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Context. Most weed species can adversely impact agricultural productivity by competing for
nutrients required by high-value crops. Manual weeding is not practical for large cropping areas.
Many studies have been undertaken to develop automatic weed management systems for
agricultural crops. In this process, one of the major tasks is to recognise the weeds from images.
However, weed recognition is a challenging task. It is because weed and crop plants can be similar
in colour, texture and shape which can be exacerbated further by the imaging conditions, geographic
or weather conditions when the images are recorded. Advanced machine learning techniques can be
used to recognise weeds from imagery.Aims. In this paper, we have investigated five state-of-the-art
deep neural networks, namely VGG16, ResNet-50, Inception-V3, Inception-ResNet-v2 and
MobileNetV2, and evaluated their performance for weed recognition. Methods. We have used
several experimental settings and multiple dataset combinations. In particular, we constructed a
large weed-crop dataset by combining several smaller datasets, mitigating class imbalance by data
augmentation, and using this dataset in benchmarking the deep neural networks. We investigated
the use of transfer learning techniques by preserving the pre-trained weights for extracting the
features and fine-tuning them using the images of crop and weed datasets. Key results. We
found that VGG16 performed better than others on small-scale datasets, while ResNet-50
performed better than other deep networks on the large combined dataset. Conclusions. This
research shows that data augmentation and fine tuning techniques improve the performance of
deep learning models for classifying crop and weed images. Implications. This research evaluates
the performance of several deep learning models and offers directions for using the most
appropriate models as well as highlights the need for a large scale benchmark weed dataset.
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Weeds in crops compete for water, nutrients, space and light, and may decrease product 
quality (Iqbal et al. 2019). Their control, using a range of herbicides, constitutes a 
significant part of current agricultural practices. In Australia, weed control costs in grain 
production is estimated at AUD4.8 billion per annum. These costs include weed control 
and the cost of lost production (McLeod 2018). 

The most widely used methods for controlling weeds are chemical-based, where 
herbicides are applied at an early growth stage of the crop (López-Granados 2011; Harker 
and O’Donovan 2013). Although the weeds spread in small patches in crops, herbicides are 
usually applied uniformly throughout the agricultural field. While such an approach works 
reasonably well against weeds, it also affects the crops. A report from the European Food 
Safety Authority (EFSA) shows that most of the unprocessed agricultural produces contain 
harmful substances originating from herbicides (Medina-Pastor and Triacchini 2020). 

Recommended rates of herbicide application are expensive and may also be detrimental 
to the environment. Thus, new methods that can be used to identify weeds in crops, and 
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then selectively apply herbicides on the weeds, or other 
methods to control weeds, will reduce production costs to 
the farmers and benefit the environment. Technologies that 
enable the rapid discrimination of weeds in crops are now 
becoming available (Tian et al. 2020). 

Recent advances in Deep Learning (DL) have 
revolutionised the field of Machine Learning (ML). DL has 
made a significant impact in the area of computer vision by 
learning features and tasks directly from audio, images or 
text data without human intervention or predefined rules 
(Dargan et al. 2020). For image classification, DL methods 
outperform humans and traditional ML methods in accuracy 
and speed (Steinberg 2017). In addition, the availability of 
computers with powerful GPUs, coupled with the availability 
of large amounts of labelled data, enable the efficient training 
of DL models. 

As for other computer vision and image analysis problems, 
digital agriculture and digital farming also benefits from the 
recent advances in deep learning. DL techniques have been 
applied for weed and crop management, weed detection, 
localisation and classification, field conditions and livestock 
monitoring (Kamilaris and Prenafeta-Boldú 2018). 

ML techniques have been used in commercial solutions to 
combat weeds. ‘Robocrop Spot Sprayer’ (Robocrop Spot 
sprayer: weed removal 2018) is a video analysis-based 
autonomous selective spraying system that can identify 
potatoes (Solanum tuberosum L.) grown in carrots (Daucus 
carota L. subsp. sativus), parsnips (Pastinaca sativa L.), onions 
(Allium cepa L.) or leeks (Allium porrum L.). ‘WeedSeeker 
sprayer’ (WeedSeeker 2 Spot Spray System n.d.) is a near-
infrared reflectance sensor-based system that detects the 
green component in the field. The machine sprays herbicides 
only on the plants while reducing the amount of herbicide. 
Similar technology is offered by a herbicide spraying 
system known as ‘WEED-IT’. It can target all green plants 
on the soil. A fundamental problem with these systems is 
that they are non-selective of crops or weeds. Therefore the 
ability to discriminate between crops and weeds is important. 

Further development of autonomous weed control systems 
can be beneficial both economically and environmentally. 
Labour costs can be reduced by using a machine to identify 
and remove weeds. Selective spraying can also minimise 
the amount of herbicides applied (Lameski et al. 2018). The 
success of an autonomous weed control system will depend 
on four core modules: (1) weed detection and recognition; 
(2) mapping; (3) guidance; and (4) weed control (Olsen 
et al. 2019). This paper focuses on the first module: 
weed detection and recognition, which is a challenging task 
(Slaughter et al. 2008). This is because both weeds and 
crop plants often exhibit similar colours, textures and 
shapes. Furthermore, the visual properties of both weeds and 
crop plants can vary depending on the growth stage, lighting 
conditions, environments and geographical locations (Jensen 
et al. 2020; Hasan et al. 2021). Also, weeds and crops, exhibit 
high inter-class similarity as well as high intra-class 

dissimilarity. The lack of large-scale crop weed datasets is a 
fundamental problem for DL-based solutions. 

There are many approaches to recognise weed and crop 
classes from images (Wäldchen and Mäder 2018). High accuracy 
can be obtained for weed classification  using DL techniques  
(Kamilaris and Prenafeta-Boldú 2018) whereas  Chavan and 
Nandedkar (2018) used Convolutional Neural Network (CNN) 
models to classify weeds and crop plants. Teimouri et al. 
(2018) used DL for the classification of weed species and the 
estimation of growth stages, with an average classification 
accuracy of 70% and 78% for growth stage estimation. 

