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ABSTRACT

The Australian dryland grain-cropping landscape occupies 60 Mha. The broader agricultural sector
(farmers and agronomic advisors, grain handlers, commodity forecasters, input suppliers, insurance
providers) required information at many spatial and temporal scales. Temporal scales included
hindcasts, nowcasts and forecasts, at spatial scales ranging from sub-field to the continent.
International crop-monitoring systems could not service the need of local industry for digital
information on crop production estimates. Therefore, we combined a broad suite of satellite-
based crop-mapping, crop-modelling and data-delivery techniques to create an integrated
analytics system (Graincast™) that covers the Australian cropping landscape. In parallel with
technical developments, a set of user requirements was identified through a human-centred
design process, resulting in an end-product that delivered a viable crop-monitoring service to
industry. This integrated analytics solution can now produce crop information at scale and on
demand and can deliver the output via an application programming interface. The technology
was designed to underpin digital agriculture developments for Australia. End-users are now
using crop-monitoring data for operational purposes, and we argue that a vertically integrated
data supply chain is required to develop crop-monitoring technology further.

Keywords: application programming interface, big data analytics, crop modelling, integrated land
management, land use mapping, participatory research, remote sensing, user centred design.

Introduction

Crop-monitoring systems that monitor the production of the major grain crops have been 
developed by the European Union (EU) and the USA (Fritz et al. 2019). The EU MARS 
monitoring system (van der Velde et al. 2019) and the USDA World Agricultural Supply 
and Demand Estimates (WASDE) were developed to monitor the global food supply, 
inform government policy, and provide grain buyers with the tools to market various 
commodities (Adjemian 2012). Both systems provide insights into production across the 
globe, and highlight the relative impact that droughts, floods and other conditions have 
on crop production. The outputs from these crop-monitoring systems are provided as a 
relative measure, where production is defined as above or below a long-term average. 
Information is usually provided at regional scales, and data are accessed via reports and 
file transfer with standardised output (Becker-Reshef et al. 2019). 

Most global monitoring systems deliver information at a geopolitical scale. These 
systems are not designed to provide information to individuals at a field scale. This 
information is disseminated through web-based systems, and data can be accessed via 
cloud computing infrastructure. However, much of the information still needs to be 
processed in geographic information systems (GIS) to extract specific information. In 
order to counter these deficiencies, some countries, such as the Philippines, have 
created a rice-monitoring systems for domestic use (Boschetti et al. 2017). 

The private sector also offers crop-monitoring services. Recent capital investments into 
companies such as Indigo Ag and Farmers Business Network suggest a perceived value 
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associated with agricultural productivity information. 
Investors believe digital technology can transform the 
agricultural sector, where there is a strong demand for 
small-scale, field-level productivity information. The private 
sector can provide information from satellites, such as a 
Normalised Difference Vegetation Index (NDVI) time series, 
at a field scale. Bespoke output has been tailored for end-
users, but few organisations predict crop yield at the field 
scale and deliver that output via easily accessible mobile 
systems. Bespoke services that provide high resolution, sub-
field-scale output can be challenging to create (Fajardo and 
Whelan 2021). Insights into pest, disease and weed status, 
predicted yield, carbon stocks or pasture production require 
quantities of training data. Furthermore, monitoring products 
created in one region or for a particular crop may not easily be 
transferred to another region without considerable on-ground 
validation (Lawes et al. 2021). These limitations complicate 
the widespread application of digital technology to new 
geographies with scarce crop production data. 

The lack of a readily available ‘crop yield’ product that can 
provide output at the field, farm, region and national scales, 
suggests that key linkages need to be formed between the 
data supplier and the decision maker. The crop yield product 
may be used to make a range of decisions and suggests that 
organisations that supply crop yield information need to 
discover what the end-use is (Eichler Inwood and Dale 2019). 
This need is one of the 15 requirements for decision support 
systems outlined by Rose et al. (2016). Ideally, organisations 
would create crop yield products that have multiple uses. For 
example, a crop yield product may need to provide insight 
before seeding to assist with fertiliser demand (Angus 
2001), or with the decision to sow a crop (Hochman et al. 
2009; Fletcher et al. 2016). During the growing season, a 
crop yield product may need to assist with decisions related 
to the application of inputs such as additional fertiliser or 
fungicide. Finally, toward the end of the season, a crop 
yield product may need to assist with crop marketing or 
decisions related to insurance (Hatt et al. 2012). 

Decision makers will have different requirements, and 
each type of decision may need the data delivered in a 
unique way. Here, human-centred design approaches, which 
ensure that users are actively involved throughout the 
development phase, can enhance the useability and likely 
uptake of a digital system (Maguire 2001). In agriculture, 
others have noted that potential needs of end-users must be 
documented and accommodated (McCown 2002; Rose et al. 
2016; Eichler Inwood and Dale 2019). However, in human-
centred design, the development process should be 
iterative, where the designers continuously engage with the 
end-user. It is not clear whether the larger scale offerings 
from public crop-monitoring systems have designed their 
systems while iteratively engaging with end-users. These 
systems do not scale in space or time and do not easily lend 
themselves to field-scale management activities or to 
regional assessment of production, nor do they provide 

sufficient local insight for land managers, agribusinesses or 
financial institutions. Data may be required to conduct a 
historical estimate of a field (hindcast), monitor that field 
in real-time (nowcast), or predict the yield at the end of the 
current growing season (forecast). At present, the EU and 
US crop information systems cannot provide the necessary 
information to end-users. The information from a crop-
monitoring tool must also be linked to a critical decision to 
advance agriculture (Shepherd et al. 2020). 

