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Abstract. A 2� 2 matrix is introduced which relates the electric field at an observing site where geological distortion
applies to the regional electricfield,which is unaffected by the distortion. For the student of linear algebra thismatrix provides
a practical example with which to demonstrate the basic and important procedures of eigenvalue analysis and singular value
decomposition.

The significance of the results can be visualised because the eigenvectors of such a telluric distortion matrix have a clear
practicalmeaning, as do their eigenvalues.AMohrdiagramfor thedistortionmatrix displayswhen real eigenvectors exist, and
tells their magnitudes and directions.

The results of singular value decomposition (SVD) also have a clear practical meaning. These results too can be displayed
on a Mohr diagram. Whereas real eigenvectors may or may not exist, SVD is always possible. The ratio of the two singular
values of thematrix gives a conditionnumber, useful to quantify distortion. Strongdistortion causes thematrix to approach the
condition known as ‘singularity’. A closely-related anisotropy numbermay also be useful, as it tells when a 2� 2matrix has a
negative determinant by then having a value greater than unity.
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Introduction

Three important matrices arise in magnetotelluric (MT) studies.
The first matrix describes the distortion of measured electric
fields. The second matrix is based on the MT observations
themselves, of both magnetic and electric fields. The third
matrix is the ‘phase tensor’, and is derived from the second
matrix by computation.

The present paper addresses the first matrix, which commonly
describes the distortion of measured electric fields quite locally,
at an observing site. The more simple circumstances of this
distortion matrix, in tensor form, are examined to establish
some basic points. These points, once understood, may be
useful in understanding the more complicated second and third
matrices.

This paper expands upon a poster ‘The distortion matrix for
the student of linear algebra’ that was presented in July 2012 at
the 21st Electromagnetic Induction Workshop, held in Darwin,
Australia. Somematerial is also drawn from an earlier publication
(Lilley, 2012), enlarging on discussion there and refining its
presentation.

A present stage of increased MT activity in Australia may
bring newcomers to the subject. This paper hopes to contribute to
a sound understanding of some basic theory by those who will,
perhaps inevitably, have observations from complicated field
situations to address.

Modern data sets may comprise simultaneous magnetic and
electricfield observations over arrays of sites. Such data sets offer
many possibilities for the refined study and use, and also the
avoidance, of the distortion characteristics described in this paper.

Notation for axes and their rotation

Horizontal directions north and east will be denoted by axes OX
andOY, withOZ vertically downwards. When rotated clockwise
by angle y0 as shown in Figure 1, the axeswill be denotedOX0 and
OY0.

A rotation matrix R(y) will be introduced,

Rð�Þ ¼ cos � sin �

� sin � cos �

� �
ð1Þ

and the transpose of R(y) will be denoted by RT(y). Sometimes
RT(y) will be written as R(�y), to which it is equal. For
compactness of text, a 2� 2 matrix such as that for R(y) in
Equation 1 will in places be written

O

X
X

Y

Y

θ′

′

′

Fig. 1. The rotation of axes clockwise by angle y0, from OX and OY (north
and east) to OX0 and OY0.
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Rð�Þ ¼ ½cos �; sin �;� sin �; cos �� ð2Þ
Numerical examples will be used to illustrate points arising

in this paper. For convenience, the values given will in places be
rounded or truncated to four, three or two significant figures.

The distortion tensor

The traditional method of telluric prospecting (Telford et al.,
1976) relates the electric field Em measured at a local site to the
electric fieldEb at a regional or base site by the distortion tensorD
according to

Em ¼ D:Eb ð3Þ
When matrix D is stated relative to axes OX, OY (north and

east), the values of its components relative to axes OX0, OY0

(which are rotated y0 clockwise fromnorth and east as in Figure 1)
will be those of a matrix D0, given by

D0
xx D0

xy

D0
yx D0

yy

" #
¼ Rð��0Þ: Dxx Dxy

Dyx Dyy

� �
:Rð�0Þ ð4Þ

While generally D is frequency-dependent and complex, this
paper takes the common model for the electric-field distortion of
magnetotelluric observations for which D is in-phase (i.e. pure
real, as for a direct current case) (Jones, 2012;Weidelt andChave,
2012). Then for a change of electric field Eb at the regional site
there will be, at the observing site, a change of electric field Em

generally of a different amplitude and generally in a different
direction.

In themost simple case, the geological structure at the regional
or base site will be one-dimensional (1D); that is, varying with
depth only. The distortion of the regionally-induced electric field
will be by a two-dimensional (2D) structure at the local site, and
the distortion there will have 2D characteristics. The 2D axes
of the distortion will then correspond to some geological
property such as local strike, which it is valuable to determine.
The knowledge of strike direction is of fundamental importance
for interpretation and modelling.

Eigenanalysis and singular value decomposition (SVD) are
two methods of linear algebra which it is natural to assess for
applications to such studies (Eggers, 1982;LaTorraca et al., 1986;
Yee and Paulson, 1987). If applied to the distortion tensor, as in
this paper, eigenanalysis and SVD will individually determine,
with a 90� ambiguity, the geologic strike direction for the most
simple 2D case. In a more complicated case, the two methods
individually may help to find a direction which is the strike of a
2D model approximating the actual situation. The methods will
also show if a situation is far from 2D, so that 2D modelling may
not be justified. Quantitative parameters for the 1D, 2D and 3D
characteristics of a matrix are defined clearly.

This paper thus describes the application of eigenanalysis
and SVD to the telluric distortion matrix. Telluric distortion may
also be of wider interest to students of linear algebra who value
a practical example which demonstrates these two methods.
Both methods have great strength and wide application for
large matrices. However examples of 2� 2 matrices given to
introduce eigenanalysis and SVD are sometimes artificial.
The telluric distortion matrix provides a 2� 2 example which
is physically realistic, and which can be visualised.

When referring to matrices in this paper, the term ‘observed
point’will sometimes beusedwhenplotting the number pair (Dxx,
Dxy) on a diagram. The values ofDxx andDxy are as in Equation 4.
Though computed from field observations, they are ‘observed’ in
the sense that they are relative to the axes of field observation,
before any exercises of axis rotation are invoked.

Eigenanalysis

Eigenvector analysis amounts to finding a direction of regional
electric field change for which the measured local electric field
change is in the same direction. The eigenvalue for that direction
then gives the gain of the process, i.e. the amplitude of the local
measured signal for unit amplitude regional signal. With
reference to Equations 3 and 4 a direction is thus sought in
which an OX0 regional signal is accompanied only by an OX0

local signal. This requirement can be regarded as finding an
angle of axes rotation for which D0

yx is zero, and leads to the
solutions given in the section Formal eigenvalue analysis below.
Commonly (but not always) there will be two real eigenvectors,
each with an associated eigenvalue. For the example matrix

D ¼ 1:75 1:34

0:34 1:25

� �
ð5Þ

the eigenvector directions (19.3� and 144.2�) and the effects of the
eigenvalues (2.22 and 0.78) are shown in Figure 2.