As a general rule, the accuracy of the methods used for the 
classification of weed species decreases in multi-class 
classification when the number of classes is large (Dyrmann 
et al. 2016; Peteinatos et al. 2020). Class-imbalanced datasets 
also reduce the performance of DL-based classification 
techniques because of overfitting (Ali-Gombe and Elyan 2019). 
This problem can be addressed using data-level and algorithm-
level methods. Data-level methods include oversampling or 
undersampling of the data. In contrast, algorithm-level 
methods work by modifying the existing learning algorithms 
to concentrate less on the majority group and more on the 
minority classes. The cost-sensitive learning approach is one 
such approach (Krawczyk 2016; Khan et al. 2017). 

DL techniques have been used extensively for weed 
recognition, for example Hasan et al. (2021) have provided 
a comprehensive review of these techniques. Ferreira et al. 
(2017) compared the performance of CNN with Support 
Vector Machines (SVM), Adaboost – C4.5, and Random 
Forest models for discriminating soybean plants, soil, grass 
and broadleaf weeds. This study shows that CNN can be 
used to classify images more accurately than other machine 
learning approaches. Nkemelu et al. (2018) report that CNN 
models perform better than SVM and K-Nearest Neighbour 
(KNN) algorithms. 

Transfer learning (TL) is an approach that uses the learned 
features on one problem or data domain for another related 
problem. TL mimics classification used by humans, where a 
person can identify a new thing using previous experience. 
In DL, pre-trained convolutional layers can be used as a 
feature extractor for a new dataset (Shao et al. 2015). 
However, most of the well-known CNN models are trained 
on ImageNet datasets, which contains 1000 classes of 
objects. That is why, depending on the number of classes in 
the desired dataset, only the classification layer (fully 
connected layer) of the models need to be trained again in 
the TL approach. Suh et al. (2018) applied six CNN models 
(AlexNet, VGG-19, GoogLeNet, ResNet-50, ResNet-101 and 
Inception-v3) pre-trained on the ImageNet dataset to 
classify sugar beet and volunteer potatoes. They reported 
that these models can achieve a classification accuracy of 
about 95% without retraining the pre-trained weights of 
the convolutional layers. They also observed that the 
models’ performance improved significantly by fine-tuning 
(FT) the pre-trained weights. In the FT approach, the 

629

www.publish.csiro.au/cp


A. S. M. Mahmudul Hasan et al. Crop & Pasture Science

convolutional layers of the DL models are initialised with the 
pre-trained weights, and subsequently during the training 
phase of the model, those weights are retrained for the 
desired dataset. Instead of training a model from scratch, 
initialising it with pre-trained weights and FT them helps 
the model to achieve better classification accuracy for a 
new target dataset, and this also saves training time 
(Girshick et al. 2014; Gando et al. 2016; Hentschel et al. 
2016). Olsen et al. (2019) fine-tuned the pre-trained 
ResNet-50 and Inception-V3 models to classify nine weed 
species in their study and achieved an average accuracy of 
95.7% and 95.1%, respectively. In another study, VGG16, 
ResNet-50 and Inception-V3 pre-trained models were fine-
tuned to classify the weed species found in the corn (Zea 
mays L.) and soybean (Glycine max L.) production system 
(Ahmad et al. 2021). The VGG16 model achieved the 
highest classification accuracy of 98.90% in their research. 

In this paper, we have performed several experiments: 
(1) we first stevaluated the performance of DL models under 
the same experimental conditions using small-scale public 
datasets; (2) we then constructed a large dataset by combining 
a few small-scale datasets with a variety of weeds in crops. In 
the dataset construction process, we mitigated the class 
imbalance problem. In a class-imbalance dataset, certain 
classes have very high or lower representation compared to 
others; and lastly (3) we then investigated the performance 
of DL models following several pipelines, e.g. TL and FT. 
Finally, we provide a thorough analysis and offer future 
perspectives (Section Results and discussions). 

The main contributions of this research are: 

� construction of a large data set by combining four small-
scale datasets with a variety of weeds and crops; 

� addressing the class imbalance issue of the combined 
dataset using the data augmentation technique; 

� comparing the performance of five well-known DL 
methods using the combined dataset; and 

� evaluating the efficiency of the pre-trained models on the 
combined dataset using the TL and FT approach. 

This paper is organised as follows: Section ‘Materials and 
methods’ describes the materials and methods, including 
datasets, pre-processing approaches of images, data augmen-
tation techniques, DL architectures and performance metrics. 
Section ‘Results and discussions’ covers the experimental 
results and analysis, and section 'Conclusion' concludes 
the paper. 

Materials and methods

Dataset

In this work, four publicly available datasets were used: 
the ‘DeepWeeds’ dataset (Olsen et al. 2019), the ‘Soybean 

Weed’ dataset (Ferreira et al. 2017), the ‘Cotton Tomato 
Weed’ dataset (Espejo-Garcia et al. 2020) and the ‘Corn Weed’ 
dataset (Jiang et al. 2020). 

‘DeepWeeds’ dataset
The ‘DeepWeeds’ dataset contains images of eight 

nationally significant species of weeds collected from eight 
rangeland environments across northern Australia. It also 
includes another class of images that contain non-weed 
plants. These are represented as a negative class. In this 
research, the negative image class was not used as it does 
not have any weed species. The images were collected 
using a FLIR Blackfly 23S6C high-resolution (1920 × 1200 
pixel) camera paired with the Fujinon CF25HA-1 machine 
vision lens (Olsen et al. 2019). The dataset is publicly 
available through the GitHub repository: https://github. 
com/AlexOlsen/DeepWeeds. 

‘Soybean Weed’ dataset
Ferreira et al. (2017) acquired soybean, broadleaf, grass 

and soil images from Campo Grande in Brazil. We did not 
use the images from the soil class as they did not contain 
crop plants or weeds. Ferreira et al. (2017) used a ‘Sony 
EXMOR’ RGB camera mounted on an Unmanned Aerial 
Vehicle (UAV – DJI Phantom 3 Professional). The flights 
were undertaken in the morning (8:00–10:00 am) from 
December 2015 to March 2016 with 400 images captured 
manually at an average height of 4 m above the ground. 
The images of size 4000 × 3000 were then segmented using 
the Simple Linear Iterative Clustering (SLIC) superpixels 
algorithm (Achanta et al. 2012) with manual annotation 
of the segments to their respective classes. The dataset 
contained 15 336 segments of four classes. This dataset is 
publicly available at the website: https://data.mendeley. 
com/datasets/3fmjm7ncc6/2. 