In order to address this need, we created the Australian 
crop-monitoring system, Graincast™. In this paper we 
describe the technical aspects of Graincast™, and evaluate 
user responses to critical components of the technology, 
where a human-centred design approach was adopted to 
develop parts of the technology. We critique the technology 
from an operational perspective, and consider some of the 
novel use-cases toward which the Graincast™ technology 
can be deployed. Finally, we discuss how this technology 
can advance agriculture and tackle some of the challenges 
identified (Shepherd et al. 2020). 

The Australian dryland cropping system

The Australian cropping region occupies nearly 60 Mha in the 
states of Queensland, New South Wales (NSW), Victoria, 
South Australia and Western Australia (Fig. 1). Across the 
continent, the cropping systems vary considerably. In the 
north (Queensland and NSW), rainfall is summer dominant. 
Farmers sow summer and winter groups, including wheat, 
barley, oats, sorghum, maize, soybeans, mungbeans and 
chickpeas. They also plant perennial and annual pastures to 
support livestock. In Victoria, South Australia and Western 
Australia, farmers traditionally plant wheat and barley in 
rotation with legume and oilseed crops including lupins, 
faba beans, field peas, chickpeas, lentils and canola. They 
cultivate other cereals such as oats and triticale and plant 
crops in April or May, which grow on stored soil moisture and 
winter rainfall. Again, pastures are prevalent throughout 
these regions. In Western Australia lupins are the most 
common legume crop. 

Cropping practices also vary across Australia, even though 
winter cropping systems dominate. Farmers may sow crops 
into a moist soil in April or May, following recent rainfall 
(Hochman et al. 2016), or plant crops dry, before winter 
rainfall (Fletcher et al. 2016). It can be challenging to 
define a farming system across Australia precisely or to 
define specific patterns. Seeding decisions vary annually, 
based on seasonal expectations about production, the need 
to rotate a crop, and commodity price. The area planted to 
minor crops can vary significantly from season to season, 
because these can be riskier to produce and prices fluctuate 
dramatically (Robertson et al. 2010; Fletcher et al. 2016). 
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Fig. 1. Extent of the dryland cropping region of Australia (Hertzler et al. 2013).

Graincast™ operates across this vast and variable farming 
landscape. 

The Graincast™ system

Graincast™ is a system designed to monitor crop production in 
Australia, at multiple spatial and temporal scales. Four 
separate products were created as part of this capability, 
each with their own design workflow, based around the use 
case, end-user requirements and machine learning workflow. 
These design workflows relate to the process of data 
acquisition, model development with training data, model 
validation with test data, iterative end-user engagement, 
and the delivery of model output. With each of the four 
components, the relative effort applied to data acquisition, 
model development, model validation and end-user engage-
ment varied and depended on the maturity level of the 
initial technology. Considerable effort was expended on 
user engagement and testing with mature technologies. For 
nascent technologies, effort was expended on data 
acquisition and model development. The four components 

of the Graincast™ system are C-Crop, CropID, Graincast™ 
app and Field Boundaries (known as ePaddocks). 

C-Crop

The C-Crop model was created to monitor crop yields at the 
field, farm, state and national scales in near real-time by 
using a combination of satellite imagery and climate data. 
Crop yield estimates are produced for wheat, barley and 
canola. 

Data requirements for C-Crop data: wheat yields
To create C-Crop, training data about crop yields were 

acquired from crop yield maps generated by farmers, using 
yield-monitoring technology attached to commercial grain 
harvesters. Data from grain harvesters were processed using 
methods described in Lawes et al. (2021). Fields were 
usually ≥40 ha, and training data could be generated for 
individual 250-m MODIS pixels within those fields. Data 
were acquired from 2008 to 2015, across the Australian 
continent, and used to calibrate the C-Crop model for wheat, 
barley and canola. 
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Satellite data are acquired from the MODIS platform, 
where the 16-day composite NDVI product is used to generate 
a calculation for the fraction of absorbed photosynthetically 
active radiation (fPar), which is a critical component of the 
C-Crop model. Daily maximum and minimum temperature 
data are also used by the C-Crop model. Specific details of 
data inputs are provided in Donohue et al. (2018). 

The C-Crop model is a semi-process-based model where it 
models the carbon mass accumulation for a crop species. 
C-Crop use gross primary productivity (GPP) as a primary 
driver of crop yield estimation, and is an evolutionary 
development of a model proposed by Reeves et al. (2005). 
It first estimates GPP using the DIFFUSE photosynthesis 
model (Donohue et al. 2014). The model then estimates 
plant carbon accumulation, and finally grain yield. fPar is 
calculated from a transformation of an NDVI time series. 
Other variables required include daily solar irradiance, an 
estimate of the fraction of diffuse radiation, and a period-
average daily air temperature (Donohue et al. 2018). The 
two processes, respiration rate at 10°C and leaf longevity 
were optimised to minimise the residual mean squared 
error (RMSE) between the training data and predicted 
values. The training data are used to calibrate the model for 
specific crop species. 

