

CHEMISTRY

Retraction notice to 'A Biocompatible Gd^{III}-Organic Framework Incorporating Polar Pores for pH-Sensitive Anti-Cancer Drug Delivery and Inhibiting Human Bone Tumour Cells'

Mingliang Ren, Hui Li, Hu Liu, Lei Wang, Haibo Xiang, Xianrong Zhang and Bin Yu

Refers to: RETRACTED: A Biocompatible Gd^{III}-Organic Framework Incorporating Polar Pores for pH-Sensitive Anti-Cancer Drug Delivery and Inhibiting Human Bone Tumour Cells, published 17 December 2018, https://doi.org/10.1071/CH18268. Mingliang Ren, Hui Li, Hu Liu, Lei Wang, Haibo Xiang, Xianrong Zhang and Bin Yu.

After due consideration of issues raised with respect to this paper, the Editors-in-Chief and the authors agree to retract the paper from *Australian Journal of Chemistry*.

Reason: Upon review of the submission history for the manuscript, the *Australian Journal of Chemistry* Editors and Publisher found indications that the peer review process is likely to have been compromised by the submission of reviews through suspected fabricated reviewer accounts.

The Editors-in-Chief and Journal Publisher have determined these are grounds for retraction, according to the international guidelines established by the Committee on Publication Ethics. We regret the academic record was compromised and apologise for any inconvenience this may have caused.

Ren M et al. (2023) Australian Journal of Chemistry **76**(2), 115. doi:10.1071/CH18268_RE

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Aust. J. Chem. https://doi.org/10.1071/CH18268

Full Paper

A Biocompatible Gd^{III}–Organic Framework Incorporating Polar Pores for pH-Sensitive Anti-Cancer Drug Delivery and Inhibiting Human Bone Tumour Cells

Mingliang Ren,^{A,B,C} *Hui Li*,^C *Hu Liu*,^C *Lei Wang*,^{A,B} *Haibo Xiang*,^{A,B} *Xianrong Zhang*,^{A,B} *and Bin Yu*^{A,B,D}

^ADepartment of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.

^BKey Laboratory for Bone and Cartilage Regeneration, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.

^CDepartment of Orthopaedics, Affiliated Nanhai Hospital, Southern Medical University Foshan 528200, China.

^DCorresponding author. Email: bin_yu666@126.com

With the aim of developing new and effective drug delivery systems for can atments, great effort has been devoted to the field of porous metal-organic framework (MOF) platforms because of the ontrolled drug release performance, high drug loading, and acceptable biocompatibility. In this contribution, we report a \mathbf{F} [Gd₂(H₂O)₃(SDBA)₃](DMA)₃] (1, DMA = N, N-dimethylacetamide) with open O donor sites f inctionalised 1D poles, which has been fabricated using a bent polycarboxylic acid organic linker 4,4'-sulfonyldib voic acid (H_2 SDBA) under solvothermal conditions. Single crystal X-ray diffraction (SCRD), thermogravimetric and is (TGA), elemental analysis, X-ray powder diffraction ed to characterise the as-prepared complex 1. (XPRD), and Brunauer-Emmett-Teller (BET) analysis we buffer same (PBS) and the in vitro drug release performance 5-Fluorouracil (5-Fu) loaded 1 was soaked in phosp was monitored by HPLC analysis under different pl ons. At the pH values of 7.4 and 6.5, different profiles of pH-responsive release were achieved, indicating that the ac elease performance of 5-Fu loaded 1 is pH sensitive. tion results demonstrate that the open O donor sites in the framework Grand Canonical Monte Carlo (GCMC) s of 1 account for the slower drug release The prepared carrier is found to be bio-compatible with MG63 1. (norp al tissue), when tested by 3-(4,5-dimethylthiazol-2-yl)-2,5mal cells (cancerous tissue) and oral er diphenyltetrazolium bromide (MTT) as loaded carrier also shows a promising growth inhibition effect towards the human bone tumor, cells MG

Manuscript received: 2 June 2018. Manuscript accepted 25 November 2 Published online: 7 December 2018.

