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Abstract. Partial mitigation of global warming caused by accelerated emissions of greenhouse gases such as carbon
dioxidemay be possible by storing atmospheric carbon in soils. Carbon storage is influenced by processes and properties that
affect soil aggregation, such as clay and silt concentrations and mineralogy, intensity and frequency of wet/dry cycles, and
microbial activity.Microbial activity, in turn, is influencedby factors such as temperature, nutrient andwater availability, and
residue quality. Theobjective of this studywas to assess the influence of average annualmaximum temperature on soil carbon
storage in Vertosols under cotton-based farming systems. This paper reports a re-evaluation of results obtained from a series
of experiments on cotton-farming systems conducted in eastern Australia between 1993 and 2010. The experimental sites
were in the Macquarie and Namoi Valleys of New South Wales, and the Darling Downs and Central Highlands of
Queensland.

Average soil organic carbon storage in the 0–0.6m depth was highest in a Black Vertosol in Central Queensland and
lowest in a Grey Vertosol that was irrigated with treated sewage effluent at Narrabri. At other sites, average values were
generally comparable and ranged from65 to85 tC/ha.Climatic parameters such as ambientmaximumtemperature,Tmax, and
rainfall at rainfed sites (but not irrigated sites) were also related to soil organic carbon storage. At most sites, variations in
carbon storage with average ambient maximum temperature were described by Gaussian models or bell-shaped curves,
whichare characteristic ofmicrobial decomposition.Carbonstorageoccurred at peak ratesonly for avery limited temperature
range at any one site, with these temperatures increasing with decreasing distance from the equator. The exception was a site
nearNarrabri thatwas irrigatedwith treated sewage effluent,where the relationshipbetween soil organic carbonandTmaxwas
linear. The decrease or absence of change in soil carbon storage with time reported in many Australian studies of annual
cropping systemsmay be due to carbon storage occurringwithin a limited temperature range,whereas intra-seasonal average
maximum temperatures can range widely. Further research needs to be conducted under field conditions to confirm these
observations.
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Introduction

Partial mitigation of global warming caused by accelerated
emissions of greenhouse gases such as carbon dioxide may be
possible by storing atmospheric carbon in soils (Lal 2009; Lal
andFollett 2009; Stockmann2011).Mostfield research programs
associated with agriculture have attempted to do this primarily
by enhancing biomass inputs through modifying tillage and
residue management practices, adding organic waste products
to soil, and changing cropping sequences (Lal 1997; Powlson
et al. 2011; Stockmann 2011), rather than stimulating the
processes associated with physical and biochemical protection
of soil organic matter (Six et al. 2002). Although the previously
mentioned practices could improve protection of soil organic
matter as well, this has not been the primary objective of most
studies (Lal 1997; Powlson et al. 2011; Stockmann 2011).

Carbon storage (physical and biochemical protection of soil
organicmatter) and post-storage losses are influenced by clay and
silt concentrations and mineralogy, intensity and frequency of

wet/dry cycles, and microbial activity (Six et al. 2000a, 2000b,
2002). Microbial activity, in turn, is influenced by factors such as
temperature, nutrient and water availability, and residue amounts
and quality (Russell 1973). These factors interact strongly, as the
last two are strongly dependent on plant growth, which in turn is
influenced by the first three factors. Among these factors, and
despite several decades of research, the influence of temperature
on losses and gains of soil carbon stocks is still subject to debate
(Kirschbaum 2006). Most models (Cox et al. 2000; Stockmann
2011) suggest that increasing temperatures will result in declines
in soil carbon stock, although Thornley and Cannell (2001) note
that this may be a short-term response. Review of the literature of
the past 20 years showed that of a total of 24 papers that had
studied temperature–soil carbon interactions, 18 (75%) suggested
that increasing air temperature was a major driving force of
decomposition and SOM losses, whereas two (8%) reported
that temperature had only a minor effect (Table 1). The latter
group suggested that factors such as site management, nutrient

Journal compilation � CSIRO 2013 www.publish.csiro.au/journals/cp

CSIRO PUBLISHING

Crop & Pasture Science, 2013, 64, 845–855
http://dx.doi.org/10.1071/CP13139

mailto:nilantha.hulugalle@dpi.nsw.gov.au


status, water availability, and clay content affected carbon losses
more than temperature did. Many publications (54%) also noted
that a strong interaction existed between temperature and soil
characteristics such as clay content, soil chemistry, nutrient
status, and water availability, although despite the documented
relationships between soil structure, temperature, and microbial
activity (Torbert and Wood 1992; Watts et al. 2005; Schjønning
et al. 2011), the interactionbetween soil structure and temperature
on soil carbon stocks was not studied by any of the authors cited
in Table 1.