This output is updated every 16 days, or when data from 
NASA become available to monitor crop growth and predict 
yield at the field scale (Table 1). At the field scale, the first 
iteration of the model was able to predict wheat yields with 
an r2 of 0.68 and an RMSE of 0.73 t/ha. Canola yields were 
predicted with an r2 of 0.69 and an RMSE of 0.54 t/ha. 
A later version that copes with end-of-season effects of 
terminal drought on yield, and known as Crop-SI, showed 
slight improvement and was able to predict wheat yield 
with an r2 of 0.74 and an RMSE of 0.51 t/ha (Chen et al. 2020). 

Data delivery
C-Crop creates a crop yield prediction for the entire 

Australian cropping region at 2-week intervals on a 250-m 

Table 1. Summary of the C-Crop yield monitoring system.

Spatial resolution 250 m

Delivery date Every 16 days from 80 days after seeding

No. of classes 3 (wheat, barleyA and canola)

Input data 16-day MODIS NDVI time series

Model C-Crop

No. of training data 160 yield maps (wheat), 34 (canola)

Accuracy Wheat: r2 = 0.68 and RMSE = 0.73 t/ha
at the field scale

Canola: r2 = 0.69 and RMSE = 0.54 t/ha
at the field scale

Reference Donohue et al. 2018

ABarley calibration not published in the scientific literature.

grid. Data are processed as a raster, which must then be 
re-processed to provide information at the field, farm and 
regional spatial scales. C-Crop is able to deliver crop yield 
predictions from mid-August at 80 days after seeding 
(Donohue et al. 2018). Historical yields can also be created 
with the C-Crop model, although the crop type needs to be 
identified in order to use the model historically (Fig. 2). 

To create a yield estimate for a particular region, C-Crop 
must be paired with CropID information. Outputs for fields, 
regions, states and the continent can then be delivered via 
any geospatial software platform (e.g. ARCGIS, QGIS, Google 
Earth Engine). Uncertainty estimates for a prediction are 
derived from the RMSE calculated from the model calibration 
data. Further data would be required to update these 
uncertainty estimates. To capture end-users’ requirements 
regarding crop yield estimation via C-Crop and CropID, we 
evaluated the contracts with those end-users to supply data. 

CropID

CropID was created to determine the crop species growing 
in a particular field, and to deliver that information at 
scale, during the current cropping season. CropID outputs 
had to be delivered at the field, farm and regional scales, 
and needed to align spatially with outputs from the C-Crop 
model in order to create regional crop tonnage estimates. 
CropID was designed to provide information for cereal, 
legume and oilseed crops. Pastures were identified, but not 
to the species level. Crop classification that utilises satellite 
imagery, training data and a machine learning algorithm to 
classify spectrally disparate crop species has been used in a 
number of studies around the world. Detailed classification 
methods are routinely tested on areas of hundreds or 
thousands of hectares (e.g. Khosravi and Alavipanah 2019), 
and studies across larger landmasses are becoming more 
common (Boryan et al. 2011; Massey et al. 2018; Defourny 
et al. 2019). 

The data requirements for CropID included acquiring 
extensive training data about the crop species of individual 
fields and satellite imagery from optical and radar platforms. 
Specifically, imagery from Landsat 8, Sentinel 2 and 
Sentinel 1 were used. 

The training data required to create the CropID output are 
exhaustive. Three approaches were employed to acquire 
sufficient training data to build a CropID product for 
Australia. Trained agriculturists conducted roadside surveys 
from 2017 to 2019 (Table 2) that could give useful 
representative data (Waldner et al. 2019; Fowler et al. 
2020), as long as crops and pastures were correctly 
identified. When deployed at continental scale, there were 
concerns that cereal crops such as wheat or barley could be 
mis-identified from the roadside. The Graincast™ app (see 
below) was created to provide farmers with information 
about their field and to provide the research team with the 
necessary training data to build a crop classification model. 

512



www.publish.csiro.au/cp Crop & Pasture Science

Australian states 
CCrop−v4−forecast−Wheat−2020.289 
<VALUE> 

0−1 

1.01−2 

2.01−3 

3.01−4 

4.01−5 

5.01−6 

6.01−7.4 

N 

W E 

S 

0 500 1000 2000 km 

Fig. 2. October wheat yield (t/ha) prediction across the Australian grainbelt for 2020.