Introducti

been achieved in the field of bio-Although gi till one of the most life-threatening diseases medicine, cance that kills millions people every year.^[1] Since the clinical success of anticancer drugs such as cisplatin and its analogues, chemotherapy that depends on anticancer drugs has become the dominant therapy method for most cancers.^[2] However, the traditional direct administration of cancer drugs to patients has caused some undesirable side effects such as high toxicity to human normal cells, non-selective drug distribution, and low drug stability, which may damage healthy tissues and limit the therapeutic effect.^[3] Furthermore, many tumours are highly resistant to conventional anticancer drugs, which require that the anticancer drugs need to accumulate in tumour regions with a high enough concentration to kill the cancer cells.^[4] To address the above mentioned issues, nanoporous drug delivery systems (NDDS) that utilise various porous carriers to load drugs have gained much attention in recent years because they not only had a

large loading capacity for the targeted drug molecules but could also release many more drug molecules in tumour tissue than they do in normal tissues, resulting in a high drug concentration in the cancerous tissue. In the past few decades, many types of porous materials such as carbon nanotubes, porous silica particles, and polymeric micelles, have been studied and applied as drug carriers, but they still suffer from some drawbacks such as low drug loading capacity and poor biocompatibility.^[5–7]

As a burgeoning class of crystalline porous materials, metal– organic frameworks (MOFs) made of metal ion/clusters as nodes and polydentate organic ligands as connectors have been of great research interest in the last two decades not only for their beautiful structures, but also because of their open active sites, well defined pore structure, and large inner spaces, which are conducive to incorporate targeted guest molecules in the pores.^[8–10] The endless possibility in the selection of organic ligands and inorganic ions/clusters make MOFs an adjustable porous material for various targeted applications including

Fig. 1. Molecular structure of the H₂SDBA ligand.

fluorescent sensing, heterogeneous catalysis, gas separation, and biomedicine.^[8–16] In particular, porous MOFs have been widely studied as candidates for anticancer drug delivery, exhibiting various superior properties such as high drug loading capacity, suitable pore size, and strong framework-drug interactions.^[17–28] Furthermore, it has been reported that many MOFs could be stable in neutral conditions but partly decompose when the pH value lowers.^[29] Considering that cancerous tissue is more acidic than normal issue, it could be anticipated that an MOF-based anticancer drug carrier could rapidly release drugs in cancerous tissue and retard the drug leaking into normal tissue.^[30–32] In this contribution, with the aim of developing new and effective drug delivery systems for cancer treatments, great effort has been devoted into the field of porous MOF platforms because of their controlled drug release performance, high drug loading, and acceptable biocompatibility. In this contribution, we report a MOF $[Gd_2(H_2O)_3(SDBA)_3](DMA)_3](1, DMA = N,$ N-dimethylacetamide) with open O donor sites functionalised 1D pores, which has been fabricated using a bent polycarboxylic acid organic linker 4,4'-sulfonyldibenzoic acid (H2SDBA, Fig. 1) under solvothermal conditions. Single crystal X-ray diffraction (SCRD), thermogravimetric analysis (TGA), elemental analysis, X-ray powder diffraction (XPRD), and Brus nauer-Emmett-Teller (BET) analysis were used to characterise the as-prepared complex 1. 5-Fluorouracil (5-Fu) loaded 1 was soaked in phosphate buffer saline (PBS) and the in vitro drug release performance was monitored by HPLC analysis nder different pH conditions. At the pH values of 6.5, 4 an different profiles of pH-responsive release indicating the drug release performance of SFu lo Fu@1a) is pH sensitive. Grand Canonication fonte Carlo 1 (5-(C) donor sites in the simulation results demonstrate that the op. framework of 1 account for the slower dru, ease rate. The Ils (cancerprepared carrier is also biocompanyle with MG ous tissue) and oral epiderme (cells (normal tissue), when tested diphonyltetrazolium bro-e 5-Fu oaded carrier shows by 3-(4,5-dimethylthiazor mide (MTT) assay. In addition a promising growth towards the human bone ition e tumour cells MC 53.

