CH2CHO); spectroscopic data in accordance with
literature values.[36]

Step 2: A solution of 4-(benzyloxy)butanal (200mg,
1.12mmol) and (S)-a,a-bis[3,5-bis(trifluoromethyl)phenyl]-
2-pyrrolidinemethanol trimethylsilyl ether[37] (6.5mg,
0.011mmol) in methyl tert-butyl ether (MTBE) (1.5mL) was

stirred at room temperature for 15min. N-Fluorobenzenesulfo-
nimide (NFSI) (233mg, 0.748mmol) was then added and the
reaction mixture stirred at room temperature for 6 h. Pentane

(6mL) was then added and the white precipitate was filtered off.
The filtrate was concentrated under a stream of N2 gas to yield
a mixture of the title compounds as a yellow oil (90mg). Data

for M1: dF (376MHz, CDCl3) –203.1 (m, 1F). dF,H (376MHz,
CDCl3) –203.1 (s, 1F). Data for M2: dF (376MHz, CDCl3)
–109.2 (m, 2F). dF,H (376MHz, CDCl3) –109.2 (s, 2F).

(S)-4-(Benzyloxy)-2-fluorobutan-1-ol (M3) and
4-(Benzyloxy)-2,2-difluorobutan-1-ol (M4)

A mixture of M3 and M2 (200mg) was dissolved in MeOH
(6mL) and cooled to 08C. NaBH4 (113mg, 2.99mmol) was

added in portions, and the mixture was stirred at room temper-
ature for 30min. The reaction was quenched with KHSO4

(1M, 5mL) and extracted with diethyl ether (3� 5mL). The

combined organic layers were washed with water, dried over
MgSO4, filtered, and concentrated under vacuum. The crude
product was purified by flash chromatography eluting with

hexane/EtOAc (95 : 5 - 9 : 1). Data for M3: yellow oil
(50.6mg, 23% over two steps from 4-(benzyloxy)butanal, 97%
ee); [a]D �21.0 (c 0.0045, MeOH). nmax (neat)/cm�1 2919,
2853, 1736, 1280, 1171, 1031. dH (400MHz, CDCl3) 7.38–7.27

(m, 5H, ArH), 4.86–4.68 (dm, 1H, 3JHF 48.9, CHF), 4.52 (s, 2H,
PhCH2), 3.80–3.57 (m, 4H, 2�CH2), 2.07–1.86 (m, 4H). dC
(100MHz, CDCl3) 137.9, 128.5 (d, J 3.03), 127.8, 127.7, 91.9

(d, J 170), 73.2 (d, J 13.0), 70.4, 65.6 (d, J 6.0), 64.8 (d, J 22.3),
62.8, 31.6 (d, J 20.6), 30.2, 26.7. dF (376MHz, CDCl3) –190.6
(m, 1F). dF,H (376MHz, CDCl3) –190.6 (s, 1F). m/z (ESI, þve)

221.0957; C11H15FO2Na
þ [MþNaþ] requires 221.0954. Data

for M4: light yellow oil (11.9mg, 5% over two steps from
4-(benzyloxy)butanal). dF (376MHz, CDCl3) –104.3 (m, 2F).

dF,H (376MHz, CDCl3) –104.3 (s, 2F).

(S)-4-(Benzyloxy)-2-fluorobutyl-(S)-3,3,3-trifluoro-2-
methoxy-2-phenylpropanoate (M5)

To a stirred solution ofM3 (10mg, 50 mmol) in DCM (0.8mL)
was added (S)-a-methoxy-a-trifluoromethylphenylacetic acid
(36.6mg, 156 mmol), N,N0-Dicyclohexylcarbodiimide (DCC)

(323mg, 156 mmol), and 4-dimethylaminopyridine (DMAP)
(19mg, 156 mmol). The solution was then stirred for 3 days at
room temperature and monitored by 19F NMR spectroscopy
until full conversion was observed. The residual solid was

filtered off and the solvent evaporated to yield crudeM5 (3mg).
dF (376MHz, CDCl3) –71.6 (s, CF3), –189.0 (m, CHF).
dF,H (376MHz, CDCl3) –71.6 (s, CF3), –188.9 (s, CHF M5).