Table 2. Total training data collected via roadside survey, the data via a data delivery system. Finally, third-party data-
Graincast™ app and third parties in 2017, 2018 and 2019 for the sharing agreements were entered into with organisations 
building of CropID for Western Australia and south-eastern Australia. interested in acquiring output from the Graincast™ suite of 

2017 2018 2019 Total products. This was trialled in 2018 with one organisation. 
By 2020, this became the preferred method of data Western Australia
acquisition for CropID, particularly once it was explained to 

Road surveys 527 1240 4915 6682 organisations that the quality of data influenced the quality 
Graincast™ app 139 384 222 745 of the product they received. The geographic spread of 
Third party 973 16 342 1561 18 876 training data for CropID in 2020 is illustrated in Fig. 3. 
Total 1639 17 966 6698 26 303 Ideally, the spectral signatures of a particular crop vary 

Eastern states as the season progresses. In an Australian context, 
discriminating between crop species is challenging. Crops Road surveys 3500 1190 33 177 37 867
are typically grown during the winter, when the spectral 

Graincast™ app 271 651 420 1342
signatures of crop species start to separate out at 

Third party 717 376 1093 70–90 days after seeding (Chia et al. unpubl. data). The 
Total 4488 1841 33 973 40 302 spectral signatures, and the timing of the differences in the 

National 6127 19 807 40 671 66 605 spectral signatures of crop species, vary across the country, 
with latitude. For example, it may be possible to

Not all training data were used to create a classification.
discriminate wheat from canola and even barley at 
Geraldton, Western Australia (28.8S, 114.6E), in mid–late 

Limited data were collected via the app, in time for August. This discrimination may not be possible until mid-
image classification; however, as a proof of concept, it October in the cool, long growing season around Temora, 
demonstrated that it was possible to crowd-source training NSW (34.4S, 147.5E). In addition, the timing of the spectral 
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Fig. 3. Geographic extent of training data used to create CropID in 2019.

differences can vary between seasons, depending on the 
seeding date and the timing of the opening rains. 
Therefore, the timing of the spectral differences between 
the crop species varies both spatially and temporally, and 
the machine learning algorithms require the annual 
collection of training data across the entire continent (Chia 
et al. unpubl. data). Crops are grown during winter, and in 
the southern states (Western Australia, South Australia, 
Victoria), crops rely on winter rainfall. When there is more 
rain, there is more cloud, and optical imagery can be obscured 
by cloud. As suggested by McNairn et al. (2009), all-weather 
radar images were considered to build an approach that 
mitigates these risks. Therefore, crop identification in 
Graincast™ relies on multiple sensors: Landsat-8 for the 
optical domain and Sentinel-1 for the microwave domain. 
Imagery was often available on a scene-by-scene basis, but 
because weather patterns varied in time and space, disparate 
quantities of imagery were available across the continent. 
Further, the compositing of imagery varies annually because 
this, too, is affected by cloud. Operational monitoring cannot 
tolerate compromises in the integrity of the product due to 
inability to collect data at critical points in time. Outputs 

are displayed in Fig. 4, and the attributes of CropID are 
described in Table 3. 

The value of crop classification comes from being able to 
create a product in near real-time, before harvest. Once the 
CropID product was created, it was exported to end-users as 
a raster file, at state and continental scale. 

Field Boundaries

The Field Boundaries component, known as ePaddocks, was 
created to define field boundaries for the dryland cropping 
zone, and provide a bounding polygon for the rasterised 
outputs created from CropID and from C-Crop. With field 
boundaries, it became possible to create field-level output, 
with a mean crop yield and crop species, as well as an 
estimate of the field area. Field boundaries were created by 
using satellite imagery and training data of individual fields. 

To create the training data, teams of people used high-
resolution imagery from Google Earth and manually 
labelled 50 000 field boundaries across Australia. This 
information was used to create individual field polygons to 
feed into the machine learning algorithms (Waldner and 
Diakogiannis 2020; Waldner et al. 2021) (Table 4). Field 
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Fig. 4. CropID for the 2019 crop of Australia.

Table 3. Summary of the crop identification system.

Spatial resolution 30 m

Delivery date Twice a year: October and November

No. of classes 19

Input data Landsat-8 composites

Sentinel-1 time series

Classifier Locally trained random forests

No. of training data ~20 000 records per annum

Overall accuracy 60–80%

Reference Chia et al. unpubl. data

boundaries were extracted in three sequential steps, following 
the detection, consensus and delineation principles. In the 
detection step, fields and their boundaries are automatically 
detected in single-date satellite images based on a deep-
learning model that uses spatial, spectral and temporal 
cues. In the consensus step, model predictions for multiple 
dates are averaged to create consolidated predictions. In the 
delineation step, continuous and closed-field contours are 
generated from the consolidated model prediction by using 

Table 4. Summary of the field delineation system.

Spatial resolution 10 m

Delivery date End of season

Input data Cloud-free Sentinel-2 images (blue, green,
red and near infrared channels)

Model DECODE

Number of training data 53 115 fields

Reference Waldner et al. 2021

hierarchical watershed segmentation. In total, 1.7 million 
fields were identified across 60 Mha. The field boundaries 
are available as a shape file and can also be accessed via an 
API through a web platform. 