Experimental

Chemicals and Instruction

All the chemicals were surchased from commercial sources and used without further purification. The H₂SDBA ligand was obtained from the Shanghai Absin Bioscience reagent company. A dual-beam UV-vis spectrophotometer (TU-1900, BPGI, China) was used to acquire the UV-vis absorption spectra. XRPD data were collected on a Rigaku RU200 diffractometer with Cu K_{α} radiation. C, H, and N elemental analysis was performed with a Thermo Scientific Flash 2000 analyser. TGA curves were obtained in a N₂ atmosphere in the temperature range of 25–800°C on a TGA/DSC-1 thermogravimetric analyser. HPLC was performed on an Agilent 1200 chromatographic system. The 77 K N₂ isotherm was measured with an automated micropore gas analyser (Autosorb-1) with liquid N₂ as the temperature controller.

Table 1. Crystal data and structure refinements for compound 1

Parameter	1
Chemical formula	C40H43Gd2N3O15S2
Formula weight	1184.41
Temperature [K]	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a [Å]	18.3268(3)
<i>b</i> [Å]	21.1896(4)
c [Å]	16.0653(3)
α [deg.]	90
β [deg.]	110.927(2)
γ [deg.]	90
Volume [Å ³]	3(2)
Z	
$\rho_{\rm calc} [\rm g cm^{-3}]$	1.7
$\mu [\mathrm{mm}^{-1}]$	2.4 0
2θ range for data collection [des.]	4, 6, 49.976
Reflections collected	20172
Independent reflections	842 nt 0.0264, R _{sigma} 0.0401
Data/restraints/parameters	8742/77/777
Goodness-of-fit on	1.045
Final R indexes $[> - 0]$	$R_1 0.0319, wR_2 0.0687$
Final R indexes III data	$R_1 0.0418, wR_2 0.0744$
Largest differperk/hole [e A	1.72/-1.00
CCDC	1865596

Preparation of $[Gd_2(H_2O)_3(SDBA)_3](DMA)_3]$

n. In L breaker was placed Gd(NO₃)₃·6H₂O (45 mg, 2.1 mr.ol), H₂SDBA (31 mg, 0.1 mmol), DMA (6 mL), and H₂O (1.5 mL). After the addition of 0.2 mL of HCl (2 M, aq), the olution was vigorously stirred for 30 min at room temperature to obtain a clear solution. The clear solution was transferred into a 20 mL vial and heated at 90°C for 72 h. Yellow sheet-like crystalline products of 1 were obtained by removing the solvent, the products were washed with H₂O and left in the air for one day to dry. Yield 52% on the basis of the H₂SDBA ligand. Anal. Calc. for C₄₀H₄₃Gd₂N₃O₁₅S₂ (1184.4): C 40.56, H 3.66, N 3.55; Found: C 40.28, H 3.98, N 3.45%.

X-Ray Crystallography

The room-temperature singe crystal XRD measurement was performed on a Bruker Apex II CCD diffractometer with Mo K α radiation. The structure was solved with the *Superflip* structure solution program and then refined by least-squares minimisation with the *ShellXL* refinement package. All non-hydrogen atoms were refined using anisotropic thermal parameters and all hydrogen atoms were placed in their ideal positions using the AFIX commands. Crystallographic data are summarised in Table 1.

5-Fu Loading and Release

Into 5 mL of MeOH was added 20 mg of 5-Fu, and then the solution was made clear via ultrasonic treatment, followed by addition of 10 mg of synthesised 1a (the crystalline products of 1 were immersed in MeOH for 72 h to completely remove the lattice DMA molecules, and then heated at 60°C for 12 h under dynamic vacuum to afford the compound 1a). The prepared suspension was then sealed and stirred (650 rpm) for 24 h at room temperature. The 5-Fu loaded 1a (5-Fu@1a) particles

were filtered under vacuum with a 0.2 µm cellulose acetate (Whatman CA) membrane filter. The loaded particles were dried overnight. The unloaded drug concentration in clear supernatant was then quantified by UV-vis spectrophotometry at $\lambda_{max} = 265$ nm in triplicate. The 5-Fu release from the 5-Fu loaded MOF was measured in PBS at 37°C with two different pH values (7.4 and 6.5). The 5-Fu loaded crystals were soaked in PBS (50 mL). At certain intervals, the resulting solution (0.5 mL) was removed and fresh PBS was added to replace it. The 5-Fu content was then probed using the HPLC analysis.