Formal eigenvalue analysis

The eigenvalue problem (Strang, 2005) seeks solutions for the
equation which expresses Em and Eb to be parallel:

Em ¼ zEb ð6Þ
where z is a real scalar. Equation 6 may be combined with
Equation 3 and cast as

ðD� zIÞ:Eb ¼ 0 ð7Þ
where I is the identitymatrix [1, 0; 0,1]. For there to be a non-zero
solution forEb, the determinant of (D� zI) must be zero, and for
the 2� 2 distortion matrix, this condition gives what is known as
the ‘characteristic equation’ for matrix D:

z2 � ðDxx þ DyyÞzþ DxxDyy � DxyDyx ¼ 0 ð8Þ
The characteristic equation is solved for the eigenvalues zi

and z2, and then eigenvectors are found corresponding to these
eigenvalues.

The characteristic equation has solutions

z1; z2 ¼ ðDxx þ DyyÞ=2� ½ðDxx þ DyyÞ2

þ 4ðDxyDyx � DxxDyyÞ�
1
2=2

ð9Þ

Three cases of Equation 9 are possible and of interest. Each
will now be discussed separately.

Eigenvalues are real and different

Taking as the first case the condition

ðDxx þ DyyÞ2 þ 4ðDxyDyx � DxxDyyÞ > 0 ð10Þ
the two roots of the characteristic equation are both real,
different, and positive or negative depending on the signs and
magnitudes of (Dxx + Dyy) and (DxxDyy � DxyDyx). These latter
quantities are recognised as the trace (trD) and determinant (detD)
of D.

The product of the two eigenvalues is given by

z1z2 ¼ detD ð11Þ
and is positive if detD is positive, negative if detD is negative,
and zero if detD is singular (in which case there will be an
eigenvalue of zero).

In the case of the example matrix in Equation 5, this analysis
gives the results displayed in Figure 2. The eigenvalues of 2.22
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and 0.78 are given by Equation 9, and eigenvectors are found
directly (for this 2� 2 matrix) by expanding Equation 7 to give

ðDxx � z1ÞEb
x þ DxyE

b
y ¼ 0 ð12Þ

which, for Dxx, z1 and Dxy values of 1.75, 2.22 and 1.34
respectively, gives an Ey

b/Ex
b ratio of 0.35, and so an

eigenvector of bearing arctan(0.35), which is 19.3� (or 199.3�).
Similarly, the z2 value of 0.78 gives an Ey

b/Ex
b ratio of �0.72

and so an eigenvector of bearing arctan(�0.72), which is 144.2�

(or 324.2�).

Eigenvalues are real and equal

The second case occurs when

ðDxx þ DyyÞ2 þ 4ðDxyDyx � DxxDyyÞ ¼ 0 ð13Þ
The two roots of the characteristic equation are now both real
(positive or negative), and equal. In fact,

z1 ¼ z2 ¼ ðDxx þ DyyÞ=2 ð14Þ
and the product of the two roots, z1z2, will always be positive.
In this case there is only one direction for Em and Eb to be
parallel.

Eigenvalues are complex conjugate pairs

The third case occurs when

ðDxx þ DyyÞ2 þ 4ðDxyDyx�DxxDyyÞ < 0 ð15Þ
and the two roots of the characteristic equation form a complex
conjugate pair. The product of the two roots, z1z2, will again
always be positive. An equivalent way of expressing Inequality
15 is

ðDxx � DyyÞ2 þ 4DxyDyx < 0 ð16Þ
In this third case there is no direction for which Em and Eb are
parallel.

Eigenvalues on Mohr diagrams

Mohr diagrams may be used to display 2� 2 matrices. Upon
expanding Equation 4 for D0

xx, D0
xy, D0

yx and D0
yy it is seen that

D0
xx þ D0

yy ¼ Dxx þ Dyy ð17Þ
and

D0
xy � D0

yx ¼ Dxy � Dyx ð18Þ
Thus (D0

xx +D0
yy) and (D0

xy�D0
yx) are independent of y0 and are

rotational invariants. Also it may be shown that

½D0
xx � ðDxx þ DyyÞ=2�2 þ ½D0

xy � ðDxy � DyxÞ=2�2 ¼ r2 ð19Þ
where

r2 ¼ ½ðDxy þ DyxÞ2 þ ðDxx � DyyÞ2�=4 ð20Þ
Equation 19 defines a circle whenD0

xx is plotted againstD0
xy as

the axes are rotated and y0 varies. The centre of the circle is at the
point [(Dxx + Dyy)/2, (Dxy � Dyx)/2] and the circle is of radius r,
another rotational invariant. On such afigure, axes forD0

yx andD0
yy

may also be drawn, so that the variation with axis rotation
of all components of D0 is then displayed (Lilley, 1993). Other
circles are also possible, for example if D0

yy is plotted against D0
xy

(Lilley, 1998). For reference, Appendix A shows a basic Mohr
circle with the radius rmarked, and extends the diagram to show
also an area (another circle) which has the numerical value of the
determinant of the 2� 2matrix, scaled by p. The determinant is a
further rotational invariant of the matrix.

Figure 3 shows the Mohr diagram for the example matrix
[1.75, 1.34; 0.34, 1.25]. Axes are also drawn forD0

yx andD0
yy. The

radial arrows from the circle centre to points H and J give
eigenvector directions when read as on a dial. (For reading
eigenvector directions ‘as on a map’ see Appendix B.) On
Figure 3, eigenvalues are found, and can be read off where the
arrowheads touch vertical axes.

In Figure 3, the circle crosses the vertical axes. The two
eigenvalues are the intercept values of D0

xx, where D0
yx = 0.

Local site (M) Regional site (B)

[1.75, 1.34; 0.34, 1.25]
Eigen analysis
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Fig. 2. Eigenvalue analysis. (a) For a general unit-amplitude signal (here at
bearing 45�) at regional site B, the signal at local site M is not in the same
direction and is not of unit amplitude. (b) For a unit-amplitude signal atB in the
direction of an eigenvector (bearing 19.3�), the signal at M is in the same
direction and is amplified by the eigenvalue (here 2.22). Note this eigenvector
might equally well be drawn reversed at both sites B and M, in the direction
of bearing 19.3� + 180� = 199.3�. (c) For a second unit-amplitude signal at B
in the direction of a second eigenvector (bearing 144.2�), again the signal atM
is parallel, and is amplified by the corresponding eigenvalue (an attenuation
factor of 0.78 in this case). Note this second eigenvector might again equally
well be drawn reversed at both sites B and M, in the direction of bearing
144.2� + 180� = 324.2�.
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Radial arrows are drawn to points H and J, the two D0
yx = 0

intercepts on Figure 3, and the two eigenvector directions are
given by the y0 values for these radial arms. By the symmetry of
the figure, the two eigenvalues can be seen to be also given by
where the circle intersects the D0

xx axis, and are 2.22 and 0.78 in
this example.