‘Cotton Tomato Weed’ dataset
This dataset was acquired from three different farms in 

Greece, covering the south-central, central and northern 
areas of Greece. The images were captured in the morning 
(0800–1000 hours) from May 2019 to June 2019 to ensure 
similar light intensities. The images of size 2272 × 1704 
were taken manually from about one-metre height using a 
Nikon D700 camera (Espejo-Garcia et al. 2020). The dataset 
is available through the GitHub repository: https://github. 
com/AUAgroup/early-crop-weed. 

‘Corn Weed’ dataset
This dataset was taken from a corn field in China. A total 

of 6000 images were captured using a Canon PowerShot 
SX600 HS camera placed vertically above the crop. To 
avoid the influence of illumination variations from different 
backgrounds, the images were taken under various lighting 
conditions. The original images were large (3264 × 2448), 
and these were subsequently resized to a resolution of 
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800 × 600 (Jiang et al. 2020). The dataset is available at the 
Github: https://github.com/zhangchuanyin/weed-datasets/ 
tree/master/corn%20weed%20datasets. 

Our combined dataset
In this paper, we combine all these datasets to create a 

single large dataset with weed and crop images sourced from 
different weather and geographical zones. This has created 
extra variability and complexity in the dataset with a large 
number of classes. This is also an opportunity to test the DL 
models and show their efficacy in complex settings. We 
used this combined dataset to train the classification models. 
Table 1 provides a summary of the dataset used. The 
combined dataset contains four types of crop plants and 16 
species of weeds. The combined dataset is highly class-
imbalanced since 27% of images are from the soybean crop, 
while only 0.2% of images are from the cotton crop (Table 1). 

Unseen test dataset
Another set of data were collected from the Eden Library 

website (https://edenlibrary.ai/) for this research. The 
website contains some plant datasets for different research 
work that use artificial intelligence. The images were 
collected under field conditions. We used images of five 
different crop plants from the website namely: Chinese 
cabbage (Brassica rapa L. subsp. pekinensis) (142 images), 

Table 1. Summary of crop and weed datasets used in this research.

grapevine (Vitis vinifera L.) (33 images), pepper (Capsicum 
annuum) (355 images), red cabbage (Brassica oleracea L. 
var. capitata f. rubra) (52 images) and zucchini (Cucurbita 
pepo L.) (100 images). In addition, we also included 500 
images of lettuce (Latuca sativa L.) plants (Jiang et al. 
2020) and 201 images of radish (Raphanus sativus L.) 
plants (Lameski et al. 2017) in the combined dataset. This 
dataset was then used to evaluate the performance of the 
TL approach. This experiment checks the reusability of the 
DL models in the case of a new dataset. 

In the study, the images of each class were randomly 
assigned for training (60%), validation (20%) and testing 
(20%). Each image was labelled with one image-level 
annotation which means that each image has only one 
label, i.e. the name of the weed or crop classes, e.g. chinee 
apple (Ziziphus mauritiana) or corn. Fig. 1 provides sample 
images in the dataset. 

Image pre-processing

Some level of image pre-processing is needed before the data 
can be used as input for training the DL model. This includes 
resizing the images, removing the background, enhancing and 
denoising the images, colour transformation, morphological 
transformation, etc. In this study, the Keras pre-processing 
utilities (Chollet et al. 2015) were used to prepare the data 

Dataset Location Crop/weed species Number of images % of images in the class
in the combined dataset

‘DeepWeeds’ (DW) Australia Weed Chinee apple 1126 4.17

Lantana 1063 3.94

Parkinsonia 1031 3.82

Parthenium 1022 3.78

Prickly acacia 1062 3.93

Rubber vine 1009 3.74

Siam weed 1074 3.98

snakeweed 1016 3.76

‘Soybean Weed’ (SW) Brazil Crop Soybean 7376 27.31

Weed Broadleaf 1191 4.41

Grass 3526 13.06

‘Cotton Tomato Weed’ CTW) Greece Crop Cotton 54 0.20

Tomato 201 0.74

Weed Black nightshade 123 0.46

Velvet leaf 130 0.48

‘Corn Weed’ (CW) China Crop Corn 1200 4.44

Weed Blue Grass 1200 4.44

Chenopodium album 1200 4.44

Cirsium setosum 1200 4.44

Sedge 1200 4.44
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for training. This function applies some predefined operations 
to the data. One of the operations is to increase the dimension 
of the input. DL models process images in batches. To create the 
batches of images, additional dimension resizing is needed. 
An image contains three properties; e.g. image height, width 
and the number of channels. The pre-processing function 
adds a dimension to the image for inclusion in the batch 
information. Pre-processing involves normalising the data so 
that the pixel values range is from 0 to 1. Each model has a 
specific pre-processing technique to transform a standard 
image into an appropriate input. Research suggests that the 
classification model performance is improved by increasing 
the input resolution of the images (Sahlsten et al. 2019; 

Sabottke and Spieler 2020). However, the model’s 
computational complexity also increases with a higher 
resolution of the input image. The default input resolution 
for all the models used in this research is 224 × 224. 

Data augmentation

The combined dataset is highly class-imbalanced. The 
minority classes are over-sampled using image augmentation 
to balance the dataset. The augmented data are only used to 
train the models. Image augmentation is done using the 
Python image processing library Scikit-image (Van der Walt 
et al. 2014). After splitting the dataset into training, 
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 1. Sample crop and weed images of each class from the datasets. (a) Chinee apple. (b) Lantana. (c) Parkinsonia.
(d) Parthenium. (e) Prickly acacia. (f ) Rubber vine. (g) Siam weed. (h) Snakeweed. (i) Soybean. (j) Broadleaf. (k) Grass.
(l) Cotton. (m) Tomato. (n) Black nightshade. (o) Velvet leaf. (p) Corn. (q) Blue grass. (r) Chenopodium album.
(s) Cirsium setosum. (t) Sedge (Cyperus compressus).
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validation and testing sets, most training images were 
from soybean with 4425 image. By applying augmentation 
approaches, we obtained 4425 images for all other weed and 
crop classes; thus we ensured that all classes were balanced. 
The following operations were applied randomly to the 
data to generate the augmented images: 

� Random rotation in the range of [−25, +25] degrees; 
� Horizontal and vertical scaling in the range of 0.5 and 1; 
� Horizontal and vertical flip; 
� Added random noise (Gaussian noise); 
� Blurring the images; 
� Applied gamma, sigmoid and logarithmic correction 

operation; and 
� Stretched or shrunk the intensity levels of images. 