MTT Assay

The cytotoxicity of 5-Fu, 1, and 5-Fu@1a was investigated against MG63 cells (cancer cells) and oral epidermal cells (normal cells) via the strand MTT assay. For these experiments, the cells were incubated in Dulbecco's Modified Eagle's Medium (DMEM, Neuronbc) with 1 % penicillin/streptomycin (P/S, Boster) and 10% fetal bovine serum (FBS, pH 7.4) for 24 h. After 24 h cell incubation in the humidified incubator (5 % CO₂), the culture medium was replaced by fresh DMEM containing crystals of 1 or 5-Fu@1a with different concentrations (10, 20, 40, and 80 μ g mL⁻¹) and incubated with the cells for another 4 h in the incubator. After 48 h of incubation, 10 µL of MTT solution (5 mg mL⁻¹) was added. After 4 h, the culture medium was removed and 150 µL of DMSO was added into each well to dissolve the purple insoluble formazan crystals. Absorbance values of samples were determined with a microplate reader at $\lambda = 490$ nm. Each experiment was carried out three times and averaged.

of **1**

Results and Discussion

Molecular Structure and Physical Characteris

An SCRD analysis reveals that complex s to the belo lecu monoclinic space group of $P2_1/c$ and $j = \frac{1}{c}$ composed of two crystallographically dependent t Ga ns. three fully deprotonated SDBA²⁻ gands, three ordinated which all contribute to water, and three lattice DMA mol a neutral network structure th th hemical formula of $[Gd_2(H_2O)_3(SDBA)_3](DM_1)]$. As shown Fig. 2a, different coordination surroundings could be observer for the two Gd^{III} is eight-coordinated and resides in a ions (Gd1 and Gd2). edral coordination environment e coordinated water and seven distorted triangular do defined by one Postom fro. five dh. pent $SDBA^{2-}$ ligands, which ry according to the software *SHAPE*; Gd2 oxygen ators fix shows a D vmm ted mode with a biaugmented trialso reveals ry, which is defined by six carboxylic oxygonal prism get gen atoms from a different SDBA²⁻ ligands and two coordinated water molecules. The Gd^{III}–O bond distances are in the range of 2.252(3) to 2.526(2) Å, which are comparable with those observed in other Gd^{III}-based coordination polymers.^[33-35] Gd1, Gd2, and their symmetry related atoms are held together via the syn-bridging carboxylic groups along the a axis to afford the 1D secondary building unit (SBU) chains with a Gd1-Gd2 separation of 5.07 Å. As depicted in Fig. 2b, the three SDBA²⁻ ligands show three different types of coordination modes: the type-I SDBA²⁻ ligand is involved in the μ_2 - η^1 : η^1 and μ_2 - η^2 : η^1 modes of coordination bridging four Gd^{III} ions; the type-II SDBA²⁻ ligand is involved in the μ_2 - η^1 : η^1 mode of coordination bridging four Gd^{III} ions; the type-III SDBA²⁻ ligand shows μ_2 - η^1 : η^1 and μ_1 - η^1 : η^1 modes of coordination connecting with three Gd^{III} ions. The SDBA²⁻ ligands are bent

with C–S–C bond angles ranging from 101.7° to 103.6°, which connect with the 1D SUB channels to give rise to the threedimensional network with rhombus pores (Fig. 2c). The channels are filled with uncoordinated O donor sites and water occupied Gd^{III} sites, which are activated sites for binding with the guests. The total accessible volume of 1 after removal of the guest and coordinated water molecules is estimated to be 38.7 % using the PLATON/VOID routine. In the framework of 1, the three SDBA²⁻ ligands in the molecular unit could be judged as 3, 4, and 5-connected nodes and the two Gd^{III} centres can be considered as 5 and 6-connected nodes, so the whole framework of 1 can be abstracted as a 3,4,4,5,6-connected topological network with the Schläfli symbol of {4.6.8}{4^2.6^3.8^5} $\{4^3.6^{2.8}\}\{4^{3.6}^{3}\}\{4^{9.6}^{6}\},$ not been included in the TOPOS database (Fig. 2)