Diagrams for a range of matrices

Figure 4 shows the Mohr diagram for the example matrix
[1.75, 1.34; 0.34, 1.25] in the context of six related matrices.
In Figure 4a, b axes are again drawn for D0

yx and D0
yy.

The three eigenvalue cases just discussed in the section
Formal eigenvalue analysis are clearly distinguished when the
matrices are represented by Mohr diagrams, as in Figure 4.
Eigenvalues which are real are shown graphically, and the
directions of their eigenvectors are shown as on a dial (not as
on a map; though see Appendix B).

The example in Figure 4a demonstrates that real eigenvalues
correspond to the case of the circle crossing the D0

xx and D0
yy

vertical axes. Further it can be seen that for a Mohr circle to not
enclose or capture the origin the product of the two eigenvalues
must be positive; i.e. det D must be positive.

Secondly, for the case discussed in the sectionEigenvalues are
real and equal, Figure 4b shows a circle which is just touching
both the vertical axis D0

xy= 0 and the vertical axis D0
yx= 0. The

direction of the repeated eigenvector corresponds to the direction
of a radial armwhich is horizontal in the diagram, as shown.As for
Figure 4a, the eigenvalues may be read off the D0

xx axis, in this
particular case as (Dxx +Dyy)/2 (see also Equation 14).

Thirdly, for the case of the section Eigenvalues are complex
conjugate pairs, circles which (as in Figure 4c) do not touch or
cross the vertical axes obey Inequality 15. Their eigenvalues are
complex conjugate pairs, and real eigenvectors for them do not
exist. There is no direction of Eb for which Em is parallel.

Finally it is important to note that the identitymatrix [1, 0; 0, 1]
shown in Figure 4e describes the case of no distortion. Any
actual distortion can be viewed as an outgrowth from that identity
matrix, and the Mohr diagram for any actual distortion can be
viewed as an outgrowth from that single point plotted at D0

xx= 1,
D0
xy= 0 (an example will be given in Appendix E).

SVD

Description

SVDof tensorDproduces a rotation for the axes at regional siteB,
and a (generally) different rotation for the axes at local site
M. These rotations are such that a change of electric field
along either of the rotated axes at B then produces a change of
electric field (generally amplified or attenuated) along the
corresponding (differently) rotated axis at M. This situation is
depicted in Figure 5.

A regional electric field component in the direction of the
regional-site OX0 axis will, at the local site, be in the direction of
the OX0 axis there and, for the matrix used as an example in this
paper, be amplified by the singular value 2.46. In Figure 5
the value 2.46 is depicted by the length of the OX0 axis at the
local site.

Similarly a regional electricfield component in the directionof
the regional-siteOY0 axis will, at the local site, be in the direction
of the OY0 axis there and will be attenuated by the singular value
0.71. The value 0.71 is indicated by the length of the OY0 axis at
the local site.

SVD of a 2� 2 matrix

Equations for the SVD of a 2� 2 matrix may be derived directly.
Equation 3 is written as

Em ¼ Rð��mÞ:
w1 0

0 w2

� �
:Rð�bÞ:Eb ð21Þ

where the local and regional observation axes are rotated
clockwise independently, the local axes by ym and the regional
axes by yb. Thus the tensor D is factored into

Dxx Dxy

Dyx Dyy

� �
¼ Rð��mÞ:

w1 0

0 w2

� �
:Rð�bÞ ð22Þ

which may be cast as

w1 0

0 w2

� �
¼ Rð�mÞ:

Dxx Dxy

Dyx Dyy

� �
:Rð��bÞ ð23Þ

Equation 23, expanded into its four constituent equations,may
be solved to give solutions

�b þ �m ¼ arctan
Dxy þ Dyx

Dxx � Dyy

� �
ð24Þ

�b � �m ¼ arctan
Dxy � Dyx

Dxx þ Dyy

� �
ð25Þ

w1 þ w2 ¼ ðDxy � DyxÞsinð�b � �mÞ
þ ðDxx þ DyyÞcosð�b � �mÞ

ð26Þ

and

w1 � w2 ¼ ðDxy þ DyxÞsinð�b þ �mÞ
þ ðDxx � DyyÞcosð�b þ �mÞ

ð27Þ

For the example tensor of Equation 5, the values of ym, yb,
w1 and w2 may be evaluated by the equations above as 27.5�,
45.9�, 2.46 and 0.71 respectively. These are the values shown in
Figure 5.

The quantities w1 and w2 are termed singular values (and
sometimes principal values, or latent values). An examination of
the possibility of a singular value being negative is addressed
below.

Should one of the singular values be zero, the matrix itself
is then termed ‘singular’. This situation is discussed in several

D ′xx
D ′yx

D ′xy

D ′yy

0

0

1

H

J

2θ′

marks observed point 

marks general point after rotation of
the XOY observing axes clockwise by θ′

Fig. 3. Mohr diagram for eigenanalysis of the example matrix [1.75, 1.34;
0.34, 1.25].H and Jmark the eigenanalysis positions: the eigenvalues are the
D0
xx values of pointsH and J. The two eigenvector directions are given by the

directions ofOX0 in Figure 1 after a rotation of the observing axes (XOY) there
causes the radial arm in the present figure to move, respectively, to points H
and J. The unit length scale is marked on the horizontal axis.
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places below, especially in the section A condition number to
measure singularity.

Ordering w1 > w2

If, following SVD of a 2� 2 matrix, w2 is found to be greater
than w1, their order may be changed by remembering that

0 �1

1 0

� �
w1 0

0 w2

� �
0 1

�1 0

� �
¼ w2 0

0 w1

� �
ð28Þ

and that [0, –1; 1, 0] and [0, 1; –1, 0] both have the form of
rotations (see Equation 1).

Solutions found forEquation 22may therefore be equivalently
written

Dxx Dxy

Dyx Dyy

� �
¼ Rð��m � p=2Þ: w2 0

0 w1

� �
:Rð�b þ p=2Þ

ð29Þ
In Figure 5, increasing ym and yb by p/2 causes the sets of axes
at both sites M and B to be rotated clockwise by 90�, and the
significance of the diagram is left unchanged.