(S)-4-(Benzyloxy)-2-fluorobutyl-(R)-3,3,3-trifluoro-2-
methoxy-2-phenylpropanoate (M6)

To a stirred solution ofM3 (10mg, 50 mmol) in DCM (0.8mL)

was added racemic a-methoxy-a-trifluoromethylphenylacetic
acid (36.6mg, 156 mmol), DCC (323mg, 156mmol), andDMAP
(19mg, 156 mmol). The solution was then stirred for 10 days at

room temperature and monitored by 19F NMR spectroscopy

until full conversion. The residual solid was filtered off and the
solvent evaporated to yield a mixture of M5 and M6 (3mg).
Data forM6: dF (376MHz, CDCl3) –189.0 (m). dF,H (376MHz,

CDCl3) –189.1 (s, CHF).

Experimental Measurement of log P

For the library of 11 compounds, experimental logP valueswere
determined through the shake-flask method developed by

Linclau and co-workers with slight alterations.[29] Thus,
the compound of interest (1–15mg) and 2,2,2-trifluoroethanol
(1–10mg) were dissolved in 1-octanol (2mL) and water (2mL).

The resulting biphasic mixture was stirred at room temperature
for 1 h and left to settle for 1 h. An aliquot (0.4mL) from each
layer was transferred to two NMR tubes. Acetone-d6 (0.1mL)

was added to each tube, and the 19F{1H} NMR spectrum of each
solution was recorded using a Bruker Avance III 300MHz or
400MHz instrument with 128 or 256 scans. Standard NMR data

processing techniques such as zero filling, phasing, and baseline
correction were applied appropriately.

The integration peaks of compound of interest (X) and
reference (ref) were determined for each phase to give the ratios

roctanol and rwater (Eqn 4a). These ratios correspond to the
concentrations (C) in the respective layers. If the peaks repre-
sented a different number (n) of fluorine substituents, then a

correction factor was applied (Eqn 4b).

roct ¼
IXoct
I refoct

¼ nx � CX
oct

nref � Cref
oct

ð4aÞ

raq ¼
IXaq

I refaq

¼ nx � CX
aq

nref � Cref
aq

ð4bÞ

The ratio of the roct and raq values are equal to the ratio of the
respective partition coefficient (P) values (Eqn 5a). Finally, the

log P value of the unknown compound can be obtained by
adding the logarithm of the ratio of the measured r values to the
literature log P value of the reference compound (Eqn 5b).

PX ¼ Pref roct
raq

 !
ð5aÞ

logPX ¼ logPref þ log
roct
raq

 !
ð5bÞ

Computational Details

A range of fragment-based approaches were used to calculate
the log P, each with different methods and training sets. A brief
description of each method used is given below.

miLOGP

This is a fragment-based approach developed byMolinspira-
tion in 2005.[10] This method calculates log P from the sum of
group or fragment contributions and correction factors. The

training set contains over 12000 mostly drug-like molecules.

iLOGP

This is an implicit log Pmethod developed by Daina and co-

workers in 2014.[11,12,38] iLOGP is a physics-based method and
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hence is considered an implicit solvent model that has been

trained on over 17550 molecules.

XLOGP3

This is an atom-based method developed by Cheng and co-

workers in 2007.[11,12,39] XLOGP3 is an additive model which
uses a total of 87 atom or group types and two correction factors
as descriptors. It is calibrated on a training set of 8199 organic
compounds through linear regression analysis.

WLOGP

WLOGP is an atom-based method developed by
SwissADME based on the fragmental system developed by

Wildman and Crippen.[11,12] The training set contains 9920
molecules and 68 atomic contributions.

MLOGP

This is a topological method developed by Moriguchi in
1992.[2,11,12] This model involves 13 parameters describing the
topology of the molecular structure and a regression constant.

This model was trained on 1230 molecules with experimental
log P values.

SILICOS-IT

This is a hybrid fragment/topological approach developed by

Silicos-it and available on SwissADME.[11,12] The descriptors
are obtained from least-squares fitting against 23455 molecules
from the PHYSPROP database.