The literature also suggests that temperature effects on the
decomposition of different soil carbon fractions are variable
(Table 1). Younger, labile soil organic carbon (SOC) is
reported to be less sensitive to decomposition than older, more
recalcitrant carbon as temperature increases (Waldrop and
Firestone 2004; Vanhala et al. 2007; Arevalo et al. 2012). As
the ‘old’ carbon in the study byVanhala et al. (2007) was derived
from a C3 crop (‘grains’) and the ‘new’ carbon from a C4 crop
(maize, Zea mays), it is debatable whether the results are purely
due to increasing temperature or whether there was an interaction
between temperature and soil carbon derived from plants of
differing photosynthetic pathways. A similar comment can be
madewith respect to the results ofWaldrop and Firestone (2004),
who compared ‘old’ soil carbon from tropical C3 plants (mixed
forest ofHibiscus tiliaceus,Nephrolepis, andGleichenia linearis,
Psidium guajava, Pistache, and Eugenia cumini) with ‘new’
carbon from pineapple (Ananas comosus var. Quentii), a CAM
(crassulacean acidmetabolism) plant. In contrast, a broader study
that evaluated results from a range of climatic zones suggested
that increasing temperatures may result in an increasing rate of
conversion of unprotected (labile) carbon to more protected and
stable carbon pools (Thornley and Cannell 2001). Other research
in organic soils of tundra and boreal regions reports that addition
of nitrogen stimulates decomposition of labile carbon, but
suppresses that of recalcitrant carbon (Lavoie et al. 2011).

Waldrop and Firestone (2004) suggest that such variable
responses to changing temperature may be related to changes
in soil microbial populations (i.e. decomposers). This is not
surprising, as rapid and short-term changes and successions in
microbial populations that were associated with short-term
changes in soil physical properties have been reported by
Hadas et al. (1994) and Rawitz et al. (1994). It may be
surmised, therefore, that as fluctuations occur in temperature,
and presumably other environmental variables such as water and
nutrient availability, parallel changes in microbial populations
that preferentially subsist upon different soil organic matter
(SOM) fractions may also take place.

In summary, SOM changes in many soil types and climatic
zones appear to be strongly influenced by ambient temperature,
with interactions occurring with water and nutrient availability.
Furthermore, given that the temperature–SOM relationship is a
biologically driven process, it is far more likely that it is
curvilinear rather than linear (Potter et al. 2007). Much of the
research has, however, been conducted in non-swelling soils
where storage of carbon occurs primarily through aggregation
that involves a microbial component. No research has been
conducted on SOC storage in Australian Vertosols and its
relationship to ambient temperatures.

As cotton farming in Australia is conducted in tropical and
subtropical climatic zones (Bange et al. 2010), it is unlikely that
minimum temperatures (Table 2) in these zones will inhibit
microbial activity for extended periods. Instead, it is far more
likely that temperature-related activities will be controlled
primarily by maximum temperatures, as midsummer values in
cotton-farming regions frequently exceed 358C, and values in
>408C are not uncommon (BOM 2011). Soil surface (0–0.10m)
temperatures that were similar or higher have been reported by
several authors (Ross et al. 1985; Horton and Corkrey 2011;
Horton 2012). The objective of this study, therefore, was to
assess the influence of average annual maximum temperature

Table 1. Ambient temperature effects on soil organic carbon and its fractions, 1990–2011

Finding Citation

Temperature was either explicitly or implicitly suggested
as the major driver of SOM losses and CO2 emissions
from soil

Alvarez and Alvarez 2001; Arevalo et al. 2012; Balser andWixon 2009; Cox et al. 2000; Craine
et al. 2010;Dalal andCarter 2000;Davidson and Janssens 2006; French et al. 2009; Parkin and
Kaspar 2003; Potter et al. 2007; Thornley and Cannell 2001; Townsend et al. 1992; Trumbore
et al. 1996; Zhu and Cheng 2011; Kirschbaum 1995, 2006; Stockmann 2011; Waldrop and
Firestone 2004; Vanhala et al. 2007

Temperature increases had only a small role in SOM
losses, and was less influential than factors such as
management, nutrient status, water availability, and
clay content

Causarano et al. 2008; Garten et al. 2009

Temperature interacted with factors such as clay content,
soil chemistry, nutrient status, and water availability

CraineandGelderman2011;Coxet al. 2000;Dalal andCarter2000;DavidsonandJanssens2006;
Lavoie et al. 2011; Parkin and Kaspar 2003; Potter et al. 2007; Yuste et al. 2007; Kirschbaum
2006; Stockmann 2011; Waldrop and Firestone 2004