luated b The thermal stability of 1 was **FGA** from room temperature to 800°C (Fi 3a). ssive weight losses of 20.5% from 25 to 295° C could be discentiated from the TGA curve of complex 1, correct adding to the rele se of two coordinated H₂O molecules and the attee DIA molecules in the pores ely steady plateau until 340°C, a (calcd: 20.2 %). After a re s could be one ved, indicating the collapse of 1. The PXXD profiles reveal a good match sharp weigh the fram work d curve from the crystal data and the between the sim. experimental one, in cating that the structures of the as-repared crystalline products are consist with the crystal ucture (Fig. 3b). In view of the following drug delivery riments, the framework integrity of 1 in PBS solution has by soaking the crystalline samples of 1 in PBS (pH h 7.4) for one day at 37°C in an oven, and then collecting the responding PXRD patterns. The PXRD results indicate that nework integrity of complex 1 was maintained in PBS, and this also lays the foundation of complex 1 as a drug carrier in simulated human body conditions. In addition, compound 1 shows pH-dependent framework stability as revealed from the PXRD measurements, which also indicates that the drug release performance of the drug loaded 1 might be pH sensitive. The solvent-free samples of 1 (denoted as 1a hereafter) were prepared by soaking crystalline samples of 1 in MeOH for 72 h to completely remove the lattice DMA molecules, and were then activated at 60°C for 12 h under high vacuum. The TGA curve of 1a reveals no obvious weight loss in the temperature range of 25 to 329°C, which confirms that all the lattice guest solvents and the coordinated water molecules have been removed. To establish the permanent porosity of 1a, BET analysis was carried out by measuring the adsorption isotherms of N₂ at 77 K. As shown in Fig. 3c, the N₂ adsorption isotherm at 77 K reveals a reversible type-I adsorption behaviour with a saturated uptake of 268 $\text{cm}^3 \text{g}^{-1}$ without any hysteresis, which is characteristic of porous materials with microporous channels. Based on the 77 K sorption isotherm, the calculated Langmuir surface area is $777 \text{ m}^2 \text{ g}^{-1}$ and the BET surface area is 576 m² g⁻¹. A density functional theory based model fitted to the adsorption branch of the 77 K N₂ isotherm shows the majority of the pores are around 7.2 Å in size, consistent with the values estimated from the single-crystal structure determination (Fig. 3d).

Drug Delivery Experiments

Considering its polar atom functionalised channels and the large solvent accessible voids, activated 1 (1a) might be suitable for loading small guest molecules. 5-Fu, which is a widely used anticancer drug for the treatment of various cancer tumours, was

Fig. 2. (a) The coordination surroundings of the Gd^{III} ions and the 1 SDBA²⁻ ligands. (c) The 3D network of 1 showing the rhombus pores

BU chain in 1 (b) The coordination modes for the The 3,4,4 ,6-connected net of 1.

Fig. 3. (a) The TGA profiles for 1 and 1a. (b) The PXRD profiles for 1. (c) The N₂ sorption isotherms for 1 and 1a. (d) The pore size distribution of 1a (the inset shows the particles size of 5-Fu@1a from the SEM image).

Fig. 4. (a) UV-Vis spectroscopy showing the intervery characteristic processes of 5-Fu loaded 1a under different pH values (7.4 and 6.5). (c) The calculated favourables are not and the calculated distribution of 5-Fu in the framework of 1a.

its small rk because chosen as the guest molecule in molecular size $(5.3 \times 5.0 \text{ Å}^2)$ and the tence of H-bonding donors. In a typical drug loading experiment, the complex **1a** (10 mg) was soaked in 5 mL of MeOH containing 20 mg of 5-Fu with stirring for two and then the drug loading (DL) and were investigated by UV-vis charge of the UV-vis spectrum encapsulation efficience 1 spectroscopy. Fig 4a show before and after addition complex 1a at 265 nm, the ensity indicates that the 5-Fu molecules in obvious de ased i the solution o the pores of **1a** (Fig. 4a). Based on the UV-vis spe result, the 5-Fu storage capacity is calculated to be 20.6 wh Furthermore, the BET analysis via the N_2 sorption experiment at 77 K reveals that the 5-Fu@1a shows negligible N₂ uptake capacity (less than 15 cm³ g⁻¹), reflecting that the pore spaces or the pore windows of 1a are filled with the 5-Fu molecules. The particle sizes of the resulting products are both around 480 nm as characterised by scanning electron microscopy (SEM), which indicates that the 5-Fu@1a could reach specific cancer cells due to its small size (Fig. 3d, inset).

