CYCLOCOLORENONE IN BORONIA LEDIFOLIA GAY*

By R. O. HELLYER† and E. V. LASSAK†

Steam distillation of the leaves and terminal branchlets of Boronia ledifolia Gay (family Rutaceae) collected at Bowen's Creek, near Mt. Irvine, N.S.W., yielded a volatile oil in 0.42% yield. A gas chromatographic analysis of the oil showed it to consist predominantly of a single compound (70%) which, on separation by vacuum fractionation followed by column chromatography, was found to be a high-boiling ketone which yielded a 2,4-dinitrophenylhydrazone, m.p. 217–218°. The n.m.r. spectrum of this compound indicated the presence of a cyclopropane ring (signals in the 0–1 τ region) and the infrared spectrum showed the presence of a carbonyl group (1698 cm⁻¹) and of olefinic unsaturation (1629 cm⁻¹). Consequently the compound was thought to be cyclocolorenone. It was epimerized by passing it through an alumina column or by refluxing it with alcoholic potassium hydroxide to form epicyclocolorenone, which was identified by a mixed melting point determination and a comparison of the infrared spectrum with that of an authentic specimen kindly donated by Professor R. E. Corbett of the University of Otago, New Zealand.

This is the second recorded occurrence of cyclocolorenone: Corbett and Speden found the leaf oil of the New Zealand shrub Pseudowintera colorata to contain 7.5% of this ketone.

Penfold and Morrison examined the leaf oil from a population of B. ledifolia at Grafton, N.S.W., and reported this oil to consist chiefly of methyl n-heptyl ketone and methyl n-nonyl ketone, together with α-pinene, methyl anthranilate, and sesquiterpenes. Examination by us of B. ledifolia leaf oils from populations in other localities in New South Wales has also failed to detect the presence of cyclocolorenone. This is not surprising in view of the considerable morphological variation which occurs in the B. ledifolia group and the current uncertainty of the taxonomic status of some populations.

Experimental

All melting points are uncorrected. Light petroleum had b.p. 40–60°. Gas chromatography was carried out in a Perkin-Elmer 226 gas chromatograph, using a 150-ft Golay column with Silicone oil DC 200 as stationary phase. Infrared spectra were recorded on a Perkin-Elmer 221 spectrophotometer.

Isolation of Cyclocolorenone

Steam distillation of leaves and terminal branchlets of Boronia ledifolia (14.52 kg) yielded 0.42% of oil (60 ml) which had the following constants: d₁⁰D 0.9630; αD²⁰ –218.8°; nD²⁰ 1.5129.

* Manuscript received April 24, 1967.
† Museum of Applied Arts and Sciences, Sydney.
A vacuum fractionation of the oil gave a residue, b.p. 105°/4 mm, which was further purified by adsorbing it onto a silica gel column, and eluting it with n-hexane and then diethyl ether. The ethereal eluate yielded a fraction which contained 95% of a single compound as shown by gas chromatography. The fraction yielded a red 2,4-dinitrophenylhydrazone, m.p. 217–218° (lit. 1 217–218°). The fraction had [α]D 20° = −355° (c, 8·75 in ethanol); νmax 1698 and 1629 cm⁻¹.

Epimerization of Cyclocolorenone

(1) The cyclocolorenone fraction (5 g) was refluxed with alcoholic potassium hydroxide (150 ml, 0·5N) for 2 hr. The reaction product was acidified and extracted with ether to yield a crystalline compound (3 g) which on recrystallization from light petroleum gave epicyclocolorenone, m.p. 68° (2,4-dinitrophenylhydrazone 192°), identical by mixed melting point and comparison of the infrared spectrum with that of an authentic specimen.

(2) The cyclocolorenone fraction (1 ml) was dissolved in light petroleum, adsorbed onto an alumina column (activity I), and eluted with light petroleum/chloroform mixture (60/30). The eluate yielded a product (0·5 ml), which on recrystallization gave epicyclocolorenone, m.p. 68°.

Acknowledgments

Thanks are due to Miss B. Short and Mr C. Debenham of the Museum staff for assistance in the collection of plant material and identification of botanical specimens respectively.

Corrigenda

Volume 20, Number 5

Page 1031: At the end of the paragraph dealing with alkaloids G.B.6 and G.B.7, add

Both alkaloids are polymorphic; G.B.6 has m.p. 154° and 170°, G.B.7 has m.p. 169° and 183°.

Volume 20, Number 7

Page 1343, line 7, and page 1346, line 19: for 0·45 ± 0·1 read 0·45 ± 0·01

Page 1347, Table 4: for trimethylamine read triethylamine