The models are then trained on both actual data and 
augmented data without making any discrimination. 

Deep learning

Five state-of-the-art DL models with pre-trained weights were 
used in this research to classify images. These models were 
made available via the Keras Application Programming 
Interface (API) (Chollet et al. 2015). TensorFlow (Abadi 
et al. 2016) was used as a machine learning framework. 
The selected CNN architectures were: 

� VGG16 (Simonyan and Zisserman 2014) uses a stack of 
convolutional layers with a very small receptive field 
(3 × 3). It was the winner of ImageNet Challenge 2014 in 
the localisation track. The architecture consists of a stack 
of 13 convolutional layers, followed by three fully 
connected layers. A very small receptive field (3 × 3) is 
used in the convolutional layers. The network fixes the 
convolutional stride and padding to one pixel. Spatial 
pooling is carried out by the max-pooling layers. However, 
only five of the convolutional layers are followed by the 
max-pooling layer. This actual state-of-the-art VGG16 
model has 138 357 544 trainable parameters. Of these, 
about 124 million parameters are contained in the fully 
connected layers. Those layers were customised in this 
research. 

� ResNet-50 (He et al. 2016) is deeper than VGG16 but 
has a lower computational complexity. Generally, with 
increasing depths of the network, the performance 
becomes saturated or degraded. The model uses residual 
blocks to maintain accuracy with the deeper network. 
The residual blocks also contain convolutions layers like 
VGG16. The model uses batch normalisation after each 
convolutional layer and before the activation layer. The 
model explicitly reformulates the layers as residual 
functions with reference to the input layers and skip 
connections. Although the model contains more layers 
than VGG16, it only has 25 636 712 trainable parameters. 

� Inception-V3 (Szegedy et al. 2016) uses a deeper network 
with fewer training parameters (23 851 784). The model 
consists of symmetric and asymmetric building blocks 
with convolutions, average pooling, max pooling, concats, 
dropouts, and fully connected layers. 

� Inception-ResNet-V2 (Szegedy et al. 2017) combines the 
concept of skip connections from ResNet with Inception 
modules. Each inception block is followed by a filter 
expansion layer (1 × 1 convolution without activation). 
Before concatenation with the input layer the dimension-
ality expansion is performed to match the depth. The 
model uses batch normalisation only on the traditional 
layer, but not for the summation layers. The network is 
164 layers deep and has 55 873 736 trainable parameters. 

� MobileNetV2 (Sandler et al. 2018) allows memory-efficient 
inference with a reduced number of parameters. It contains 
3 538 984 trainable parameters. The basic building block of 
the model is a bottleneck depth-separable convolution with 
residuals. The model has the initial fully convolution layer 
with 32 filters, followed by 19 residual bottleneck layers. It 
always uses 3 × 3 kernels and utilises the dropout layer and 
batch normalisation during training. Instead of ReLU 
(Rectified Linear Unit), this model uses ReLU6 as an 
activation function. ReLU6 is a variant of ReLU, where 
the number 6 is an arbitrary choice of the upper bound, 
which worked well and the model can easily learn the 
sparse features. 

All the models were initialised with pre-trained weights 
trained on the ImageNet dataset. As the models were trained 
to recognise 1000 different objects, the original architecture 
was slightly modified to classify 20 crops and weed species. 
The last fully-connected layer of the original model was 
replaced by a global average pooling layer followed by two 
dense layers with 1024 neurones and ‘ReLU’ activation 
function. The output contained another dense layer where 
the number of neurons depended on the number of classes. 
The softmax activation function was used in the output 
layer since the models were multi-class classifiers. The size 
of the input was 256 × 256 × 3, and the batch size was 64. 
The maximum number of epochs for training the models 
was 100. However, often the training was completed before 
reaching the maximum number. The initial learning rate 
was set to 1 × 10–4 and is randomly decreased down to 10–6 

by monitoring the validation loss in every epoch. Table 2 
shows the number of parameters of each of the models used 
in this research without the output layer. It was found that 
the Inception-Resnet-V2 model has the most parameters, 
and the MobileNetV2 model has the least. 

Transfer learning and fine-tuning

A conventional DL model contains two basic components: 
a feature extractor and a classifier. Depending on the DL 
model, different layers in the feature extractor and classifier 
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Table 2. Number of parameters used in the deep learning models.

Deep learning model Number of parameters

VGG16 16 289 600

ResNet-50 26 735 488

Inception-V3 24 950 560

Inception-ResNet-V2 56 960 224

MobileNetV2 4 585 216

may vary. However, all the DL architectures, used in this 
research, contain a series of trainable filters. Their weights 
are adjusted or trained for classifying images of a target 
dataset. Fig. 2a shows a basic structure of a pre-trained DL 
model. A pre-trained DL model means that the weights of 
the filters in the feature extractor and classifier is trained to 
classify 1000 different classes of images contained in the 
ImageNet dataset. The concept of TL is to use those pre-trained 
weights to classify the images of a new unseen dataset (Pan and 
Yang 2010; Guo et al. 2019). We used this approach in two 
different ways. The approaches were categorised as TL and 
FT. To train the model using our dataset of crop and weed 
images, we took the feature extractor from the pre-trained 
DL model and removed its classifier part since it was 
designed for a specific classification task. In the TL approach 
(Fig. 2b), we only trained the weights of the filters in the 
classifier part and kept the pre-trained weights of the layer 
in the feature extractor. This process eliminates the potential 
issue of training the complete network on a large number of 
labelled images. However, in the FT approach (Fig. 2c), the 
weights in the feature extractor were initialised from the 
pre-trained model, but not fixed. During the training phase 
of the model, the weights were retrained together with the 
classifier part. This process increased the efficiency of the 
classifier because it was not necessary to train the whole model 
from scratch. The model can extract discriminating features for 
the target dataset more accurately. Our experiments used both 
approaches and evaluated their performance on the crop and 
weed image dataset. Finally, we trained one state-of-the-art 
DL architecture from scratch, using our combined dataset 
(section 'Our combined dataset') and used its feature extractor 
to classify the images in an unseen test dataset (section 'Unseen 
test dataset') using the TL approach. The performance of the 
pre-trained state-of-the-art model was then compared with 
the model trained on the crop and weed dataset. 