Changing the sign of a negative singular value

If w2 is found to be negative, its sign may be changed by
remembering

w1 0

0 w2

� �
¼ 1 0

0 �1

� �
w1 0

0 �w2

� �
ð30Þ

so that Equation 22 may be written

Dxx Dxy

Dyx Dyy

� �
¼ cos�m �sin�m

sin�m cos�m

� �
1 0

0 �1

� �
w1 0

0 �w2

� �
:Rð�bÞ

ð31Þ

Then, post-multiplying R(–ym) by [1, 0; 0, –1] gives

Dxx Dxy

Dyx Dyy

� �
¼ cos�m sin�m

sin�m �cos�m

� �
w1 0

0 �w2

� �
:Rð�bÞ

ð32Þ
In Equation 22, the two column vectors [cosym, sinym]

T and
[–sinym, cosym]

T of R(–ym) give the directions of the axes at site

(f ) (g)

D ′ xy

D ′ xx

0

D ′ yx

D ′ yy

0

1

0

(a) (b) (c)

(d ) (e)

unit length

Fig. 4. Mohr diagrams for eigenanalysis, using different matrices as examples. (a) Matrix [1.75, 1.34; 0.34,
1.25]. Eigenvalues are real and different; eigenvectors are not orthogonal. (b) Matrix [1.75, 1.56; �0.04, 1.25].
Eigenvalues are real and equal; both eigenvectors are the same. (c) Matrix [1.75, 2.34;�0.66, 1.25]. Eigenvalues
are complex conjugates, and are not evident on the diagram. (d) Matrix [1.75, 0.84; 0.84, 1.25]. Eigenvalues are
real and different; eigenvectors are orthogonal (the 2D case). (e) Matrix [1, 0; 0, 1]. The identity matrix, for which
both eigenvalues are unity; andall directions are eigenvectors. (f)Matrix [1.75, 1.34; 0.33, 0.25].Amatrixwhich is
singular, and has a determinant of zero. (g) Matrix [1.75, 1.34; 0.64, �0.05]. A matrix which has a negative
determinant, and theMohr circle encloses the origin. Thismatrix has one negative and one positive eigenvalue, as
can be seen from the intercepts of its circle with the D0

xx axis.
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M in Figure 5. In Equation 32, the first column vector is [cosym,
sinym]

T and unchanged, and so will give an unchanged axis
direction. However, the second column vector [sinym, –cosym]

T

has its signs changed, and as a result will give a reversed axis
direction. Thus in addition to the rotation of the axes from siteB to
site M, there has been an axis reflection.

Formal SVD

The results in Figure 5 just describedmay also be obtained by the
formal SVD analysis generally intended for larger matrices. As
described for example by Strang (2005), decomposition by SVD
factors a matrix D into

D ¼ U:W:VT ð33Þ
where W is diagonal and holds the singular values of D. The
columns of V are eigenvectors of DT.D. The columns of U are
eigenvectors of D.DT, and may be found by multiplying D by
the columns of V. The singular values on the diagonal of W are
the square roots (taken positive by convention, a most important
point in the present context) of the non-zero eigenvalues ofD.DT.

Use of standard SVD routines

Standard computing routines (again generally intended for large
matrices) are commonly used for SVD, and it may be useful to
note that when the matrix of Equation 5 is put into a standard
computing routine, the SVD returned is commonly in the form of
Equation 33:

D ¼ �:89 �:46

�:46 :89

� �
2:46 0

0 :71

� � �:70 �:72

�:72 :70

� �
ð34Þ

which may be given in the form of Equation 22 by expressing it
first as

D ¼ :89 �:46

:46 :89

� �
2:46 0

0 :71

� �
:70 :72

�:72 :70

� �
ð35Þ

then as

D¼ cos27:5� �sin27:5�

sin27:5� cos27:5�

� �
2:46 0

0 :71

� �
cos45:9� sin45:9�

�sin45:9� cos45:9�

� �
ð36Þ

and further as

1:75 1:34

0:34 1:25

� �
¼ Rð�27:5�Þ: 2:46 0

0 :71

� �
:Rð45:9�Þ ð37Þ

The columns of the first matrix [cos27.5�, –sin27.5�; sin27.5�,
cos27.5�] in Equation 36, which has been derived as U in
Equation 33, define the unit vectors which are drawn for OX0

andOY0 at the local site in Figure 5. The rows of the third matrix,
[cos45.9�, sin45.9�; –sin45.9�, cos45.9�], derived for VT in
Equation 33, define the unit vectors drawn for OX0 and OY0 at
the regional site inFigure 5.Also, as is evident, the singular values
in the diagonal of matrixW arew1 andw2, the amplifying factors
for E0

x and E0
y respectively at the local site. Standard routines will

commonly order w1 > w2.

Discussion of SVD results and comparison
with eigenanalysis

By rotationof the local and regional axes separately, the distortion
tensor has been reduced by SVD to an ideal 2D form. In a search
for the nearest 2D model of distortion in a generally 3D situation
the results of SVDmay give some insight, but care must be taken
in their interpretation. One appealing interpretationworth testing,
in the context of known background information, is whether the
rotated regional axes give an indication of regional strike, while
the rotated local axes give an indication of local 2D strike (to the
extent that the concept of a local 2D strike is valid in a 3D
situation). For the examplematrix analysed above, the SVDresult
of a unit regional field change at bearing 45.9� giving a local field
change of amplitude 2.46 at bearing 27.5�, may be comparedwith
the eigenanalysis result that a unit regionalfield change at bearing
19.3�gives a localfield changeof amplitude 2.22 at bearing19.3�.
The discrepancies between the ‘best 2D axes’ of these results
indicates the 3D nature of the matrix analysed, and the hazard of
proceeding with 2D modelling in such a case.

SVD displayed on a Mohr diagram

The Mohr diagram for the example matrix in Figures 3 and 4a is
shown again in Figure 6, where now the results of SVD are
displayed. The two singular values w1 and w2 are shown by the
intervalsOG andOF. In Figure 6 the angle bywhichOG is rotated
clockwise from the vertical D0

xx axis is (yb – ym), as can be seen
from Equation 25. On the circle, to move the observed point
anticlockwise by angle 2y0 to G requires a clockwise rotation of
the XOY observing axes (as in Figure 1) by angle y0 = ym.

With an extra construction, shown in Appendix C, the Mohr
diagram also shows the directions of the SVD axes, as read on a
map.

Matrix equations displayed by Mohr diagrams, term by term

Adopting the description of a 2� 2matrix by aMohr diagram, as
derived in the section Eigenvalues on Mohr diagrams, allows
each individual matrix in an equation such as Equation 22 to be
illustrated.Acomplete equationmaybe represented termby term,
as shown forEquation 22 in Figure 7a, using the numerical values
of Equation 37.

Using these samevalues ofym,yb,w1 andw2, Equation 23may
then similarly be depicted, as shown in Figure 7b.

Matrices with negative determinants

In this section, the circumstances and consequences of the matrix
having a negative determinant will be addressed.

Eigenanalysis

As is demonstrated in Figure 4g, a 2� 2 matrix with a negative
determinant has one positive and one negative eigenvalue. The

Local site (M) Regional site (B)

[1.75, 1.34; 0.34, 1.25]

Singular value decomposition

S S

N N 

E E W W o o 

X ′

Y ′

X ′

unit length

Y ′

Fig. 5. Singular valuedecomposition.Thebearingsof theOX0 axes are 27.5�

(local) and45.9� (regional).Thebearingsof theOY0 axes are 117.5� (local) and
135.9� (regional).
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eigenvector corresponding to the negative eigenvalue may
therefore at the local site be drawn reversed, relative to its
direction at the base site. A unit field change in the direction
of the eigenvector at the base site will then give a field change at
the local site in the direction of the (reversed) eigenvector there,
of amplitude equal to the modulus of the negative eigenvalue.