Temperature-related increases in decomposition varied
among individual SOM fractions

Arevalo et al. 2012; Lavoie et al. 2011; Thornley and Cannell 2001; Vanhala et al. 2007;
Stockmann 2011; Waldrop and Firestone 2004

Microbial communities were associated with
decomposition, and temperature response curves
differed among climatic zones, but were independent
of SOM quality

Balser and Wixon 2009

Decomposition and temperature response curves differed
between SOM derived from plants of different
photosynthetic pathways

Waldrop and Firestone 2004; Vanhala et al. 2007

846 Crop & Pasture Science N. R. Hullugale



(January–December) on soil carbon storage in Vertosols sown
with cotton-based farming systems. It was hypothesised that as
soil carbon storage was a microbiologically driven process, the
relationship between average maximum temperature and soil
carbon storage would be best described by Gaussian or bell-
shaped curves (Gendugov et al. 2011). This paper reports a re-
evaluation of results obtained from a series of experiments on
cotton-farming systems conducted in eastern Australia between
1993 and 2010. Previous research at these sites (Table 2) had
shown that, in most, SOC stocks decreased with time, even
though practices that are claimed to improve carbon had been
in place for extended periods.

Material and methods
Experimental sites

Soilwas sampled fromseveral irrigated anddryland experimental
sites in New South Wales and Queensland between 1993 and
2010 (Table 2). The cropping systems on these sites included
continuous cotton (GossypiumhirsutumL.), cotton–rotation crop
sequences, and 2-m (‘broad beds’) and 1-m (‘ridges’) beds.
Minimum tillage or reduced tillage was practised in all sites.
All mechanised traffic was restricted to the furrows. Locations of

the sites, references in the literature, years and management
practices investigated in each experiment, and soil types are
reported in Table 2. The soils at all sites were classified as
Vertosols (Isbell 2002) or Vertisols (Soil Survey Staff 2010).
Some initial soil properties at these sites are summarised in
Table 3. The specific cropping systems and land preparation
for each site (Table 2) are summarised as follows.

Site 1: irrigated field (C1) at the Australian Cotton
Research Institute (ACRI), Narrabri, NSW

The experiment consisted of: (i) continuous cotton (summer
cotton–winter fallow–summer cotton) sown either after
conventional tillage (slashing of cotton plants after harvest,
followed by disc-ploughing and incorporation of cotton stalks
to 0.2m, chisel ploughing to 0.3m, followed by 1-m bed
construction) or on 1-m permanent beds (slashing of cotton
plants after harvest, followed by root cutting, incorporation of
cotton stalks into beds, and bed renovationwith a disc-hiller); and
(ii) a cotton–wheat (Triticum aestivum L.) rotation (summer
cotton–winter wheat–summer and winter fallow–summer
cotton) on permanent beds. Until 1999, wheat stubble was
incorporated before sowing cotton, whereas from December

Table 2. Years and experimental sites from which soil was sampled
All Narrabri sites,Warren, andMerahNorth were irrigated;Warra and Emerald were not irrigated. Narrabri site 3 was irrigatedwith treated sewage effluent. Tmax

andTmin: Average annualmaximumandminimum temperatures (� standard deviation), respectively, during the period of study.Values in parentheses for sites 1,
2, 3 and 5 are the averages (� standard deviation) from January 1911 toDecember 2011 for the town ofWeeWaa,which lieswithin a radius of 15 kmof these sites

Site Location Reference Years Tmax (8C) Tmin (8C) Management practices Soil type

1 Narrabri (ACRI, FieldC1),
NSW (308110S,
1498360E)

Hulugalle and Entwistle
1997; Hulugalle et al.
1997, 2005, 2010

1993–2009 26.9 ± 6.7
(26.8 ± 6.1)

12.1 ± 6.7
(11.6 ± 5.8)

Crop rotations, tillage
systems, stubble
management

Grey, self-mulching
Vertosol; very fine

2 Narrabri (ACRI,FieldD1),
NSW (308110S,
1498360E)

Hulugalle et al. 2012a,
2012b, 2013

2002–2010 27.0 ± 6.8
(26.8 ± 6.1)

12.2 ± 6.9
(11.6 ± 5.8)

Crop rotations, stubble
management

Grey, self-mulching
Vertosol; very fine

3 Narrabri, NSW (308130S,
1498430E)

Hulugalle et al. 2006a 2000–2010 27.0 ± 6.8
(26.8 ± 6.1)

12.1 ± 6.9
(11.6 ± 5.8)