Performance metrics

The models were tested and thoroughly evaluated using 
several metrics: accuracy, precision, recall and F1 score 
metrics, which are defined as follows: 

� Accuracy (Acc): it is the percentage of images whose classes 
are predicted correctly among all the test images. A higher 
value represents a better result. 

� Precision (P): the fraction of correct prediction (True 
Positive) from the total number of relevant result (Sum 
of True Positives and False Positives). 

� Recall (R): the fraction of True Positive from the sum of 
True Positive and False Negative (number of incorrect 
predictions). 

� F1 Score (F1): the harmonic mean of precision and recall. 
This metric is useful to measure the performance of a model 
on a class-imbalanced dataset. 

� Confusion Matrix: it is used to measure the performance of 
machine learning models for classification problems. The 
confusion matrix tabulates the comparison of the actual 
target values with the values predicted by the trained 
model. It helps to visualise how well the classification 
model is performing and what prediction errors it is 
making. 

In all these metrics, a higher value represents better 
performance. 

Results and discussions

We conducted five sets of experiments on the data. Table 3 
shows the number of images used for training, validation 
and testing of the models. Augmentation was applied to 
generate 4425 images for each of the classes. However, only 
actual images were used to validate and test the models. All 
the experiments were done on a desktop computer, with an 
Intel® Core™ i9-9900X processor, 128 gigabyte of RAM and 
a NVIDIA GeForce RTX 2080 Ti Graphics Processing Unit 
(GPU). We used the Professional Edition of the Windows 10 
operating system. The deep learning models were developed 
using Python 3.8 and Tensorflow 2.4 framework. 

Experiment 1: comparing the performance of DL
models for classifying images in each of the
datasets

In this experiment, we trained the five models separately on 
each dataset using only actual images (Table 3). Both TL and 
FT approaches were used to train the models. Table 4 shows 
the training, validation and testing accuracy for the five 
models. 

On the ‘DeepWeeds’ dataset, the VGG16 model achieved 
the highest training, validation and testing accuracy (98.43%, 
83.84% and 84.05%, respectively) using the TL approach. The 
training accuracy of the other four models was above 81%. 
However, the validation and testing accuracy for those 
models were less than 50%. This suggests that the models 
are overfitting. After FT the models, the overfitting problem 
was mitigated except for the MobileNetV2 architecture. 
Although four of the models achieved 100% training 
accuracy after FT, the validation and testing accuracy was 
between 86% and 94%. MobileNetV2 model still overfitted 
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Fig. 2. The basic block diagram of DL models used for the experiments. (a) Pre-trained DL model. (b) Transfer learning approach.
(c) Fine-tuning approach.

even after FT with about 32% validation and testing accuracy. 
Overall, the VGG16 model gave the best results for the 
‘DeepWeeds’ dataset as they had the least convolutional 
layers, which was adequate for small datasets. It should be 
noted that Olsen et al. (2019), who initially worked on this 
dataset, achieved an average classification accuracy of 95.1% 
and 95.7% using Inception-V3 and ResNet-50, respectively. 
However, they applied data augmentation techniques to 
overcome the variable nature of the dataset. 

On the ‘Corn Weed’ and ‘Cotton Tomato Weed’ datasets, 
the VGG16 and ResNet-50 models generally gave accurate 
result, but the accuracy of validation and testing were low 
for the DL models using the TL approach for both datasets, 
and the classification performance of the models was 

substantially improved after FT. Among the five models, 
the retrained Inception-ResNet-V2 model gave better results 
for the ‘Corn Weed’ dataset with training, validation and 
testing accuracy of 100%, 99.75% and 99.33% respectively. 
The ResNet-50 model accurately classified the images of 
the cotton tomato weed dataset. 

VGG16 architecture reached about 99% classification 
accuracy on both validation and testing data of the 
‘Soybean Weed’ dataset using the TL approach. Also, the 
performance of four other models are better for this dataset 
using pre-trained weights. Compared to other datasets, the 
‘Soybean Weed’ dataset had more training samples, which 
helped to improve its classification performance. However, 
after FT the models on the datasets, all five deep learning 
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Table 3. The numbers of images used to train (after augmentation), validate and test the models.

Dataset Crop and weed Training set (number of images) Validation set Test set
species Real Real and augmented (number of images) (number of images)

images images

‘DeepWeeds’ (DW) Chinee apple (Ziziphus mauritiana) 675 4425 225 226

Lantana (Lantana camara) 637 4425 212 214

Parkinsonia (Parkinsonia aculeata) 618 4425 206 207

Parthenium (Parthenium hysterophorus) 613 4425 204 205

Prickly acacia (Vachellia nilotica) 637 4425 212 213

Rubber vine (Cryptostegia grandiflora) 605 4425 201 203

Siam weed (Eupatorium odoratum) 644 4425 214 216

Snakeweed (Stachytarpheta spp.) 609 4425 203 204

‘Soybean Weed’ (SW) Soybean (Glycine max) 4425 4425 1475 1476

Broadleaf (Conyza spp.) 714 4425 238 239

Grass 2112 4425 704 704

‘Cotton Tomato Weed’ Cotton (Gossypium genus) 32 4425 10 12
(CTW) Tomato (Solanum lycopersicum) 120 4425 40 41

Black nightsade (Solanum nigrum) 73 4425 24 26

Velvet leaf (Abutilon theophrasti) 78 4425 26 26

‘Corn Weed’ (CW) Corn (Zea mays) 720 4425 240 240

Bluegrass (Poa pratensis) 720 4425 240 240

Chenopodium album 720 4425 240 240

Cirsium setosum 720 4425 240 240

Sedge (Cyperus compressus) 718 4425 239 241

architectures achieve more than 99% classification accuracy 
on the validation and testing data. 