Graincast™ app for crop yield and soil water

The Graincast™ app was created to explore whether training 
data for CropID could be crowd-sourced using a product that 
provided information that end-users considered useful. The 
APSIM crop model was used to produce an estimate of yield 
potential, as opposed to actual crop yield, at the point scale 
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for a specific field. This use case differs markedly from C-Crop, 
which produces estimates of actual yield, not yield potential. 
The APSIM crop model (Holzworth et al. 2014) is a process-
based model that requires daily meteorological files, soil 
information, management information and information 
about a cultivar to simulate crop yield. Historically, 
scientists surveyed the soil in detail to parameterise the 
model for a particular location (Oliver and Robertson 2009; 
He and Wang 2019), and numerous studies have shown 
that when the APSIM crop model is properly parameterised 
it is able to model most dryland crop yields (Carberry et al. 
1996; Hochman et al. 2007; Lawes et al. 2009). The ASRIS 
soil grid (Grundy et al. 2015) provides an estimate of soil 
properties across the continent at a 90-m resolution. The 
SILO climate grid (Jeffrey et al. 2001) provides climate 
estimates at a 5-km resolution. These two products enable a 
crop yield to be generated for a particular location, when 
management is assumed, and a crop species and cultivar 
are chosen. Crop simulation, using these national data 
streams, has been employed to estimate yield gaps 
(Hochman et al. 2016) and to derive insights about the 
impact of future climate on existing crop production 
(Grundy et al. 2016). Therefore, as part of Graincast™, a  
web application was created to enable farmers to access 
information from the APSIM crop model about the yield 
potential of their crop on any field in Australia. 

Outputs from the Graincast™ crop-monitoring process have 
been delivered to clients. End-users have included farmers, 
consultants and agribusiness. The product offerings needed 
to have intrinsic value to the end-user, and we followed an 
agile design sprint methodology to identify the value 
propositions and to develop the tool in a rapid, iterative 
manner (Sari and Tedjasaputra 2017). The process is 
known as the Google Design Sprint Methodology and was 
developed by Google Ventures (Sari and Tedjasaputra 
2017). To that end, we recognised that human–computer 
interaction (HCI), with sound useability, could enhance the 
accessibility and satisfaction of using the application. The 
collection of user feedback and incorporation of that 
feedback into the product development process was 
underpinned by principles and methods common to user-
centred design (Allanwood and Beare 2014). 

Therefore, growers and consultants were interviewed 
across the Australian grainbelt to determine what 
digital information they may be interested in. Following 
consultation, an app was constructed to deliver soil-water 
and crop yield information to a grower, using the APSIM 
yield and soil-water predictions described earlier. Soil-
water information was useful early in the growing season 
and could inform decisions around the application of crop 
inputs such as nitrogen. Crop yield information was useful 
for assisting with marketing and management decisions 
more generally. Qualitative user engagement processes 
were followed to design the interface, communicate the 
legal terms and conditions, and provide users with the 

ability to opt out of the service. The app is not a decision 
support system. It provides information to the user, who 
can use that information to make any particular decision; for 
example, the app was not designed to generate a specific 
nitrogen recommendation or a sowing recommendation, and 
therefore differs from traditional decision support systems. 
The participatory engagement of farmers and consultants 
contributed to decisions about the interface design and how 
information was presented. Their perceptions informed the 
context of using the product, which included capturing 
insights about consent and data privacy. 

The decision to create an app about soil water prediction 
and a yield forecast was influenced by the farmers’ 
feedback; however, it was also influenced by the capacity 
of the team to deliver a certain product within a defined 
budget. Rather than being designed to solve a complete 
suite of problems, the application was scoped as a fully 
functional app that could generate a soil-water estimate and 
a yield estimate at a point in time for a particular field. 
This specificity was determined by both project resources 
and feedback from farmers who participated in early testing 
with a mock-up. Upon commissioning, the use and uptake 
of the app were monitored. Growers and consultants, who 
were the target end-users, were also interviewed to 
understand what future applications may be relevant and 
may provide a value-add to their current ways of working. 

We invited a sample of end-users to participate in a semi-
structured interview through email addresses provided when 
users register for access to Graincast™ (Ethics approval #106/ 
17). We interviewed six respondents with the objective of 
eliciting feedback on the value of the information that 
Graincast™ provides to the users and the extent to which it 
can effect on-farm decisions, and additional features that 
would be most valued in later versions of the app. 

End-users were engaged with CropID and regional outputs 
of crop yield. The end-users’ interest was formally captured 
through the research contract, where the date of delivery 
and type of delivery were all specified prior to delivery. 
These contracts were fee-for-service and provide a potent 
insight into what end-users valued. 

End-user evaluations of CropID and Crop Yield
monitoring outputs

Outputs from CropID and crop yield monitoring from C-Crop 
were first provided to end-users in Western Australia for 
2018. End-users required frequent, fortnightly updates 
about the progress of the cropping season. Specifically, the 
end-users requested information about the area planted to 
crops and the area planted to individual crop species. 
Information about crop area was required at subregional or 
district scales. End-users were particularly interested in 
yield forecasts, but these needed to be expressed as total 
tonnage for a particular region. 
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Crop yield and CropID were provided as a data delivery 
service. They were not a decision support system. Data 
were delivered as raster images and shapefiles for processing 
in geospatial software. End-users needed to integrate the data 
into their own digital systems, where data was input three 
times during the growing season. The data were used by 
the end-user to assist in planning company logistics, and 
updates were closely scrutinised by the company. Scientists 
engaged with the company to explain the data every time 
there was a data exchange. Uncertainty estimates were 
communicated with RMSE for crop yield. Uncertainty 
estimates for CropID were communicated with producer, 
along with user accuracy estimates for each crop class. The 
key findings regarding CropID and regional crop yield 
estimation were: 

1. Timely (early) predictions were requested by agribusiness, 
which meant that the operational workflow needed to be 
quickly established to produce estimates of CropID. 