SVD

The consequences of a negative determinant for the SVD of a
matrix are in some ways more complicated than for the
eigenanalysis of the matrix. Following the procedure shown in
Figure 5, where axes at site M are simply rotated relative to axes
at site B, a matrix with a negative determinant would give a
negative singular value for one of the axes.

Following, however, the common convention by which
singular values are never quoted negative, it then becomes
necessary to reverse the axis at site M for which the singular
value has been found to be negative (see the sectionChanging the
sign of a negative singular value). By reversing the axis to which
it applies, the (otherwise negative) singular value is rendered
positive, as required by convention.

Negative determinants: the situation with distortion
matrices, and Groom-Bailey analysis

No case histories of negative determinants for telluric distortion
matrices are known to the author, and it is likely that they arise
very rarely, if at all. However there are reported cases of
magnetotelluric tensors with in-phase and/or quadrature parts
with negative determinants, and distortionmatriceswith negative
determinants (should they exist) would be candidates for causing
such phenomena.

The Groom-Bailey analysis of the distortion tensor (Groom
and Bailey, 1989, 1991), based on their particular decomposition
model, is widely used in the analysis of observedmagnetotelluric
data (Jones, 2012). For reasons which it is instructive to now
examine, this decomposition does not cater for the possibility of
the distortion matrix having a negative determinant.

Using the notation of Jones (2012) (but with the D of the
present paper) the Groom-Bailey decomposition is

D ¼ gT:S:A ð38Þ
where g is a scalar (assumed positive) called site gain.T, S andA,
respectively the twist, shear and anisotropy, are expressed

(b) D ′xx

D ′xy

θbθm

0 0 0 0

2 2 

1 1 

w1

w2

(a) D ′xx

D ′xy

θm θb

0 0 0 0

2 2 

1 1 

w1

w2

Fig. 7. (a) Equation 22 shown by Mohr diagrams, term by term, using the values of Equation 37 for the SVD of
the example matrix [1.75, 1.34; 0.34,1.25]. (b) Equation 23 similarly shown by Mohr diagrams, term by term, for the
example matrix [1.75, 1.34; 0.34, 1.25].

D ′xx

D ′xy
0 1

F

G

OF & OG are the
singular values 

OG/OF = κ
a condition number 

2θ′

marks observed point 

marks general point after rotation of the
XOY observing axes clockwise by θ′

Fig. 6. Mohr diagram for singular value decomposition of the example
matrix. [1.75, 1.34; 0.34, 1.25]. OG and OF, 2.46 and 0.71 in length
respectively, show the greater and lesser singular values (w1 and w2). The
angle OG makes with the D0

xx axis is (yb – ym). To move the observed point
anticlockwise by angle 2ym around the circle to point G requires a clockwise
rotation (as in Figure 1) of the XOY observing axes at the local site by angle
ym. Then, when 2y0 = 2ym, the point marked with an asterisk will coincide
with point G.
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T ¼ ð1þ t2Þ�1=2½1;�t; t; 1� ð39Þ
S ¼ ð1þ s2Þ�1=2½1; s; s; 1� ð40Þ

and

A ¼ ð1þ a2Þ�1=2½1þ a; 0; 0; 1� a� ð41Þ
in terms, respectively, of scalar quantities t, s and a. Often ‘twist’
and ‘shear’ are expressed as angles, in which case t and s,
respectively, are the tangent values of those angles. (Note that
Equation 39 is comparable to Equation 1 for the definition of axes
rotation, but with arctan t= –y.)

It is useful here to also define a positive factor f

f ¼ ½ð1þ t2Þð1þ s2Þð1þ a2Þ��1=2 ð42Þ
which, whenmultiplied by the gain g, produces a ‘modified gain’
gm :

gm ¼ g f ð43Þ
Equation 38 may then be expressed as

D ¼ gm
1 �t

t 1

� �
1 s

s 1

� �
1þ a 0

0 1� a

� �
ð44Þ

The determinant of D will be the product of the separate
determinants of T, S and A, multiplied by the scalar g2, and may
be expressed as

detD ¼ gm
2ð1þ t2Þð1� s2Þð1� a2Þ ð45Þ

For |s| < 1 and |a| < 1, detDwill never be negative. Regarding
|s|, Jones (2012) states that there is a physical limit of unity on |s|
in that ‘distortion can never be so severe that it will cause the
local fields to have a component in the reverse direction to the
regional fields’. Regarding |a|, Jones (2012) states that ‘the
obvious physical limit on |a| is that it must be less than unity –

an anisotropy |a| > 1 would yield negative resistivity in one of
the directions’. The value of det D is thus never expected to be
negative. While it is certainly not obvious how a local distorting
structure could cause a reversal of the telluric electricfield, amore
comprehensive proof that negative determinants are physically
impossible would be a valuable addition to the theory of telluric
distortion.

Distortion matrices which are singular, or nearly singular but
singularwithin error, are commonandwell-known. Jones (2012),
for example, when discussing Groom-Bailey shear, notes that the
limit on shear angle is 45�, and quotes the case of a narrow valley
filled with conducting sediments as exhibiting an electric field
in just one direction (a property of a singular distortion matrix).
From recognising that singular distortion matrices are not
uncommon, it is then a simple step to expect some distortion
matrices to be calculated with negative determinants, due simply
to experimental error in measurements which, more accurately,
would give the zero determinant of the singular case.

A relevant point regarding the Groom-Bailey decomposition
is that the anisotropymatrixA inEquation41has the same formas
theSVDmatrix in the centre of the right-hand side ofEquation22.
In terms of the Groom-Bailey notation, the SVD decomposition
ofEquation22 (shown inFigure 7a) is gT1.A.T2,whereT1 andT2

are different rotations, through angles –ym and yb respectively.
For 2D, ym= yb.

While in the Groom-Bailey decomposition the only explicit
rotation is T and it is called ‘twist’, in SVD (see Equation 22)
the term ‘twist’ is better kept for the difference between the
two rotations, yb and ym. Twist, defined as (yb – ym), is then
zero for 2D. The Groom-Bailey decomposition has the

added complication that the shear operator S also contributes a
rotation.

In Appendix E below, a comparison of the decompositions
gT.S.A and gT1.A.T2 (the latter returned to the notation of
this paper as R1.W.R2) is made by re-composing each, step by
step, in terms of their Mohr diagrams.

Invariants of rotation in review

Many invariants of rotation of the distortion tensor have been
introduced in earlier sections of this paper, and in this section a
useful set of invariantswhich is evident on aMohr diagramwill be
summarised.