To obtain the 5-Fu drug release profiles of the drug-loaded **1a**, the drug release experiments were performed by dialysing the drug loaded MOF and the concentration of 5-Fu released was determined by HPLC. Fig. 4b shows the drug release profiles at 37°C under two different pH conditions. At pH 7.4, the delivery of 5-Fu occurred within 20 h with no 'burst effect' and no more 5-Fu could be released from the drug loaded MOF with

increasing time. This also indicates that the strong drug-framework interaction prevents the drug molecules from escaping from the framework. As mentioned above, the framework of complex 1 shows pH-dependent stability, so the pH value of the PBS solution was adjusted to a more acidic condition (pH 6.5) and the drug release profile was recorded. As expected, the slightly acid condition resulted in a faster 5-Fu release rate with more 5-Fu molecules released into the solution (68%), demonstrating that the lower pH value can trigger the system of 5-Fu molecule release. The diffraction peaks of 5-Fu@1a became broad and did not match with those of 1a, indicating that the framework of 1a might partly collapse after drug release at pH 6.5 (Fig. 3b). This feature is beneficial because the drug carrier needs to be degraded after drug release to be eliminated from the human body. To gain a deeper structure-property relationship, we carried out a GCMC simulation to determine the roles of the polar O donor sites in the framework of 1. The simulated results are shown in Fig. 4c, d. At zero loading and room temperature, one 5-Fu molecule prefers to locate in the channel centre and weak H-bond interactions could be observed (S1-O5...H distance: 2.991 Å and S3-O17...H distance: 2.915 Å). Furthermore, besides the H-bond interactions, there also exist $\pi - \pi$ interactions between the 5-Fu molecule and the benzene ring of the ligand with a distance of 3.370 Å. Both the H-bonding and π - π interactions contribute to the strong framework-drug molecule interactions, which prevent the leakage of drug

Fig. 5. (a) The viability of human body tumour cells MG63 and oral epide with various concentrations of drug-loaded MOF at 12 and 24 h. (c) Viability of 20 μ g mL⁻¹, untreated MG63 cells were considered as a second

molecules into the solution, resulting in long using series release. To obtain the maximum loading 5 well as the period tion of 5-Fu molecules in the framework using task was carried at 37°C and 100 kP, when eveals that there are eleven 5-Fu molecules in the unit cell of the user the given conditions, corresponding to 2...4 wt-%, which is amilar to the value obtained by UV-vis emetro copy.

Anticancer Activity

of 1a and the potential To investigate the mpatibil **1a**, the in vitro cell proliferation of anticancer activ cells) and oral epidermal cells 1a towards MGo ated via MTT assays. The MG63 cells (normal cells) were and the oral epidermak s were treated with 1a and the compound concentration was set to four different concentrations (10 to 80 μ g mL⁻¹ in DMEM). The relationship between the surviving fraction and the drug concentration was plotted to obtain the survival curves. The results show that complex 1 exhibited a negligible cytotoxicity towards the two cell lines tested with more than 80% of cells alive at the maximum concentration of $80 \,\mu g \,m L^{-1}$ after 12 and 24 h. These data indicate that our novel drug carrier possesses excellent biocompatibility (Fig. 5a). On the other hand, the drug loaded MOF could lead to significant cell death towards the human bone tumour cells MG63 with an increase of concentration. About 52 % of MG63 cells were killed at 80 μ g mL⁻¹ of 5-Fu@1a in 12 h (Fig. 5b). It should be noted that a further increase of the time to 24 h could result in more cancer cell death, indicating the sustained and prolonged