2. Fortnightly updates for C-Crop yield estimates were 
requested by agribusiness, and these requests were 
communicated via contract. 

3. Accurate assessments for CropID were requested, and 
generally, an accuracy assessment of ≥80% was required 
across all crop and pasture classes; 90% accuracy was 
requested during one negotiation, but the research team 
did not agree to this stipulation. 

4. Considerable effort was required to communicate the 
implications of the accuracy assessments for CropID. 
Similar effort was required to communicate the 
uncertainty estimates surrounding crop yield monitoring 
and total tonnage for a region. 

5. Data from the predictions had to be integrated into the 
organisation’s digital systems, to assist with decision 
making. Outputs for custom spatial boundaries for 
regions of interest were requested by two agribusiness 
clients. 

6. Agribusiness clients requested information at regional, 
state and national scales. They were not interested in 
field-scale information. 

7. Agribusinesses did use the Graincast™ app, with their 
clients, for field-scale decisions, but agribusinesses were 
primarily interested in regional, larger scale estimates of 
productivity. 

8. The research team observed that it was difficult to quantify 
the impact and value of high-quality classifications during 
the growing season, from a decision-making perspective. 

9. The data were requested by clients to help with the 
decision-making process. Despite this, it was not clear 
what decisions the clients were making with the data, or 
what the value of the data was to their business. 

Since 2018, CropID and crop yield monitoring have been 
provided to six separate agribusiness clients, and these have 
been licensed to a private company. 

End-user evaluation of crop yield and soil-water
monitoring of the Graincast™ app

The Graincast™ app was designed to deliver data at the field 
scale for crop yield and soil water (Fig. 5). It was released 
in August 2018, at the end of the cropping season. Uptake 
was limited in 2018, but increased steadily throughout 
the growing season in 2019, when >1000 fields were 
monitored. The system was reset in 2020; some users’ 
email addresses had become inactive and were removed 
from the system. Uptake continued through the 2020 
cropping season, when 1200 fields were monitored by 200 
users (Fig. 6). Users were located across the continent 
(Fig. 7). To use the app, a farmer had to agree to the terms 
and conditions, identify a field with a pin,  and specify  its  
crop type. Soil-water and crop yield potential outputs 
would  then  be provided on demand through  the app  
(Fig. 5). In an Australian context, soil-water influences 
yield potential (Hunt and Kirkegaard 2011). Knowledge of 
soil-water content can also assist farmers with planting 
decisions and nitrogen fertiliser decisions (Lawes et al. 
2019). Although the app ensured that crop yield and soil-
water data could be delivered at the field level, on 
demand, it also enabled the team to capture training data 
about what crop is growing where for the current season. 
This was an attempt to capture crowd-sourced training 
data, where growers receive output of value to themselves, 
in exchange for these training data. 

Post-deployment monitoring and evaluation of
the Graincast™ app

Value of the service provided
A necessary condition for a decision support system to 

provide value is that it must have the potential to alter a 
decision of consequence. If information provided by the 
system never results in an action, or only results in actions 
that have little or no impact, then outcomes with and 
without the system are effectively identical. 

We surveyed end-users and asked whether there were 
situations in which information from Graincast™ could alter 
a decision one way or another. Two such situations 
emerged. The first involves impact on the decision to apply 
additional fertiliser (topdressing) to crops later in the season: 

‘Probably the main one : : :  is that at certain points of the 
year there’s trigger points for topdressing fertiliser : : :  
particularly those topdressing decisions at midyear, 
June, July, August. It would certainly help with that.’ 

The second situation sees Graincast™ being used for 
reassurance and to commit to plans made earlier in the 
season. An interviewee identifies times throughout the season 
when there is an urge to overreact to temporary weather 
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Current crop Barley 
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Soil moisture Yield potential Soil moisture Yield potential 

Fig. 5. Output from the Graincast™ app presented to a grower or consultant on soil-water content and crop
yield, illustrated in an iPhone.

extremes. They report that observing stable yield predictions 
from Graincast™ could avoid making a rash decision: 

‘The point is to take the emotion out of seasonal situations. 
Just because it’s dripping wet in the middle of July doesn’t 
mean it’s a particularly wet season. Just because the dust is 
flying in the middle of July it doesn’t mean it’s necessarily a 
blow-over season. It’s a matter of taking the emotion out of 
those periods.’ 