Stubble management,
gypsum application

Grey, self-mulching
Vertosol; medium fine

4 Warren, NSW (318470S,
1478460E)

Hulugalle et al. 1998,
1999, 2006b

1993–2009 25.5 ± 7.4
(25.5 ± 6.6)

11.6 ± 6.7
(11.0 ± 5.7)

Crop rotations Grey, self-mulching
Vertosol; medium fine

5 Merah North, NSW
(308110S, 1498180E)

Hulugalle et al. 2002a,
2006b

1993–2005 27.0 ± 6.7
(26.8 ± 6.1)

12.0 ± 6.7
(11.6 ± 5.8)

Crop rotations Grey, self-mulching
Vertosol; very fine

6 Warra, Qld (268560S,
1508500E)

Hulugalle et al. 2007 1996–2005 27.3 ± 4.7
(26.7 ± 4.9)

12.4 ± 5.5
(12.0 ± 5.5)

Crop rotations Grey, self-mulching
Vertosol; medium fine

7 Emerald, Qld (238300S,
1488080E)

Hulugalle et al. 2002b 1996–2002 29.9 ± 4.2
(29.6 ± 4.5)

16.4 ± 4.9
(15.4 ± 5.2)

Crop rotations, bedwidths,
stubble management

Black, self-mulching
Vertosol; very fine

Table 3. Some soil properties in the surface 0.3m at the experimental sites
ESP, Exchangeable sodium percentage; EC1:5, electrical conductivity of a 1 : 5 soil : water suspension; ESP, exchangeable sodium percentage; ESI,

electrochemical stability index (EC1:5/ESP); clay activity = cation exchange capacity (CEC)/clay content

Experimental
site

Year Clay
(g/kg)

Sand
(g/kg)

pH
(0.01M CaCl2)

Organic C
(g/100 g)

CEC
(cmolc/kg soil)

Clay activity
(cmolc/kg clay)

ESP EC1:5

(dS/m)
ESI

1 1993 610 260 7.6 0. 9 39 64 2.0 0.25 0.13
2 2002 630 260 6.9 0.7 38 60 2.6 0.31 0.12
3 2000 540 320 7.3 0.7 31 57 3.9 0.36 0.09
4 1993 520 320 7.7 0.6 35 67 2.4 0.14 0.06
5 1994 620 220 6.8 0.8 40 65 8.3 0.15 0.02
6 1996 520 320 6.9 0.8 36 69 1.9 0.21 0.11
7 1996 680 210 7.0 0.9 89 131 0.4 0.10 0.25
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1999, cotton was sown with no-tillage into standing wheat
stubble.

Site 2: irrigated field (D1) at ACRI, Narrabri, NSW

The experimental treatments, all sown on 1-m permanent
beds, were: cotton–cotton; cotton–vetch (Vicia spp.);
cotton–wheat, where wheat stubble was incorporated into the
beds with 1 or 2 passes of a disc-hiller; and cotton–wheat–vetch,
where wheat stubble was retained as an in-situmulch into which
the following vetch crop was sown. Vetch was killed during or
just before flowering through a combination of mowing and
contact herbicides, and the residues retained as in situ mulch
into which the following cotton was sown.

Site 3: irrigated on-farm site, Narrabri, NSW

The experimental treatmentswere: (i) gypsumapplied at a rate
of 2.5 t/ha in June 2000, and (ii) an untreated control. A
cotton–wheat rotation was sown on 2-m permanent beds. The
bed surfaces and wheat stubble remained untouched and the
following cotton was sown with no-tillage. From 2003
onwards, cotton was sown after the wheat stubble in gypsum-
treated plots was incorporated into the beds with a combined
AerWay cultivator (AerWay, Norwich, ON, Canada: www.
aerway.com/index.php?page=tillageandpagetype=ag#/1/) and
sweeps, whereas wheat stubble in the previously untreated
control remained undisturbed. This site was irrigated with
treated sewage effluent.