ALOGPS

This is a topological approach developed by Tetko and co-
workers in 2001.[13,40] The model uses 75 electro-topological

state indices which are used in a group contribution manner and
neural network modelling. The training set consists of 12908
molecules from the PHYSPROP database.

ALOGP

This is an atom-based approach developed by Ghose and
Crippen in 1986.[41,42] This method was trained on 893 molecu-

lar structures.
All QM implicit solvent models were applied at the levels

of theory that are consistent with their parameterisation.
The SMD, SM12-MK, and SM12-CM5 solvation free energies

were obtained at the M062X/6-31G(d) level of theory.
Geometry optimisation and systematic conformer searches
were carried out to locate the global minimum energy

conformer in 1-octanol and water simulated using the SMD
model. The SM12-MK and SM12-CM5 values were obtained
from single-point calculations on the lowest energy conformer

found from SMD geometries. Vibrational analysis confirmed
that all optimised geometries have zero imaginary frequencies
and are true minimum energy structures. SMD electronic
structure calculations and geometry optimisations were carried

out using theGaussian16[43] program, while SM12 calculations
were performed using QChem5.2.[44]

Supplementary Material

M06-2X/6-31G(d) Cartesian coordinates of all the lowest

energy conformers used to evaluate log P are available on the
Journal’s website.
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[7] E. Baka, J. E. A. Comer, K. Takács-Novák, J. Pharm. Biomed. Anal.

2008, 46, 335. doi:10.1016/J.JPBA.2007.10.030
[8] J.Alsenz,M.Kansy,Adv.DrugDeliv. Rev. 2007, 59, 546. doi:10.1016/

J.ADDR.2007.05.007
[9] R. Mannhold, G. I. Poda, C. Ostermann, I. V. Tetko, J. Pharm. Sci.

2009, 98, 861. doi:10.1002/JPS.21494
[10] Molinspiration Cheminformatics, Calculation of Molecular Proper-

ties and Bioactivity Score. Available at https://www.molinspiration.

com/ (accessed 5 July 2019).

[11] A. Daina, O. Michielin, V. Zoete, Sci. Rep. 2017, 7, 42717. doi:10.
1038/SREP42717

[12] Swiss Institute of Bioinformatics, SwissADME. Available at http://

www.swissadme.ch/ (accessed 5 October 2019).

[13] VCCLAB,Virtual Computational Chemistry Laboratory. Available at

http://www.vcclab.org/ (accessed 19 October 2019).

[14] C. J. Cramer, D. G. Truhlar, Chem. Rev. 1999, 99, 2161. doi:10.1021/
CR960149M

[15] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
doi:10.1021/CR9904009

[16] B. Chen, J. I. Siepmann, J. Am. Chem. Soc. 2000, 122, 6464. doi:10.
1021/JA001120þ

[17] N. M. Garrido, A. J. Queimada, M. Jorge, E. A. Macedo, I. G.

Economou, J. Chem. Theory Comput. 2009, 5, 2436. doi:10.1021/
CT900214Y

[18] M. Soroush Barhaghi, C. Luyet, J. J. Potoff, Mol. Phys. 2019, 117,

3827. doi:10.1080/00268976.2019.1669837
[19] R. E. Skyner, J. L. McDonagh, C. R. Groom, T. Van Mourik, J. B. O.

Mitchell, Phys. Chem. Chem. Phys. 2015, 17, 6174. doi:10.1039/
C5CP00288E

[20] V. Kundi, J. Ho, J. Phys. Chem. B 2019, 123, 6810. doi:10.1021/ACS.
JPCB.9B04061

[21] D. van der Spoel, S. Manzetti, H. Zhang, A. Klamt, ACS Omega 2019,

4, 13772. doi:10.1021/ACSOMEGA.9B01277
[22] M. Is-ık, D. Levorse, D. L. Mobley, T. Rhodes, J. D. Chodera, bioRxiv