Arguably, the value of a decision support system should be 
considered in view of the existence of similar systems that 
might act as substitutes. However, the Graincast™ app is a 
data delivery service, so direct comparisons with decision 
support systems are not entirely warranted, although users are 
not likely to focus on the subtle difference. All interviewees 
reported using an ensemble of yield-forecasting tools, 
such as iPaddock (https://www.ipaddock.com.au/) and  
YieldProphet™. There are two factors contributing to 
service value: the novelty of the service provided, for 

which there may in fact be close substitutes; and the cost at 
which that service is provided. Cost includes not only the 
price paid to access the service (which at the moment is 
zero), but also the time and effort expended by the user. 
The interviewees identify the comparative advantage of 
Graincast™ as being that very little information must be 
manually entered by the user in order to obtain a yield 
forecast: 

‘I’ve used [other app] previously, which I probably : : :  well 
I’m not sure if I will or won’t in the future. It’s a bit data 
hungry, and the problem with these sorts of models is 
you put rubbish information in, you get rubbish 
information out : : :  the idea of it being simplified has a 
lot of appeal.’ 

They also found the user interface to be intuitive and easy 
to navigate: 

‘The interface, it’s very clean. That’s good.’ 
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Fig. 6. Usage statistics (numbers of users and fields) for the
Graincast™ app, following its release at the end of the cropping
season in 2018.

Additional features
Deployment of an application is rarely the end of its 

development. Functionality tends to improve over its lifetime, 
and the amount of funding available for further development 

Australian states 

Graincast app 2019 crops 
Undefined 
Barley 
Canola 
Chickpea 
Fababean 
Fieldpea 
Lentil 
Lupin 
Oats 
Other 
Vetch 
Wheat 

can be driven by growth in the number of users. Directly 
engaging with users allows for further development of the 
app to be driven in a human-centred fashion, catering to 
the context of their decisions and stated pain points with 
the current offering. 

Interviewees provided specific actionable feedback 
on how Graincast™ could be improved. One interviewee, 
an agronomist, revealed a difference in how advisors 
would use Graincast™ compared with individual farmers. 
They illustrated the need for paddock registration to be 
streamlined for scale so that they could use the app to 
advise a large number of clients without having to perform 
a tedious data entry task: 

‘I cover a lot of clients, I actually wanted to pick out a 
number of paddocks for a number of different clients all 
over the region : : :  But initially I think setting them up, 
there was obviously a few steps to jump through to 
actually have the paddock locations set up. : : :  If you 
wanted a lot of paddocks done : : :  it would be painful.’ 

Another interviewee, a farmer, suggested that forecasts for 
a paddock over time be recorded and stored, so that the 

N 
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S 
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Fig. 7. Geographical usage and crop type identified with the Graincast™ app in 2020.
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interviewee may learn what events trigger large changes in 
forecasts: 

‘It’d be really good if the model could log model runs so you 
can see your forecasts over time. : : :  If you’re looking at it 
more frequently, you can see the yield getting eaten up and 
see where the damage has been done, or where it thinks the 
damage has been done.’ 

The difference in how agronomists and farmers perceived 
the usefulness of the product reinforces the point that when 
working with participatory research methods, like UX, 
multiple end-users groups should be included. 

Discussion

The Australian crop monitoring system Graincast™ was 
developed to fill a perceived gap in the domestic market 
that could not be satisfied by existing international crop-
monitoring solutions. The development process tackled 
the technical issues associated with creating a reproducible 
digital workflow. The digital workflow could be implemented 
commercially to produce outputs for multiple end-users 
engaged in the agricultural sector. Each of the components 
was developed with end-users in mind. The entire process was 
commercialised so as to ensure the technology could be 
utilised by any organisation beyond the life of the research 
project. The impact pathway, through commercialising, was 
mapped out as part of the research process. The team 
identified that this was how the project could have impact, 
following processes defined by Douthwaite et al. (2003). 

It is now possible, across 60 Mha of Australia, to understand 
what was grown on every cropped field, understand what 
the yield potential of that field was, and understand what 
the tonnage produced from that field was. The information 
can be delivered throughout the growing season to end-users 
willing to subscribe to a commercial system. Therefore, the 
Graincast™ system was created where the technical develop-
ment, the user engagement through human-centred design, 
and the economic requirements of system implementation 
occurred in concert with feedback loops to each section 
(Fig. 8). The approach is arguably a development, or modifi-
cation, of the affordance framework, where considerable 
co-design and co-development of agricultural systems tools 
with end-users take place (Ditzler et al. 2018). Here, output 
from the process is provided as a data-service to the end-
user, as a form of field-scale or industry-scale intelligence. It 
is not a decision support system, and avoids the issues and 
challenges raised by McCown (2002) and  Eichler Inwood 
and Dale (2019) regarding the development of agricultural 
decision support systems and agricultural apps. Third parties 
can then incorporate the data into an in-house information 
system, and use the output to inform a decision. 

Technical data 
workflow and 

analytics 

Human 
centred 

design and 
user 

engagement 

Economic reality 
of system 

implementation 

Fig. 8. Graphical representation of the Graincast™ development
process.