Site 4: irrigated on-farm site, Warren, NSW

The experimental treatments (rotations) sown atWarrenwere:
(i) continuous cotton; (ii) long-fallow cotton; (iii) cotton–high
input wheat, in which wheat was sown at a rate of 100 kg/ha
and fertilised with 85 kg/ha of di-ammonium phosphate and
180 kg/ha of urea at sowing; (iv) cotton–low input wheat, in
which wheat was sown at a rate of 40 kg/ha and did not receive
any nitrogen fertiliser; (v) cotton–greenmanuredfield pea (Pisum
sativum L.); (vi) cotton–wheat–lablab (Lablab purpureus L.)
(1993–97) followed by cotton–wheat (1997–98); and (vii)
cotton–wheat–lablab (1993–95) followed by cotton–faba bean
(Vicia faba L.)–lablab (1995–97) followed by cotton–faba bean
(1997–98).The experimental treatmentswere terminated in1998,
and a cotton–wheat–summer/winter fallow–cotton sequence was
sown thereafter in all plots

Site 5: irrigated on-farm site, Merah North, NSW

The experimental treatments (rotations) sown on 1-m beds
between 1993 and 2000 were: (i) continuous cotton; (ii) long-
fallow cotton; (iii) cotton–green manured faba bean until 1999,
when a sorghum crop was sown during the 1999–2000 growing
season; (iv) cotton–lablab–green-manured faba bean (1993–94)
followed by cotton–unfertilised wheat (1994–2000); (v)
cotton–lablab; and (vi) cotton–fertilised lablab (with
phosphorus and potassium removed by cotton replaced as
fertiliser). The experimental treatments were terminated in
2000 and a cotton (2000–01)–wheat (2001)–sorghum
(2001–02)–winter fallow (2002)–cotton (2002–03)–wheat
(2003)–summer and winter fallow (2003–04)–cotton
(2004–05) sequence was sown in all plots

Site 6: rainfed on-farm site, Warra, Qld

The experimental treatments (rotations) sown with zero
tillage on the flat between 1996 and 2005 were: (i) continuous
cotton; (ii) cotton–sorghum (Sorghum bicolor (L.) Moench.);
(iii) double-cropped cotton–wheat; (iv) double-cropped
cotton–chickpea (Cicer arietinum L.)–summer fallow–wheat;
and (v) cotton–fallow–wheat–fallow.

Site 7: rainfed on-farm site, Emerald, Qld

After beds and furrows were established with a combination
of intensive tillage practices, they were managed as permanent
beds (cotton stalk pulling and mulching followed by bed
renovation). The experimental treatments (rotations)
implemented from 1996 to 2000 were: (i) early cotton sown at
the start of the rainy season on 1- and 2-m beds; (ii) wheat
(sprayed out)–early cotton on 2-m beds; (iii) wheat allowed to
mature and harvested followed by late cotton sown midway
through the rainy season on 1- and 2-m beds; and (iv)
cotton–sorghum sown in 2-m beds. The site was deep-ripped
during 2000 and all plots were sown with a cotton–wheat
sequence.

Sampling and analyses

Soil was sampled from beds before or shortly after planting
cotton each year. Details of sampling procedures are reported
in the references cited in Table 2. Soil was sampled from either
the 0–0.10, 0.10–0.30, and 0.30–0.60m depths (sites 2, 3) or
the 0–0.15, 0.15–0.30, 0.30–0.45, and 0.45–0.60m depths
(sites 1, 4, 5, 6, 7) using a stratified randomised sampling
design from 4–8 locations in each plot with either a tractor-
mounted soil corer or a spade. A spade was used at some on-farm
sites, as the growers would not permit any sampling machinery
into the field due to possible trafficking and compaction of beds.
A composite sample was made up for each depth in each plot and
transported back to the laboratory and air-dried.

Air-dried soil was passed through a 0.5-mm sieve and total
SOC concentration determined by the wet oxidation method of
Walkley and Black (Rayment and Lyons 2011). Soil clods
extracted from the cores or samples taken with a spade were
oven-dried for 48 h at 1108C and weighed, and volume was
determined by coating in paraffin wax or saran resin and
displacement in water (Cresswell and Hamilton 2002). Bulk
density was estimated by dividing oven-dried clod weight,
which ranged between 40 and 225 g, by its volume. In the
0–0.1 or 0–0.15m depths (depending on the site), the volume
of air-dried aggregates (1–10mm diameter) was determined with
the kerosene saturation method (McIntyre and Stirk 1954).
Aggregate weights were converted to an oven-dried equivalent
using an air-dry water content determined on subsamples. Bulk
density of aggregates was determined by dividing the oven-dried
equivalent aggregate weight by its air-dry volume, as soil
shrinkage curves had indicated no significant difference in
volume between air-dried and oven-dried soil (Hulugalle and
Entwistle 1997).Bulkdensity for the0–0.1or0–0.15mdepthwas
expressed as a weighted mean of the bulk densities of aggregates
and clods (2 : 1 aggregates : clods) (Hulugalle and Entwistle
1997). Storage of SOC (‘stocks’) in any one depth was
estimated as the product of bulk density, sampling depth
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interval, and SOC concentration. Storage of SOC was reported
as that in the 0–0.6m depth (sum of storage in all depths
sampled).