2019, 757393. doi:10.1101/757393

[23] K. L. Kirk, Org. Process Res. Dev. 2008, 12, 305. doi:10.1021/
OP700134J

[24] K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881. doi:10.
1126/SCIENCE.1131943

[25] E. P. Gillis, K. J. Eastman,M. D. Hill, D. J. Donnelly, N. A.Meanwell,

J. Med. Chem. 2015, 58, 8315. doi:10.1021/ACS.JMEDCHEM.
5B00258

684 Y. M. Wu et al.

http://dx.doi.org/10.1007/S11095-010-0303-7
http://dx.doi.org/10.1007/S11095-010-0303-7
http://dx.doi.org/10.1016/S0169-409X(96)00423-1
http://dx.doi.org/10.3390/INORGANICS6040130
http://dx.doi.org/10.1016/J.CHROMA.2017.10.064
http://dx.doi.org/10.1016/J.CHROMA.2017.10.064
http://dx.doi.org/10.1016/J.JCHROMB.2003.08.032
http://dx.doi.org/10.1016/J.JPBA.2007.10.030
http://dx.doi.org/10.1016/J.ADDR.2007.05.007
http://dx.doi.org/10.1016/J.ADDR.2007.05.007
http://dx.doi.org/10.1002/JPS.21494
https://www.molinspiration.com/
https://www.molinspiration.com/
http://dx.doi.org/10.1038/SREP42717
http://dx.doi.org/10.1038/SREP42717
http://www.swissadme.ch/
http://www.swissadme.ch/
http://www.vcclab.org/
http://dx.doi.org/10.1021/CR960149M
http://dx.doi.org/10.1021/CR960149M
http://dx.doi.org/10.1021/CR9904009
http://dx.doi.org/10.1021/JA001120+
http://dx.doi.org/10.1021/JA001120+
http://dx.doi.org/10.1021/CT900214Y
http://dx.doi.org/10.1021/CT900214Y
http://dx.doi.org/10.1080/00268976.2019.1669837
http://dx.doi.org/10.1039/C5CP00288E
http://dx.doi.org/10.1039/C5CP00288E
http://dx.doi.org/10.1021/ACS.JPCB.9B04061
http://dx.doi.org/10.1021/ACS.JPCB.9B04061
http://dx.doi.org/10.1021/ACSOMEGA.9B01277
http://dx.doi.org/10.1101/757393
http://dx.doi.org/10.1021/OP700134J
http://dx.doi.org/10.1021/OP700134J
http://dx.doi.org/10.1126/SCIENCE.1131943
http://dx.doi.org/10.1126/SCIENCE.1131943
http://dx.doi.org/10.1021/ACS.JMEDCHEM.5B00258
http://dx.doi.org/10.1021/ACS.JMEDCHEM.5B00258


[26] D. O’Hagan, R. J. Young, Angew. Chem. 2016, 55, 3858. doi:10.1002/
ANIE.201511055

[27] K. Müller, Chim. Int. J. Chem. 2014, 68, 356. doi:10.2533/CHIMIA.
2014.356

[28] Y. L. Salas, Stereoselective Fluorination as a Conformational Tool in

a Series of Structurally Related Bioactive Molecules 2019, Ph.D.

thesis, UNSW Sydney, Australia.

[29] B. Linclau, Z. Wang, G. Compain, V. Paumelle, C. Q. Fontenelle,

N.Wells, A.Weymouth-Wilson,Angew. Chem. Int. Ed. 2016, 55, 674.
doi:10.1002/ANIE.201509460

[30] C. J. Cramer, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 760. doi:10.
1021/AR800019Z

[31] A. Klamt, B. Mennucci, J. Tomasi, V. Barone, C. Curutchet,

M. Orozco, F. J. Luque, Acc. Chem. Res. 2009, 42, 489. doi:10.1021/
AR800187P

[32] B. Chen, J. Ilja Siepmann, J. Phys. Chem. B 2006, 110, 3555. doi:10.
1021/JP0548164

[33] S. A. Best, K. M. Merz, C. H. Reynolds, J. Phys. Chem. B 1999, 103,

714. doi:10.1021/JP984215V
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