This set, which the author has found convenient, is shown in
Figure 8. ThusDL gives a gain relative to the undistorted value of
unity, l as an angle gives ameasure of 2D, andm as an angle gives
a measure of 3D.

In terms of the quantities in Equation 22, Figures 6 and 8, it can
be seen that

DL ¼ ðOG þ OFÞ=2 ¼ ðw1 þ w2Þ=2 ð46Þ
l ¼ arcsin½ðOG � OFÞ=ðOG þ OFÞ�
¼ arcsin½ðw1 � w2Þ=ðw1 þ w2Þ�

ð47Þ

and

m ¼ �b � �m ð48Þ

A condition number to measure singularity

It is possible that a distortion tensor will exhibit very strong
anisotropy and, as a consequence, the tensor will approach a
condition of singularity. In a Mohr diagram the condition of
singularity is shownbya circle touching the origin, as inFigure 4f.
If, for example,D is a singular tensor, then there is some rotation
of axes for which both D0

xx and D0
xy are zero (or indistinguishable

from zero, when error is taken into account). For the student of
linear algebra, an example of a null space occurs: it is the line of
the direction of regional electric field change which causes nil

D ′xx 

D ′xy 0 1

μ λ 

DL

marks observed point 

Fig. 8. The example matrix [1.75, 1.34; 0.34, 1.25] shown on a Mohr
diagram. DL, l and m as shown are, by inspection, a straightforward set of
invariants which characterise, respectively, the 1D, 2D and 3D properties of
the matrix.
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local electric field change. An example of this null space is
discussed in Appendix D, taking the singular matrix given in
Figure 4f.

A condition number may be used to warn that singularity
is being approached (Strang, 2005). When the condition
number becomes high in some sense, the matrix is said to be
ill-conditioned (Press et al., 1989). The condition number
suggested by Strang (2005) is the norm of the matrix
(sometimes called the spectral norm) multiplied by the norm
of the inverse of the matrix; or equivalently, the greater principal
value of the matrix divided by the lesser principal value. For the
2� 2 matrix D in Equation 22 the condition number k is

k ¼ w1=|w2| ð49Þ
where the greater and lesser principal valuesw1 andw2 (given by
Equations 26 and 27 above) are the singular values of the matrix.
Following the convention that singular values are never negative,
amodulus sign is put into the denominator ofEquation49 to cover
cases where the lesser principal value might otherwise be
determined as negative using Equations 26 and 27. In terms of
the Mohr representations in Figure 6, from Equation 49 the
condition number is given by

k ¼ OG=OF ð50Þ
that is,

k ¼ 1þ 2=ðcosecl� 1Þ ð51Þ
with l defined as in Figure 8 andEquation 47. Figure 9 showsk as
a function of l. While l itself is a measure of condition, Figure 9
demonstrates that k is more sensitive than l as ill-condition is
approached. Note that k � 1, for all l.

An anisotropy number

The complication, caused by a negative determinant in the
definition of the condition number, suggests that in place of
the latter a number might be useful which is defined as the
ratio of the radius of the Mohr circle (r in Equation 20) to the
distance of the centre of the circle from the origin (DL in Figure 8).
Denoting such an ‘anisotropy number’ byA, then (forw1 ordered
greater than w2; see the section Ordering w1 > w2),

A ¼ r=DL ¼ ðw1 � w2Þ=ðw1 þ w2Þ ð52Þ

Such an anisotropy number will be less than unity for positive
determinants; be unity for singular matrices; and be greater than
unity for determinants which are negative. There will then be no
need for concern with conventions such as that under which
singular values are always quoted positive.

It can be seen from Equation 47 that for A � 1, l and A are
linked by

l ¼ arcsinA ð53Þ
Some further examples

In this section, threedistortionmatrices, alreadywell-studied,will
be analysed by eigenanalysis and SVD as further examples of the
application of these techniques. The examples are from different
origins but all are described by Jones (2012), to whose discussion
it is strongly recommended the reader refer. For these examples,
Jones (2012) gives values for the Groom-Bailey decomposition
parameters of twist, shear, anisotropy and gain, which will be
quoted here for comparison. However, it is the experience of the
present author that while the terms ‘twist’ and ‘shear’ have their
origin in practical matters which can be visualised, in fact as they
occur in the Groom-Bailey analysis their visualisation is not
straightforward. Thus they are not clearly evident on a Mohr
diagram for a distortion tensor, which otherwise shows a wide
range of invariants.

Larsen and Hawaii

The first case comes from Larsen (1975) as presented by Jones
(2012) in the form of Equation 3. The distortion matrix is quoted
as [0.803, 0.835; 0.635, 1.197]. Jones (2012) describes this
example as being one of relatively strong distortion, with
values of 1.7�, 36.6�, 0.175 and 0.996 for the Groom-Bailey
parameters of twist, shear, anisotropy and gain respectively.

Eigenanalysis

Eigenanalysis as described above gives eigenvectors of
magnitudes 1.75 and 0.25 at bearings 48.5� and –33.4�

respectively. These eigenanalysis results are presented in map
form on the left-hand side of Figure 10.

SVD

SVD as described above gives axes rotations of –34.7� and
–40.4� for the regional and local sites respectively, with
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Fig. 9. The condition number k displayed as a function of the anisotropy angle l in degrees, using linear (left) and
logarithmic (right) scales for k.
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amplificationsof0.25 and1.77 in theOX0 andOY0 directions at the
local site. TheseSVDresults are alsopresented inmap formon the
left-hand side of Figure 10. A comparison of the eigenanalyses
and SVD results shows them to be very similar, indicating that the
matrix is close to 2D.

Mohr diagram

The eigenanalysis and SVD results are also shown in theMohr
diagram for the matrix, as displayed in Figure 10.

From the Mohr diagram, the distortion can be seen to be
strongly 2D. In terms of the invariants shown in Figure 8 to
characterise dimensionality, the values in Figure 10 areDL= 1.0,
l = 49.1�, and m= 5.7�. This small value of m (the indicator of 3D
structure) may be barely distinguishable from zero, when likely
error is taken into account.

Model computation of Groom and Bailey

Thenext example comes from the response computed for a simple
model by Groom and Bailey (1991). The distortion matrix is

Local site (M) Regional site (B)

[0.803, 0.835; 0.635, 1.197]

Eigen analysis

S S

N N 

E E W W 

Singular value decomposition

S S

N N

E EW W

o o

o o

X ′

Y ′
X ′

Y ′

D ′xx

D ′xy

D ′yx

D ′yy

0

0

1F J 

G H 

marks observed point

Fig. 10. Eigenanalysis, SVD and Mohr diagram for the Larsen matrix.