5-Fu release from **1a**. Furthermore, the efficacy of the 5-Fu and 5-Fu@**1a** were investigated for their ability to eliminate MG63 cells by cell culture experiment. Based on the results in Fig. 5c, the number of living cancer cells in the presence of 5-Fu@**1a** is

less than for the free drug 5-Fu, indicating the improved thera-

peutic effect of loading the 5-Fu into the pores of 1a.

is in the presence of 5-Fu and 5-Fu@1a at the 5-Fu concentration

Conclusion

fM 363

In summary, by making use of an O-rich organic ligand H₂SDBA, a new 3D porous lanthanide–organic framework with 1D nanosized channels has been synthesised and characterised, which could be used as a pH-sensitive carrier and delivery agent for the anticancer drug 5-Fu. The drug loaded MOF could release more drug molecules at a faster rate in tumour surroundings than in normal physiological conditions. We also characterised the cytotoxicity of 5-Fu@1a using an MTT assay towards human body tumour cells MG63, which revealed obvious anticancer activity. The efficient drug loading capacity and progressive release make 1a a promising carrier for the administration of 5-Fu.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgements

This work was supported by grants from the Medical Science and Technology Research Fund Project of Guangdong Province (B2017050).

References

- D. M. Parkin, Lancet Oncol. 2001, 2, 533. doi:10.1016/S1470-2045 (01)00486-7
- [2] B. Rosenberg, L. Vancamp, J. E. Trosko, V. H. Mansour, *Nature* 1969, 222, 385. doi:10.1038/222385A0
- [3] B. Lei, M. Wang, Z. Jiang, W. Qi, R. Su, Z. He, ACS Appl. Mater. Interfaces 2018, 10, 16698. doi:10.1021/ACSAMI. 7B19693
- [4] M. Rezaei, A. Abbasi, R. Dinarvand, M. Jeddi-Tehrani, J. Janczak, ACS Appl. Mater. Interfaces 2018, 10, 17594. doi:10.1021/ACSAMI. 8B03111
- [5] Y. Feng, H. Fan, Z. Zhong, H. Wang, D. Qiu, *Inorg. Chem.* 2016, 55, 11987. doi:10.1021/ACS.INORGCHEM.6B02117
- [6] E. K. Ruuge, A. N. Rusetski, J. Magn. Magn. Mater. 1993, 122, 335. doi:10.1016/0304-8853(93)91104-F
- [7] J. Lu, M. Liong, J. I. Zink, F. Tamanoi, Small 2007, 3, 1341. doi:10.1002/SMLL.200700005
- [8] D. Chen, W. Shi, P. Cheng, Chem. Commun. 2015, 51, 370. doi:10.1039/C4CC07357F
- [9] S. K. Mostakim, S. Biswas, CrystEngComm 2016, 18, 3104. doi:10.1039/C6CE00421K
- [10] Y. Feng, M. Li, H. Fan, Q. Huang, D. Qiu, H. Shi, *Dalton Trans.* 2015, 44, 894. doi:10.1039/C4DT02840F
- [11] M. X. Wu, Y. W. Yang, Adv. Mater. 2017, 29, 1606134. doi:10.1002/ ADMA.201606134
- [12] M. Giménez-Marqués, T. Hidalgo, C. Serre, P. Horcajada, *Coord. Chem. Rev.* 2016, 307, 342. doi:10.1016/J.CCR.2015. 08.008
- [13] Y. Bai, Y. Dou, L. H. Xie, W. Rutledge, J. R. Li, H. C. Zhou, Chem. Soc. Rev. 2016, 45, 2327. doi:10.1039/C5CS00837A
- [14] Z. Li, Y. W. Yang, J. Mater. Chem. B 2017, 5, 9278. doi:10.1039/ C7TB02647A
- [15] C. He, D. Liu, W. Lin, Chem. Rev. 2015, 115, 11079. doi:10.1 ACS.CHEMREV.5B00125
- [16] Y. Yang, J. Liu, C. Liang, L. Feng, T. Fu, Z. Dong, Y. Chao, Y. Li, Eu, M. Chen, Z. Liu, ACS Nano 2016, 10, 2774 1021/AC NANO.5B07882