Daily maximum temperature values for the previously
described experimental sites and time periods (Table 2) were
obtained from Patched Point data in the SILO climate database
hosted by the Queensland Climate Change Centre of Excellence
(www.longpaddock.qld.gov.au/silo). As noted previously, the
relationship between soil carbon storage and average maximum
temperature was hypothesised to be best described by Gaussian
or bell-shaped curves (Gendugov et al. 2011). Stocks of SOC
and average annual maximum temperature for the 12 months
before samplingwerefitted toGaussianmodels, and standardised
residual values were determined for all data-points using
regression analysis and curve-fitting software (SigmaPlot ver.
11.0; Systat Software, Inc., San Jose, CA USA; www.sigmaplot.
com). Where data-points with standardised residual values >|2|
were present, theywere excluded and the regressionwas repeated
as before. Fit of the data to the models was further tested with
analysis of variance, R2, the Durbin–Watson statistic, and the
constant variance test (SigmaPlot ver. 11.0).

Results and discussion

Average ambient temperatures

Long-termaverages (1911–2011) showed that averagemaximum
(Tmax) and minimum (Tmin) temperatures were in the order:
Macquarie Valley (site 4) <Namoi Valley (sites 1, 2, 3, 5) <
Darling Downs (site 6) <<Queensland Central Highlands (site 7)
(Table 2). Similar trends were present during the periods
between 1993 and 2010 when soil was sampled from the
experimental sites. The decrease in both Tmax and Tmin with
increasing distance on moving south from the equator and the
Tropic of Capricorn, which is just north of Emerald (site 7), is
caused by factors such as geographical variations in the amount
of solar energy that reaches the surface, rainfall distribution, and
ocean and atmospheric circulation patterns (Kottek et al. 2006;
BOM 2011; Ritter 2011).

Soil organic carbon storage

Average SOC storage in the 0–0.6m depth was highest in the
Black Vertosol at Emerald (site 7) and lowest in the Grey
Vertosol that was irrigated with treated sewage effluent at
Narrabri (site 3) (Fig. 1). At other sites, values were generally
comparable and ranged from 65 to 85 t C/ha. Variations in SOC
storage among all siteswere significantly (P < 0.05) related to soil
parameters such as clay concentration (R2 = 0.51**), clay activity
(cmolc/kg clay, R2 = 0.56**), and cation exchange capacity
(cmolc/kg soil, R2 = 0.56**). Climatic parameters such as Tmax

and rainfall at rainfed sites (sites 6 and 7) but not irrigated sites
(sites 1–5) were also related to SOC storage. As rainfall and Tmax

were highly correlated (R2 = 0.80***) atWarra (site 6), it was not
possible to separate the role of these individual parameters on
SOC storage, and further analyses were discontinued. Water
inputs (irrigation and rainfall) and Tmax were not correlated at
all other sites.

At most sites, 3-parameter (y= a*exp(–0.5*((x – x0)/b)
2)) or

4-parameter (y= y0 + a*exp(–0.5*((x – x0)/b)
2)) Gaussian curves

where y is SOC stocks (t/ha), x is the average annual maximum

temperature during the 12 months before sampling, and x0 is the
optimum average annual maximum temperature (with respect
to SOC stocks) best described the data (Table 4, Figs 2 and 3). The
exception was the Narrabri site that was irrigated with treated
sewage effluent (site 3), where the relationship between SOC
and Tmax was linear (Fig. 3). Differences among experimental
treatments occurred only in Field C1 at ACRI, Narrabri (site 1),
where SOC storage was highest with cotton–wheat sown on
permanent beds and lowest with conventionally tilled
continuous cotton (Fig. 2). At all other locations, differences
among treatments were absent, and values of SOC were pooled
among treatments and a single curve derived.

Asmentioned previously,most of the datafit Gaussianmodels
or bell-shaped curves, typical of substrate decomposition by
microorganisms (Gendugov et al. 2011). In our studies, the
substrate was the crop residues and the product, stored SOC.
These curves also indicate that carbon storage occurs at peak
rates only for a very limited temperature range at any one site.
Figures 2 and 3 indicate that the optimum values for carbon
storage, Topt (Tmax at which carbon storage was highest), appears
to be related to latitude, i.e. values increased with decreasing
latitude or as one approached the equator (Table 4). The Topt