Local site (M) Regional site (B)

[1.91, 0.62; 0.62, 0.67]
Eigen analysis

S S

N N

E EW W

Singular value decomposition

S S

N N

E EW W

o o

o o

X ′

X ′

Y ′Y ′

D ′xx

D ′xy

D ′yx

0

0

1

F J

G H

marks observed point

Fig. 11. The Groom-Bailey matrix. The geographic axes for the ‘local site’ and ‘regional site’ figures are those relative to
which the distortion matrix is quoted, and may not be north and east.
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quoted as [1.91, 0.62; 0.62, 0.67]. Jones (2012) describes this
example as being one of moderate distortion, with values of
–12.2�, 30.2�, 0.37 and 1.23 for the Groom-Bailey parameters
of twist, shear, anisotropy and (modified) gain respectively. The
matrix is immediately seen to be symmetric, and so will have the
2D characteristics evident in Figure 4d.

Eigenanalysis

Eigenanalysis as described above gives eigenvectors of
magnitudes 2.16 and 0.42 at bearings 21.8� and –67.4�

respectively. These eigenanalysis results, with the eigenvector
of bearing -67.4� given its reverse direction of 112.6� for easier
comparison with the SVD results, are presented in map form on
the left-hand side of Figure 11.

SVD

SVD as described above gives axes rotations of 22.5� and
22.5� for the regional and local sites respectively, with
amplifications of 2.17 and 0.42 in the OX0 and OY0 directions
at the local site. These SVD results are also presented in map
form on the left-hand side of Figure 11.

This SVD result of 22.5� is consistent with the geometry of the
model considered byGroomandBailey (1991). Following Jones,
adding the twist (–12.2�) and shear (30.2�) values gives 18.0� for
the ‘current channelling azimuth’, which is close to, but perhaps
significantly discrepant from, the22.5�SVDresult (and themodel
geometry).

Mohr diagram

The eigenanalysis and SVD results are also shown in theMohr
diagram for the matrix, as displayed in Figure 11.

From theMohr diagram, the distortion can be seen to be purely
2D. In terms of the invariants shown in Figure 8 to characterise
dimensionality, the values in Figure 11 are DL= 1.3, l= 42.7�,
and m= 0.0�.

This matrix example is discussed further in Appendix E.
There, its Groom-Bailey and singular value decompositions
are compared, by using them to ‘re-compose’ the matrix, step
by step.

Chakridi case

This example also comes fromthe response computed for a simple
model, in this case by Chakridi et al. (1992). Thematrix is quoted
as [1.26, 0.44; 0.53, 0.86].

Jones (2012) describes this matrix as also being one of
moderate distortion, with values of –2.1�, 25.0�, 0.17 and 1.06
for the Groom-Bailey parameters of twist, shear, anisotropy and
(modified) gain respectively.

Eigenanalysis

Eigenanalysis as described above gives eigenvectors of
magnitudes 1.58 and 0.54 at bearings 36.1� and –58.6�

respectively. These eigenanalysis results, with the eigenvector
of bearing -58.6� given its reverse direction of 121.4� for easier
comparison with the SVD results, are presented in map form on
the left-hand side of Figure 12.

SVD

SVD as described above gives axes rotations of 35.0� and
32.6� for the regional and local sites respectively, with
amplifications of 1.57 and 0.53 in the OX0 and OY0 directions
at the local site. These SVD results are also presented inmap form
on the left-hand side of Figure 12.

A comparison of the eigenanalyses and SVD results shows
them to be very similar, indicating that the matrix is close to 2D.

Mohr diagram

The eigenanalysis and SVD results are also shown in theMohr
diagram for the matrix, as displayed in Figure 12.

From Figure 12, the distortion can be seen to be strongly 2D,
with 3D characteristics barely distinguishable above likely error
level. In terms of the invariants shown in Figure 8 to characterise
dimensionality, the values in Figure 12 are DL= 1.0, l= 30.0�,
andm= –2.4�. This small value ofm (the indicator of 3D structure)
may be barely detectable as different from zero, when error is
taken into account.

Conclusions

The 2� 2matrixwhich describes the local distortion of the electric
field in natural electromagnetic induction in the Earth provides

Local site (M) Regional site (B)

[1.26, 0.44; 0.53, 0.86]
Eigen analysis

S S

N N

E EW W

Singular value decomposition

S S

N N

E EW W

o o

o o

D ′xx

D ′xy

D ′yx

D ′yy

0

0

1

FJ

GH

marks observed point

X ′

Y ′
Y ′

X ′

Fig. 12. Eigenanalysis, SVD and Mohr diagram for the Chakridi matrix.
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practical examples with which to demonstrate the processes of
eigenanalysis and SVD. Distortion matrices which approach
singularity arise from time to time, and because they are
incorporated as multipliers in both the in-phase and quadrature
parts of observed magnetotelluric impedance tensors, they may
disrupt the analysis of magnetotelluric data. Monitoring any
approach to singularity with a condition number may therefore
be useful. An anisotropy number as introducedmay also be useful,
and has the advantage of showing clearly when a matrix has a
negative determinant.

A Mohr diagram for a 2� 2 matrix is shown to be versatile in
displaying a wide range of the properties of thematrix, especially
those which are invariant with rotation of the reference axes.
Several of the quantities depicted in a Mohr diagram may be
useful as measures of the extent to which the matrix is diagnostic
of 1D, 2D or 3D geological structure.
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Appendix A
Basic Mohr diagram and value of determinant

(a)
D ′xx

D ′xy

r

(Dxx,Dyy)

0 1

Δ1/2

marks observed point 

(b)
D ′xx

D ′xy

r

(Dxx,Dyy)

0 1

Δ1/2

Area = πΔ

Fig. A-1. (a) AMohr diagram for a 2� 2matrix showing the observed point (Dxx,Dxy), the circle of radius r, and the tangent to the circle from the origin, which
is of length D1/2. (b) A second circle, with centre at the origin, has been added to (a). This second circle has an area of pD, where D is the numerical value of
the determinant of the matrix, and must be positive for this diagram to apply.

For reference, a basic Mohr diagram with circle radius r is shown in Figure A-1a. Application of Pythagoras’ theorem shows that the
tangent is of length equal to the square root of the determinant (D) of the matrix. The determinant is also an invariant with the rotation
of axes.

There is often interest in displaying the numerical value of the determinant of a 2 � 2 matrix, when that value is positive (Korner,
1990).OnaMohrdiagram it is possible todisplay thenumerical valueofD in severalways.Oneway is simply to complete a square, based
on the tangent which is shown in Figure A-1a to be of lengthD1/2. Another way is shown in Figure A-1b, where the circle centred on the
origin has an area of pD.
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Appendix B
Construction on a Mohr diagram to show eigenvector directions read as on a map

D ′xx
D ′yx

D ′xy

D ′yy

0

0

1

P

C

Q

B

H

J

marks observed point 

Fig. B-1. Matrix [1.75, 1.34; 0.34, 1.25]. Figure 3 reproduced with some deletions for simplification, and with constructions which now give the directions of
the eigenvectors, as read on a map (see text).