Users often requested information at critical times 
during the growing season and specified particular levels of 
accuracy. Through this process, it became clear that the 
request for data was linked to a decision, but it was 
difficult to gauge which decision and the value of that 
decision to the user. The Graincast™ app was developed 
purely as an information service. It did not provide a 
nitrogen recommendation like Yield Prophet (Hochman 
et al. 2009), and nor did it allow the user to define the soil, 
like the Soil Water app (Freebairn et al. 2018). The ease of 
use facilitated uptake, and this occurred because the team 
followed the principles of human centred design, and chose 
not to build another nitrogen decision aid. The implication 
was that the information from the Graincast™ app could be 
deployed to address multiple questions, and these could 
vary from one user to the next. This design process 
demonstrated that delivery of data as a service was viable 
at the field scale, as the end-user had the autonomy to use 
the data for whatever purpose they conceived. The multiple 
components of Graincast™ provided data as a service through 
Apps, APIs and data transfer agreements with bespoke 
requirements. End-users typically requested faster, more 
frequent, more accurate data, that could be delivered 
through a convenient system at a lower price point than could 
be provided with the current technology. These requirements 
could be used as a process to define incremental improvement 
in the existing suite of technologies. 

Linkages between the Graincast™ components

The Graincast™ technologies are interlinked. Training data 
were required to build C-Crop, Crop ID and Paddock 
boundaries. C-Crop, Crop ID, Paddock boundaries and the 
Graincast™ app all utilised high performance computing 
facilities. Machine learning algorithms were deployed to 
create C-Crop, Crop ID and Paddock boundaries. Satellite 
imagery was used to create C-Crop, Crop ID and Field 
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Boundaries, and outputs from these products can be delivered 
through commercial GIS platforms. Information from each 
of the Graincast™ products was also distributed from high-
performance computing facilities, and this enabled the 
creation of crop-monitoring data as a service. 

Each of these technologies has limitations. For example, 
if the supply chain of training data for each product 
improved in both number and quality, then issues such as 
bias in sampling could be addressed. Similarly, machine 
learning algorithms such as convolutional neural networks 
require substantial quantities of information, and thus far, the 
volume of training data necessary to build more sophisticated 
crop monitoring tools has not been available. Clients demand 
earlier detection, and better crop forecasting. These systems 
can only be developed with better training data, and 
continued access to high performance computing facilities. 
As new satellite systems come online, it is conceivable 
that highly accurate crop-monitoring information can be 
provided, if there is a market need. 

Future development of crop monitoring
technology

The end-users of crop-monitoring technology articulated their 
needs as being where the end-user makes a better decision 
related to an existing operational requirement. That require-
ment could be to sow a crop, manage regional logistics 
operations with grain handling, or market some grain. 
Every use case indicated that crop-monitoring technology 
was generally used to assist with operational decision 
making. Crop monitoring, at this time, is not contributing 
to transformational changes to agriculture. The use cases 
identified illustrate that the digitalisation of agriculture, 
and use by the various commercial entities, often starts 
with improving business operation. Proponents of digital 
agriculture often suggest that it will help the world to 
produce more food (e.g. Shepherd et al. 2020), as long as 
the technical, social, economic and governance issues can 
be overcome and it can implemented at scale. Improving 
operational efficiencies that enable more crops to be sown 
in the right place, at the right time, with the appropriate 
levels of inputs will indeed help farmers grow more crop. 
Global yield gaps, which capture the disparity between 
what producers grow and the biological yield potential of 
the crop, vary markedly, but yield gaps in the order of 50% 
are not uncommon in broadacre crops (van Ittersum et al. 
2013). This disparity alone suggests that digital technology 
could play an important role in communicating, in near 
real-time, whether a producer’s crops are tracking to yield 
potential during the growing season. Alternatively, digital 
agriculture technology, through crop monitoring technology, 
may help the industry to produce a higher value product, 
where farmers are able to meet global requirements to 
track food provenance and gain access to niche, high-value 
markets. Here, multiple organisations, including farmers, 

field-monitoring and data-collection services, crop-
monitoring services, grain marketers and grain handlers will 
all need to co-operate to capture this market opportunity. The 
true value of data, digital agriculture and crop monitoring 
will be realised only if it vertically integrates into the entire 
supply chain. Shepherd et al. (2020) suggest that the 
industry will need to develop integrated solutions to data 
capture and use along the value chain that embrace novel 
business models. Multiple organisations will therefore need 
to collaborate if the value that crop-monitoring technology 
promises is to be fully exploited. Each organisation will need 
to embrace aspects of the technical, economic and human-
centred design components highlighted in the development 
of Graincast™ to realise such a vision. An integrated data 
supply chain would ensure there is sufficient training data 
to deploy the latest algorithms and satellite technology to 
agricultural problems. Development cannot take place 
without this reliable supply of training data. 

Conclusion

Crop-monitoring technology has been developed for 
the Australian continent in which many of the technical 
difficulties have been addressed. The process was conducted 
with extensive user engagement with a human-centred 
design approach. At present, crop-monitoring technology is 
being employed to enhance operational efficiencies across 
the supply chain. The use cases outline a clear path for 
technological improvement, where crop-monitoring data 
need to be supplied with higher levels of accuracy, earlier 
in the growing season and in an accessible manner, 
cognisant of the user’s requirements. There are industry 
concerns about data governance. The true impact of digital 
agriculture, and crop-monitoring technology may only be 
realised if crop-monitoring technology is used throughout 
the supply chain, and this in turn may require creative 
partnerships and business models if it is to succeed. 
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