for the Macquarie valley, NSW (site 4), was 25.48C, averaged
27.28C in Namoi Valley, NSW (Sites 1, 2, 5), and was 30.18C in
theCentral Highlands ofQueensland (site 7). These very specific,
temperature-related peaks are associated with peak activity of
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Fig. 1. Mean soil organic carbon storage in the 0–0.6m depth of the seven
experimental sites. Capped vertical lines are standard deviations. The periods
under consideration are reported in Table 2.
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different microbial populations adapted to the different
geographic locations, viz. the Macquarie and Namoi Valleys of
NSW and the Central Highlands of Queensland, which in turn
may be associated with the variations in climate and soil
conditions at each location (Tables 2 and 3). A similar
viewpoint was proposed by Balser and Wixon (2009) in a
study that included sites from Puerto Rico, California, and
Alaska. Our results are contradicted, however, by Potter et al.
(2007). They reported that in a multi-locational study of no-tilled
corn (Zea mays L.), in which clay content of soils ranged from
12 to 77 g/100 g and rainfall from 650 to 1099mm, soil carbon
storage decreased with increasing average temperature such
that when average temperature exceeded 208C, it was
negligible. They suggested that this was because of accelerated
decomposition rates under warmer conditions. Although this
is also shown in our results by the rapid decrease in SOC as
temperature increased beyond Topt, we believe that the
assumption of linearity by Potter et al. (2007) with respect to
the temperature–soil carbon relationship, a biologically driven
relationship, is questionable. Furthermore, as their sites differed
in texture (sandy loam to clay; clay content range 12–77 g/100 g)
and climate, some confounding may have occurred.

Dalal and Carter (2000) suggested that SOC losses and,
conversely, storage are dependent upon an interaction between
water inputs, clay content, and temperatures such that
maintenance of SOC stocks is difficult in coarse-textured soils
of the tropics but may be achievable in fine-textured soils (e.g.
clayeyVertosols). Table 5 indicates that SOC storagewas highest
(117 t C/ha) in the Central Highlands of Queensland (site 7,
a fertile Black Vertosol with a high degree of soil structural
stability; see Table 3 and Hulugalle et al. 2002b) and averaged
87 t C/ha among the other sites reported in Table 4 (all Grey
Vertosols), ranging from 72.4 t C/ha in site 2 to 94 t C/ha in site 5.
The relatively high value in site 5, despite its initially sodic
nature, may be a consequence of improved aggregation
resulting from regular gypsum application, salinisation due to
declining irrigation water quality, and, latterly, elimination of the
summer fallow (Hulugalle et al. 2002a, 2006b). Variation
among sites was related primarily to clay activity (R2 = 0.78*)
(Table 3), although the influence of other factors such as length
of growing season, nutrient inputs, and tillage intensity cannot be
excluded (Luo et al. 2010; Hulugalle et al. 2011). The relatively
low value in site 2 (72 t C/ha) compared with the other Grey
Vertosols (Table 5) may be related to the low electrochemical
stability index (ESI, <0.05; McKenzie 1998) in the subsurface
(>0.30m) (Hulugalle et al. 2012a), and consequently, low
structural stability, which would have had a detrimental effect
on SOC storage. Low structural stability may also be the reason
behind the absence of a Gaussian relationship between SOC
and Tmax at site 3. The high sodium adsorption ratio (SAR) of
irrigation water (Hulugalle et al. 2006a, 2011) resulted in
decreases in profile ESI such that it did not exceed 0.05 in the
0–1.8m depth by 2011 (Hulugalle et al. 2011). Other factors that
may have contributed to the absence of a Gaussian relationship
include the high nutrient loads, high alkalinity (pHw �9),
moderate to high chloride concentration of the effluent, and
overstimulation of microbial activity. Jueschke et al. (2008)
reported that increased microbial activity and rapid
decomposition of soil organic matter can occur when crops are
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Fig. 2. Variation of soil organic carbon storage in the 0–0.6m depth with average annual daily maximum
temperature in Fields C1 (site 1) andD1 (site 2) at the Australian CottonResearch Institute (ACRI), Narrabri;
Warren (site 4) andMerahNorth (site 5). Field C1:*, conventional tillage/continuous cotton;*, permanent
beds/continuous cotton; !, permanent beds/cotton–wheat. As treatment effects were absent in other sites,
results were pooled. Model parameters and regression statistics are given in Table 4.
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temperature at Narrabri (site 3) and Emerald (site 7). Model parameters and regression statistics are given
in Table 4.
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irrigated with treated sewage effluent because of its high nutrient
load and dissolved organic carbon concentration.

