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Lowenberg de Boer and others reviewed the adoption of precision agriculture – a subset of 
digital agriculture – and concluded that, while adoption was patchy, it has approached 
saturation for some technologies that are easy for farmers to use. If we also consider the 
use of field machinery that contains significant digital technology as adoption, or of 
inputs such as germplasm or agrochemicals that rely heavily on digital technologies for 
their formation and use, the rate of technology adoption increases substantially, since 
these components are used on the majority of large farms throughout the world. In effect, 
digital technology is entering food systems in a variety of forms, only some of which 
measurable as adoption by farmers. If we look beyond the direct use of technology by 
farmers and include the range of products or processes that embed digital technology, we 
expect the level of digitisation to exceed the low level indicated some years ago by analysis 
of processes (Manyika et al. 2015). 

Shepherd et al. (2020) defines digital agriculture as ‘the use of detailed digital 
information to guide decisions along the agricultural value chain’. Excellent as this 
definition is, we suggest to expand its scope for two reasons. Firstly, digital agriculture does 
more than guide decisions. It is also used, for example, to develop new insights, to facilitate 
control, or to support innovation processes that create the many applications now emerging 
globally. Secondly, digital agriculture is active beyond the domain of value chains. For 
example, to help observe the environment in which they operate, to help quantify complex 
processes, regulate or value it (Cook et al. 2022). We observe applications for digital 
agriculture throughout and around food systems; from production, through processing 
to marketing and resource management. 

The scope and diversity of digital agriculture development can create difficulties for 
scientists trying to understand the nature of change and the likely opportunities for them 
to contribute. What is the common purpose that links and organises such a wide range of 
digital agriculture applications? All digital agriculture applications are driven by value 
creation. In general, we know that they create value by reducing costs, increasing produc-
tivity and efficiency, increasing product value and by enabling innovation. Further, we 
know that they do so through the agency of four classes of technology by using: (1) new, 
cheap and actionable data; (2) complex models to combine data to generate valuable insight 
for users; (3) digital technology to control processes; and (4) new and extensive communi-
cation networks through which to innovate. 

In this Special Issue, we bring together accounts of digital agriculture development from 
Australia, Brazil, Argentina, Uruguay, Chile, India, France and the EU. Each account 
provides independent insight of digital agriculture development. Together, they provide 
a spectrum of experience that illustrate the pathways that developers of digital agriculture 
follow. We organise these experiences using the classification of Pavitt (1984), with four 
types of technology adoption. 

The first adoption type is called supplier dominated. In this class, farmers are customers 
of suppliers of digital technology. They purchase the technology in anticipation of benefits, 
predominantly from gains in efficiency. Examples of successes and failures are observed in 
this special issue from India (Goswami), Australia (Lawes) and Latin America (Puntel). 
Other studies observe mixed successes in reference to precision agriculture in the US, EU 
and elsewhere (Lowenberg-DeBoer and Erickson 2019). 

The second adoption type is the scale intensive adopter. In food systems, organisations 
such as bulk handlers or fertiliser producers derive value from scale. These organisations 
are strongly vertically integrated and adopt digital technologies to improve processes up 
and down the value chain to support gains of efficiency, purchasing or marketing power. 
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As Pavitt (1984) observes, these changes are often internally 
sourced and IP protected behind organisational walls. Digital 
agriculture in such organisations may develop out of public 
sight, but may develop wherever the organisations are 
integrated vertically. For example, Goswami et al. (2023) 
reports adoption by tech giants in Indian agriculture. Lawes 
et al. (2023) reports the enabling effects of a vertically 
integrated data supply chain in Australian grains. Hansen 
et al. (2023) identifies the need for a digital curriculum to 
achieve broader adoption by these adopters. 

The third adoption type of digital agriculture development 
is the specialist supplier. Such firms acquire value from digital 
technology by embedding it within agricultural machinery 
or within other specialist inputs such as agrochemical or 
germplasm, which they then sell to farmers or others within 
the food system. The digitally-enhanced product or service 
commands a higher price by virtue of superior performance 
enabled by the technology embedded within it. Users thereby 
share the value of digital technology with suppliers. In such 
cases, the IP is often developed in-house by the supplier and 
stays there, perhaps protected by patent or specialist know-
how. Examples of this class are cited in India (Goswami 
et al. 2023), Australia (Hansen et al. 2023) and Latin America 
(Puntel et al. 2023). However, start-ups also face many 
difficulties. 

The fourth adoption type is called the science-based 
adopter. These develop technology applications based on a 
strong public science base, fostered through a strong concen-
tric integration between actors within the agricultural system. 
This is the intended outcome of research policy in France and 
the EU to support digital agriculture (Bellon-Maurel et al. 
2023). The process is also implicit in the public-private 
partnerships reported for Australia (Hansen et al. 2023; 
Lawes et al. 2023) and in the digital agriculture start-ups 
observed in India (Goswami et al. 2023). The openness of 
the public research process is seen as vital for the develop-
ment of next-generation phenotyping (Tripodi et al. 2023). 
It is also required for the development of advanced weed 
or insect recognition cited in Australia (Amrani et al. 2023; 
Mahmudul Hasan et al. 2023), although in all such cases, 
the investment needed to scale these applications up will 
almost inevitably move the IP into the domains of the third 
class – specialist supplier – before digital agriculture 
applications can be offered to farmers. Jackson and Cook 
(2023) illustrate the opportunities and challenges of pulling 
digital technologies into the livestock industry in Australia. 

In summary, the assembly of papers in this Special Issue 
explain the diverse pathways to the development of digital 

agriculture that are occurring globally. Individual accounts 
reflect the prevailing needs, capabilities and obstacles within 
their country or region. Together, they show a growth of 
adoption at different loci throughout the food system, ulti-
mately rewarded by better productivity, product quality or 
resource valuation. 
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