According to the results of this experiment, as shown in 
Table 4, it can be concluded that, for classifying the images 
of crop and weed species dataset, the TL approach does not 
work well. Since the pre-trained models were trained on 
the ‘ImageNet’ dataset (Deng et al. 2009), which does not 
contain images of crop or weed species, the models cannot 
accurately classify weed images. 

Experiment 2: combining two datasets

In the previous experiment, we showed that it was unlikely to 
achieve better classification results using pre-trained weights 
for the convolutional layers of the DL models. The image 
classification accuracy improved by FT the weights of the 
models for the crop and weed dataset. For that reason, in 
this experiment, all the models were initialised with pre-
trained weights and then retrained for the dataset. In this 
experiment, the datasets were paired up and used to 
generate six combinations to train the models. The training, 
validation and testing accuracies are shown in Table 5. 

After FT the weights, all the DL models reached 100% 
training accuracy. The accuracy of the DL architectures also 

gave better validation and testing results when trained with 
CW-CTW, CW-SW, CTW-SW combined datasets. However, 
the models overfitted when trained on the ‘DeepWeeds’ 
dataset and combined with any of the other three datasets. 

The results of the confusion matrix are provided in Fig. 3. 
We found that chinee apple, lantana, prickly acacia and 
snakeweed had a high confusion rate. This result agrees 
with that of Olsen et al. (2019). Visually, the images were 
quite similar and so were difficult to distinguish. That is 
why the DL model also failed to detect those. Since the 
dataset was small and did not have enough variations 
among the images, the models were not able to distinguish 
among the classes. The datasets also lacked enough images 
taken under different lighting conditions. The models were 
unable to detect the actual class of the images because of 
the illumination effects. 

For the DW-CW dataset, the VGG16 model was more 
accurate. In this case, the model did not distinguish 
between chinee apple and snakeweed. As shown in the 
confusion matrix in Fig. 3a, 16 out of 224 test images of 
chinee apple were classified as snakeweed, and 23 of the 
204 test images of snakeweed identified as chinee apple. 
A significant number of chinee apple and snakeweed 
images were not correctly predicted by the VGG16 model 
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Table 4. Training, validation and testing accuracy for classifying crop and weed species of all four datasets using different DL models of transfer
learning (TL) and fine-tuning (FT). The bold values represent the best results in each category.

Dataset Deep learning model Training accuracy Validation Testing accuracy
(%) accuracy (%) (%)

TL FT TL FT TL FT

‘DeepWeeds’ (DW) VGG16 98.43 99.46 83.84 93.44 84.05 93.36

ResNet-50 97.56 100.00 46.51 92.96 44.31 93.78

Inception-V3 81.20 100.00 34.28 86.17 34.77 86.08

Inception-ResNet-V2 81.02 100.00 35.84 89.09 36.55 89.39

MobileNetV2 96.47 100.00 35.01 33.09 32.23 31.87

‘Corn Weed’ (CW) VGG16 100.00 99.97 96.83 99.33 96.92 99.67

ResNet-50 100.00 100.00 71.72 99.50 63.11 99.50

Inception-V3 98.92 100.00 68.39 98.41 59.28 98.42

Inception-ResNet-V2 97.55 100.00 47.21 99.75 44.96 99.33

MobileNetV2 99.03 100.00 70.89 89.91 69.03 87.51

‘Cotton Tomato Weed’ (CTW) VGG16 100.00 96.04 94.00 92.00 99.05 88.57

ResNet-50 100.00 100.00 54.00 99.00 55.24 99.05

Inception-V3 100.00 100.00 53.00 96.00 59.05 98.10

Inception-ResNet-V2 95.71 100.00 64.00 77.00 57.33 77.14

MobileNetV2 100.00 100.00 64.00 72.00 60.00 78.10

‘Soybean Weed’ (SW) VGG16 100.00 99.96 98.97 99.79 98.76 99.88

ResNet-50 99.98 100.00 82.58 99.91 83.16 99.83

Inception-V3 99.49 100.00 88.25 99.67 86.77 99.71

Inception-ResNet-V2 98.80 100.00 90.36 99.79 89.78 99.59

MobileNetV2 100.00 100.00 94.54 99.54 94.75 99.67

Table 5. Training, validation and testing accuracy of the DL models after training by combining two of the datasets. The bold values represent the
best results in each category.

DL models Accuracy DW-CW DW-CTW DW-SW CW-CTW CW-SW CTW-SW

VGG16 Training 100.00 99.63 99.95 99.97 100.00 100.00

Validation 96.21 93.64 97.31 98.99 99.67 99.76

Testing 96.22 94.37 97.25 99.61 99.75 99.76

ResNet-50 Training 100.00 100.00 100.00 100.00 100.00 100.00

Validation 96.10 93.58 97.68 99.53 99.64 99.72

Testing 95.67 93.25 97.42 99.31 99.61 99.80

Inception-V3 Training 100.00 100.00 100.00 100.00 100.00 100.00

Validation 92.45 87.06 96.07 98.15 99.59 99.44

Testing 92.06 87.45 96.23 99.16 99.67 99.88

Inception-ResNet-V2 Training 100.00 100.00 100.00 100.00 100.00 100.00

Validation 94.26 89.70 96.43 98.76 99.64 99.56

Testing 94.25 90.35 96.93 99.46 99.67 99.60

MobileNetV2 Training 100.00 100.00 100.00 100.00 100.00 100.00

Validation 93.01 43.16 96.02 98.31 99.42 99.52

Testing 92.94 42.49 95.98 98.55 99.61 99.68

DW-CW, ‘DeepWeeds’ with ‘CornWeed’ datasets; DW-CTW, ‘DeepWeeds’ with ‘Cotton TomatoWeed’ datasets; DW-CW, ‘DeepWeeds’ with ‘SoybeanWeed’
datasets; CW-CTW, ‘Corn Weed’ with ‘Cotton Tomato Weed’ datasets; CW-SW, ‘CornWeed’ with ‘SoybeanWeed’ datasets; CTW-SW, ‘Cotton TomatoWeed’
with ‘Soybean Weed’ datasets.
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Fig. 3. Confusion matrix of ‘DeepWeeds’ combined with other three datasets. (a) Confusion matrix for DW-CW dataset
(using VGG16 model). (b) Confusion matrix for DW-CTW dataset (using VGG16 model). (c) Confusion matrix for DW-SW dataset
(ResNet-50 model)