In addition to a direct effect of Tmax, an interaction with the
cotton grown in each location on SOC storage cannot be
excluded. Conaty et al. (2012) reported that the optimum in-
crop temperature for cotton (cv. Sicot 70BRF) physiology and
growth (i.e. peaks) at Narrabri, NSW (same location as sites 1
and 2) was ~28�308C, which is very similar to the values of Topt

in our study. The coincidence between these values is intriguing
but puzzling. Research byHadas et al. (1994) has also shown that
mixing of crop residues with a relatively high C/N ratio such as
cotton (>60; Hulugalle and Weaver 2005) with a fine-textured
soil and sufficient nutrients can facilitate microbiologically
driven aggregate formation and subsequent stabilisation, and

Table 5. Optimum Tmax, temperature at which carbon storage peaks
(Topt), andmaximumsoil organic carbon (SOCmax) storage in the0–0.6m
depth for the experimental sites at Narrabri,Warren,Merah North, and

Emerald estimated from the curves shown in Figs 2 and 3
Values for site 1 were derived by pooling results for all three cropping

systems

Site Location Latitude Topt (8C) SOCmax

(t C/ha)

1 Narrabri (ACRI, Field C1), NSW 308110S 27.0 92
2 Narrabri (ACRI, Field D1), NSW 308110S 27.0 72
4 Warren, NSW 318470S 25.4 79
5 Merah North, NSW 308110S 27.9 94
7 Emerald, Qld 238300S 30.1 117

Fig. 4. Schematic outline of a proposed pathway of carbon sequestration in a summer crop (cotton)–winter rotation crop
sequence. Typically, the sequence is summer crop–winter crop–summer and winter fallow–summer crop. Thick arrows
indicate the chronological sequence of events, and thin arrows the inputs and processes that prevailed during each period.
Note that during fallows even when water availability is high due to rainfall, restricted nutrient availability will be the major
limiting factor to aggregation and carbon storage.
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thus enhance carbon storage (Six et al. 2002). The strong
influence of nutrient availability on enhancing SOC storage
has also been highlighted by van Groenigen et al. (2006) and
Kirkby et al. (2011). It can be surmised, therefore, that SOC
storage in cotton-based farming systemsmay be largely driven by
microbial activity and, thus, aggregation (i.e. physical protection)
during the irrigated summer cropping season when warm, wet
conditions are present and sufficient biomass inputs (such as
stubble from previous seasons and crop roots) and nutrients are
freely available, all of which are likely to enhance microbial
activity. Additionally, the role of wet–dry cycles enhancing
aggregation in Vertosols, and thus carbon storage, in irrigated
cotton systems cannot be discounted. In contrast, a bare fallow
with no biomass inputs combined with frequent tillage that
disrupts aggregates can have the reverse effect and accelerate
soil carbon losses.A simplified schematic outlineof the suggested
pathway of carbon storage in a cotton–winter rotation crop
sequence is shown in Fig. 4.

Although some studies have suggested that winter rotation
crops such as vetch (Vicia villosa, V. benghalensis), faba bean
(V. faba), and wheat (Triticum aestivum) played a major role
in sequestering carbon through biomass addition to soil
(Rochester 2011), their role may be associated more with
maintenance and protection of previously sequestered carbon
by improving soil structure through intensifying wet–dry
cycles, and increasing water storage and nutrient availability
(Hulugalle and Scott 2008). This may explain why, compared
with cotton monoculture, sowing different rotation crops did not
improve soil carbon stocks (Hulugalle et al. 1998, 1999, 2002a,
2002b, 2006b, 2007; Hulugalle 2000; Hulugalle and Scott
2008). Biomass of winter crops may, however, contribute to
soil carbon through management systems such as permanent
beds, in which crop residues remain relatively intact,
undisturbed, and in situ into the next summer (Hulugalle et al.
2012b). It should be noted that, although the summer crop in our
discussion is cotton, other commonly grown summer crops
such as sorghum (Sorghum bicolor (L.) Moench) or corn (Zea
mays L.), which can produce more above- and below-ground
biomass than cotton, may be more effective in storing carbon in
soil.

Conclusions

Variations in carbon storage of Vertosols sown with cotton-
based farming systems with average ambient maximum
temperature were described by Gaussian models or bell-shaped
curves, which are characteristic of microbial decomposition.
Carbon storage occurred at peak rates only for a very limited
temperature range at any one site, with these temperatures
increasing with decreasing distance from the equator. These
findings suggest that the decrease or absence of change in soil
carbon storage with time reported in many Australian studies of
annual cropping systems may be due to carbon storage occurring
within a limited temperature range, whereas intra-seasonal
average maximum temperatures can range widely. Further
research needs to be conducted under field conditions to
confirm these observations. In particular, the impact of short-
term fluctuations such as heat wave events on both short- and
long-term soil carbon storage is a subject worthy of more
detailed study.
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