Figure 3 is reproduced as Figure B-1 with some deletions for simplification, and with constructions which give the directions of the
eigenvectors, as read on a map.

As described in the section Eigenvalues on Mohr diagrams and Figure 3, directions CH and CJ in Figure B-1 give the eigenvector
directions, reading Figure B-1 as a dial. Rotating the observing axes clockwise in Figure 1 by ½ffHCPmoves P toH in Figure B-1, and
OX0 in Figure 1 is then aligned with the eigenvector.

BecauseffHBP=½ffHCP, thedirectiononFigureB-1ofBPgives thedirection (asonamap)of theeigenvector, relative toBH takenas
north and the initial axes left unrotated.

For the second eigenvector, represented by direction CJ, similar reasoning leads to its direction on a map being shown by line QP,
when QJ is aligned north. (It will be remembered that an eigenvector can with equal validity be drawn either ‘forward’ or ‘reversed’.)

Appendix C
Construction on a Mohr diagram to show SVD directions read as on a map

D ′xx 

D ′xy 0 1

F 

G

P

C

Q

marks observed point 

Fig. C-1. Matrix [1.75, 1.34; 0.34, 1.25]. Figure 6 reproduced with some deletions for simplification, and with constructions which now give the directions of
the SVD axes as read on a map (see text).

Figure 6 is reproduced as Figure C-1 with some deletions for simplification, and with constructions which give the directions of the
SVD axes, as read on a map.

In Figure C-1, ffGCP= 2ym, so ffGFP = ym. Because ffQOG = (yb – ym), when OQ is directed north the line FP is at bearing yb, and
thus shows the bearing of the OX0 axis at the regional site. Further, if OG instead is directed to the north, FP is then at bearing ym,
and shows the direction of the OX0 axis at the local site.
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Appendix D
A practical example of a null space

D ′xy

D ′xx
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Fig.D-1. Thesingularmatrix [1.75,1.34;0.33, 0.25] fromFigure4fwithconstructionswhich show that thenull spaceof thematrix is the lineNL. In construction,
line NL is perpendicular to the line joining the observed point P to the D0

xx, D0
xy origin.

Matrix [1.75, 1.34; 0.33, 0.25] from Figure 4f is singular because its two rows, [1.75, 1.34] and [0.33, 0.25], are not independent.
The former is 5.3 times the latter.

Following for example Strang (2005), the null space of the D of Equation 3 consists of all solutions Eb which satisfy

D:Eb ¼ 0 ðD-1Þ
Rotation of the axes as in Figure 1 for matrix [1.75, 1.34; 0.33, 0.25], so that the observed point in Figure 4f moves to the D0

xx, D0
xy

origin, will render both D0
xx and D0

xy zero. Equation D-1 then becomes

0 0

D0
yx D0

yy

" #
Eb
x
0

Eb
y
0

" #
¼ 0 ðD-2Þ

The solution of this equation is

D0
yxE

b
x
0 þ D0

yyE
b
y
0 ¼ 0 ðD-3Þ

which is satisfied for all field changes which obey

Eb
y
0
=Eb

x
0 ¼ �D0

yx=D
0
yy ðD-4Þ

Field changes of components (Eb0
x, E

b0
y ) have direction arctan(Eb0

y/E
b0
x ), relative to the now rotated axes. Thus the line at bearing

arctan(–D0
yx/D0

yy) (again relative to the now rotated axes) defines the line of the null space of D.
Taking the matrix [1.75, 1.34; 0.33, 0.25] as a numerical example, Equation D-1 becomes

1:75 1:34

0:33 0:25

� �
Eb
x

Eb
y

" #
¼ 0 ðD-5Þ

which, solved directly, is found to be satisfied by an Eb
y/E

b
x ratio of –1.3. The value of arctan(–1.30) is –53� or 127�, and so the line of

null space has bearing (relative to the original geographic axes) of 127�. This result means that any electric field change at the base site B
with bearing 127� will cause nil electric field change at the measurement site M.

Following Appendix C, the direction of the null line on a map is shown on the Mohr diagram. Figure D-1 is Figure 4f redrawn and
augmented. With reference to Figure D-1, ffQOG = (yb – ym) and, because ffGCP= 2ym, ffGOP= ym. Therefore ffQOP = yb, and for
alignment with the SVD axes of the matrix as in Figure 5, at site B the axes should be rotated clockwise through this angle. Thus forOQ
aligned north as on a map,OP is then the direction of theOX0 axis at site B. Because the axes in Figure 5 are orthogonal, it follows that
(yb+ p/2) is the direction of signal at site Bwhichwill produce nil signal at siteM. In FigureD-1 lineNL, drawn perpendicular toOP, has
this (yb+ p/2) direction.

As a check, yb for this matrix may be found from Equations 24 and 25 to be 37�. On Figure D-1, relative toOQ as north, lineNL is at
bearing 127�; i.e. at bearing (yb +p/2).
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Appendix E
Two re-compositions compared

The example presented in the section Model computation of Groom and Bailey is illustrated here in greater detail. Each step in the
multiplication involved in the Groom-Bailey decomposition is presented, as a re-composition, in a series of Mohr diagrams on the left-
hand side of Figure E-1. For comparison, on the right-hand side of Figure E-1 the SVD of the same matrix is presented as a re-
composition.

(b)

(d)

(f )

(a)

(c)

(e)

(g)

(i )

(k)

(m)

(h)

(j )

(l )

(n)

Fig. E-1. (a–g) Re-composition of the Groom-Bailey matrix, in steps down the figure (see text). (h–n) The equivalent SVD re-composition, in steps down the
figure (see text).

Thus, on the left-hand side of Figure E-1:

Part (a) shows the identity matrix, representing the case of no distortion.
Part (b) shows the matrix A.
Part (c) shows the result of gA acting on the identity matrix to give gA.I, where the scalar gain factor g (of value 1.55) has also been
incorporated in this step.
Part (d) shows the matrix S.
Part (e) shows the result of S acting on gA.I, to give gS.A.I.
Part (f) shows the matrix T.
Part (g) shows T acting on gS.A.I to give, as gT.S.A.I, the matrix D and, indeed, the Mohr diagram shown in Figure 11.

For comparison, on the right-hand side of Figure E-1:

Part (h) again first shows the identity matrix, representing the case of no distortion.
Part (i) shows the matrix R2.
Part (j) shows the result of R2 acting on the identity matrix, to give R2.I.
Part (k) shows the matrix W.
Part (l) shows the result of W acting on R2.I, to give W.R2.I.
Part (m) shows the matrix R1.
Part (n) shows R1 acting on W.R2.I to give, as R1.W.R2.I the matrix D and, again, the Mohr diagram shown in Figure 11.

An important point to note is that Groom-Bailey decomposition allocates 2D characteristics by both A and S, the latter of which also
contributes a 3D rotation. In contrast, the SVD treatment shows a sole 2D component (W in Figure E-1) and 3D contributions enter as
rotations only.
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