(see Fig. 3b). For the DW-SW dataset, the ResNet-50 model snakeweed, and the same number of snakeweed images 
achieved 100% training, 97.68% validation and 97.42% were classified as chinee apple. The model also identified 
testing accuracy. The confusion matrix is shown in Fig. 3c. nine test images of snakeweed as lantana. Fig. 4 shows 
The ResNet-50 model identified 13 chinee apple images as some sample images which the models classified incorrectly. 
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Fig. 4. Example of incorrectly classified images. (a) Chinee apple predicted as snakeweed. (b) snakeweed predicted as chinee
apple. (c) Lantana predicted as prickly acacia. (d) Prickly acacia predicted as lantana.

By applying data augmentation techniques, one can create 
more variations among the classes which may also help the 
model to learn more discriminating features. 

Experiment 3: training the model with all four
datasets together

In this experiment, all the datasets were combined to train the 
deep learning models. Classifying the images of the combined 
dataset is much more complex, as the data are highly class-
imbalanced. The models were initialised with pre-trained 
weights and then fine-tuned. Table 6 shows the training, 
validation and testing accuracy and average precision, 
recall, and F1 scores achieved by the models on the test data. 

After training the models with the combined dataset, the 
ResNet-50 model performed better. Though all the models 
except VGG16 achieved 100% training accuracy, the validation 
(97.83%) and testing (98.06%) accuracies of ResNet-50 
architecture were higher. The average precision, recall and 
F1 score also verified these results. However, the models still 
did not correctly classify the chinee apple and snakeweed 
species mentioned in the previous experiment (Section 
Experiment 2: combining two datasets). A confusion matrix 
for predicting the classes of images using ResNet-50 is 
shown in Fig. 5. The confusion of ResNet-50 is chosen, since 
the highest accuracy is achieved in this experiment using 
this model. Seventeen chinee apple images were classified as 
snakeweed, and 15 snakeweeds images were classified 
incorrectly as chinee apple. In addition, the model also 
incorrectly classified some lantana and prickly acacia weed 
images. To overcome this classification problem, both actual 
and augmented data were used in the following experiment. 

Experiment 4: training the models using both
real and augmented images of the four datasets

Augmented data were used together with the real data in the 
training phase to address the misclassification problem in 
the previous experiment (section ‘Experiment 3: training the 
model with all four datasets together’). All the weed species 
and crop plant images had the same training data for this 
experiment. The models were initialised with pre-trained 
weights, and all the parameters were FT. Table 7 shows the 
result of this experiment. 

From Table 7, we can see that the training accuracy for all 
the DL models is 100%. Also the validation and testing 
accuracies were reasonably high. In this experiment, the 
ResNet-50 models achieved the highest precision, recall and 
F1 score for the test data. Fig. 6 shows the confusion matrix 
for the ResNet-50 model. We compared the performance of 
the model using the confusion matrix with the previous 
experiment. The performance of the model was improved 
using both actual and augmented data. The classification 
accuracy increased for chinee apple, lantana, prickly acacia 
and snakeweed species by 2%. 

In this research, the ResNet-50 model attained the highest 
accuracy using actual and augmented images. The Inception-
ResNet-V2 model gave similar results. The explanation is that 
both of the models used residual layers. Residual connections 
help train a deeper neural network with better performance 
and reduced computational complexity. A deeper convolu-
tional network works better when trained using a large 
dataset (Szegedy et al. 2017). Since we have used the 
augmented data and actual images, the dataset size has 
increased by several times. 

Table 6. The performance of five deep learning models after training with the combined dataset. The bold values represent the best results in each
category.

DL model Training accuracy Validation accuracy Testing accuracy Precision (Average) Recall (Average) F1 score (Average)

VGG16 99.96 97.53 97.76 96.89 96.83 96.84

ResNet-50 100.00 97.83 98.06 98.06 98.06 98.05

Inception-V3 100.00 96.66 96.09 96.11 97.09 97.09

Inception-Resnet-V2 100.00 96.88 97.17 97.17 97.17 97.16

MobileNetV2 100.00 96.94 97.17 97.18 97.17 97.17
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Fig. 5. Confusion matrix after combining four dataset using ResNet-50 model.

Experiment 5: comparing the performance of
two ResNet-50 models individually trained on
ImageNet dataset, and the combined dataset,
and testing on the unseen test dataset

In this experiment, we used two ResNet-50 models. The first 
was trained on our combined dataset with actual and 
augmented data (section ‘Our combined dataset’). Here, the 
top layers were removed from the model and a global 
average pooling layer and three dense layers were added as 

before. Other than the top layers, all the layers used pre-
trained weights, which were not fine-tuned. This model 
termed as ‘CW ResNet-50’. The same arrangement was used 
for the pre-trained ResNet-50 model, which was instead 
trained on the ImageNet dataset. It was named as ‘SOTA 
ResNet-50’ model for further use. We trained the top layers 
of both models using the training split of the Unseen Test 
Dataset (2.1.6). Both models were tested using the test split 
of the Unseen Test Dataset. The confusion matrix for CW 
ResNet-50 and SOTA ResNet-50 model is shown in Fig. 7. 
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Table 7. Performance of five deep learning models after training with the real and augmented data. The bold values represent the best results in
each category.

DL model Training accuracy Validation accuracy Testing accuracy Precision (Average) Recall (Average) F1 score (Average)

VGG16 100.00 97.96 97.83 97.83 97.84 97.83

ResNet-50 100.00 98.31 98.30 98.29 98.30 98.30

Inception-V3 100.00 97.31 98.02 98.02 98.02 98.01

Inception-Resnet-V2 100.00 97.85 97.76 97.76 97.76 97.76

MobileNetV2 100.00 97.68 98.02 98.02 98.02 98.02
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Fig. 6. Confusion matrix for ResNet-50 model using combined dataset with augmentation. (a) Confusion matrix showing the classification
accuracy of CW ResNet-50 model. (b) Confusion matrix showing the classification accuracy of CW ResNet-50 model.