Li

COL

- [17] L. L. Tan, N. Song, S. X. A. Zhang, Y. W. Yang, J. Mater. Chem. B 2016, C5TB01789K
- [18] L. L. Tan, H. Li, Y. C. Qiu, D. X. Chen, Wang, R. Y. 1977, Wang, S. X. A. Zhang, B. Wang, Y. Y. Ya, *Num. Sci.* 2915, 6, 1640. doi:10.1039/C4SC03749A

- [19] I. Abánades Lázaro, S. Haddad, J. M. Rodrigo-Muñoz, C. Orellana-Tavra, V. del Pozo, D. Fairen-Jimenez, R. S. Forgan, ACS Appl. Mater. Interfaces 2018, 10, 5255. doi:10.1021/ACSAMI.7B17756
- [20] Q. L. Li, Y. Sun, L. Ren, X. Wang, C. Wang, L. Li, Y. W. Yang, X. Yu, J. Yu, ACS Appl. Mater. Interfaces 2018, 10, 29314. doi:10.1021/ ACSAMI.8B09330
- [21] M. X. Wu, J. Gao, F. Wang, J. Yang, N. Song, X. Jin, P. Mi, J. Tian, J. Luo, F. Liang, Y. W. Yang, *Small* **2018**, *14*, 1704440. doi:10.1002/ SMLL.201704440
- Y. D. Zhu, S. P. Chen, H. Zhao, Y. Yang, X. Q. Chen, J. Sun, H. S. Fan,
 X. D. Zhang, ACS Appl. Mater. Interfaces 2016, 8, 34209. doi:10.
 1021/ACSAMI.6B11378
- [23] P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey, J. Am. Chem. Soc. 2008, 130, 6774. doi:10.1021/JA710973K
- [24] P. Horcajada, C. Serre, M. Valle Regí, M. Dban, F. Taulelle, G. Férey, Angew. Chem. Int. Education, 45, 59 Educi:10.1002/ANIE. 200601878
- [25] P. Horcajada, R. Gref, T. Jan, P. K. A. et G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, *Chem. Rev.* **612**, *112*, 1232. doi:10. 1021/CR200256/
- [26] R. C. Huxford J. Delhander, W. Li Curr. Opin. Chem. Biol. 2010, 14, 262. doi:10.1016/J.O. 2009. 2.012
- [27] K. M. L. J. Der-Pashow, J. D. L. Kocca, Z. Xie, S. Tran, W. Lin, J. Am. Chem. Soc. 131, 14261 doi:10.1021/JA906198Y
- [28] R.C. Luxford, DeKrafft, W. S. Boyle, D. Liu, W. Lin, *Chem. Sci.* 2017, *3*, 198. doi: 1009/C1SC00499A
- M. Bosch, M. Zhang, H. C. Zhou, *Adv. Chem.* **2014**, *2014*, 182327. doi:10.1155/2014/182327
- K. Jiang, L. Zhang, Q. Hu, Y. Yang, W. Lin, Y. Cui, Y. Yang, G. Qian, Mater. Lett. **2018**, 225, 142. doi:10.1016/J.MATLET.2018.05.006
- [3] Q. Hu, Q. Zhang, K. Jiang, W. Lin, Y. Yang, Y. Cui, G. Qian, Mol. Pharm. 2016, 13, 2782. doi:10.1021/ACS.MOLPHARMA CEUT.6B00374
- P. F. Gao, L. L. Zheng, L. J. Liang, X. X. Yang, Y. F. Li, C. Z. Huang, *J. Mater. Chem. B* **2013**, *1*, 3202. doi:10.1039/C3TB00026E
- [33] A. de Bettencourt-Dias, Inorg. Chem. 2005, 44, 2734. doi:10.1021/ IC048499B
- [34] P. Wang, J. P. Ma, Y. B. Dong, R. Q. Huang, J. Am. Chem. Soc. 2007, 129, 10620. doi:10.1021/JA072442H
- [35] Y. Liang, R. Cao, W. Su, M. Hong, W. Zhang, Angew. Chem. 2000, 39, 3304. doi:10.1002/1521-3773(20000915)39:18<3304::AID-ANIE3304>3.0.CO;2-H

www.publish.csiro.au/iournals/aic