641

www.publish.csiro.au/cp


(a) 

29 0 0 0 0 0 0Chinese_cabbage (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

1 6 0 0 0 1 0Grape_vine (0.12) (0.75) (0.00) (0.00) (0.00) (0.12) (0.00) 

0 0 98 1 0 0 1Lettuce (0.00) (0.00) (0.98) (0.01) (0.00) (0.00) (0.01) 

(b) 

29 0 0 0 0 0 0Chinese_cabbage (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

0 8 0 0 0 0 0Grape_vine (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

0 0 99 1 0 0 0Lettuce (0.00) (0.00) (0.99) (0.01) (0.00) (0.00) (0.00) 

Tr
ue

 la
be

l

Tr
ue

 la
be

l

0 0 0 71 0 0 0 
(0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) 

0 0 0 71 0 0 0 
(0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00)Pepper Pepper 

0 0 0 0 41 0 0 0 0 0 0 41 0 0 
(0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00)Radish Radish(0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) 

0 0 0 0 0 11 0 0 0 0 0 0 11 0Red_cabbage Red_cabbage(0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) 

0 0 0 0 0 0 20 0 0 0 0 0 0 20Zucchini Zucchini(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) 

C
hi

ne
se

_c
ab

ba
ge

G
ra

pe
_v

in
e

Le
ttu

ce

Pe
pp

er

R
ad

is
h

R
ed

_c
ab

ba
ge

Zu
cc

hi
ni

 

Predicted label C
hi

ne
se

_c
ab

ba
ge

G
ra

pe
_v

in
e

Le
ttu

ce

Pe
pp

er

R
ad

is
h

R
ed

_c
ab

ba
ge

Zu
cc

hi
ni

 

Predicted label 

A. S. M. Mahmudul Hasan et al. Crop & Pasture Science

Fig. 7. Confusion matrix for CW ResNet-50 and SOTA ResNet-50 model.

We can see in Fig. 7 that the performance of the two models 
is very similar. The ‘SOTA ResNet-50’ model detected all the 
classes of crop and weeds accurately. However, the pre-
trained ‘CW Resnet-50’ model only identified two images 
incorrectly. As the ‘SOTA ResNet-50’ model was trained on 
a large dataset containing millions of images, it detected 
the discriminating features more accurately. In contrast, the 
‘CW Resnet-50’ model was only trained on 88 500 images. 
If this model were trained with more data, it is probable 
that it would be more accurate using the TL approach. This 
type of pre-trained model could be used for classifying the 
images of new crop and weed datasets, which would 
eventually make the training process faster. 

Conclusion

This study was undertaken on four image datasets of crop and 
weed species collected from four different geographical 
locations. The datasets contained a total of 20 different 
species of crops and weeds. We used five state-of-the-art 
CNN models, namely VGG16, ResNet-50, Inception-V3, 
Inception-ResNet-V2, MobileNetV2, to classify the images 
of these crops and weeds. 

First, we evaluated the performance of TL and FT 
approaches of the models by training them on each dataset. 
The results showed that FT of the models could improve 
classification of the images more accurately than the TL 
approach. 

To add more complexity to the classification problem, we 
combined the datasets together. After combining two of the 

datasets, the performance decreased due to some of the 
species of weeds in the ‘DeepWeeds’ dataset. The weed 
species that were confused were chinee apple, snakeweed, 
lantana and prickly acacia. We then combined all four 
datasets to train the models. Since the dataset was class-
imbalanced, it was difficult to achieve high classification 
accuracy by only training the model with actual images. 
Consequently, we used augmentation to balance the classes 
of the dataset. However, it was evident that the models had 
problems in distinguishing between chinee apple and 
snakeweed. The performance of the models improved 
using both actual and augmented data. The models could 
distinguish chinee apple and snake weed more accurately. 
The results showed that the ResNet-50 was most accurate. 

Another finding was that using the TL method was that in 
most cases the models did not achieve the desired accuracy. 
As ResNet-50 was the most accurate system, we ran a test 
using this pre-trained model. The model was used to 
classify the images of a new dataset using the TL approach. 
Although the model was not more accurate than the state-
of-the-art pre-trained ResNet-50 model, it was very close to 
that. We could expect a higher accuracy using the TL 
approach if the model can be trained using a large crop and 
weed dataset. 

This research shows that the data augmentation technique 
can help address the class imbalance problem and add more 
variations to the dataset. The variations in the images of the 
training dataset improve the training accuracy of the deep 
learning models. Moreover, the TL approach can mitigate 
the requirement of large data sets to train the deep learning 
models from scratch. The pre-trained models are trained on 
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a large dataset to capture the detailed generalised features 
from the imagery, e.g. ImageNet in our case. However, 
because, ImageNet data set was not categorically labelled 
for weeds or crops, FT the pre-trained weights with crop 
and weed datasets help capture the dataset or task-specific 
features. Consequently, FT improves classification accuracy. 

For training a DL model for classifying images, it is 
essential to have a large dataset like ImageNet (Deng et al. 
2009) and MS-COCO (Lin et al. 2014). Classification of crop 
and weed species cannot be generalised unless a benchmark 
dataset is available. Most studies in this area are site-
specific. A large dataset is needed to generalise the 
classification of crop and weed plants, and as an initial 
approach, large datasets can be generated by combining 
multiple small datasets, as demonstrated here. In this work, 
the images only had image-level labels. A benchmark dataset 
can be created by combining many datasets annotated with a 
variety of image labelling techniques. Generative Adversarial 
Networks (GANs) (Goodfellow et al. 2014) based image 
sample generation can also be used to mitigate class-
imbalance issues. Moreover, it is needed to develop a crop 
and weed dataset annotated at the object level. For 
implementing a real-time selective herbicide sprayer, the 
classification of weed species is not enough. It is also 
necessary to locate the weeds in crops. DL-based object 
detection models can be used for detecting weeds. 
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