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methods available to farmers and agricultural scientists will
assist in the future control of salinity problems.
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A NEW FORMULATION OF THE MAGNETIC
RELIEF PROBLEM

C. Z. Tarlowski and |. Koch

Introduction

An accurate estimate of the depth to the crystalline basement
in sedimentary basins is of great importance for mining and
oil exploration.

Many methods are available for estimating the depth to
basement rocks from airborne magnetic observations. The
three main approaches commonly used are spectral analysis,
error minimisation between the measured field and the field
calculated from simple geometric reliefs and finally the more
heuristic methods of characteristics. All these methods
implicitly assume that the basement rocks have a flat surface.

Direct two-dimensional structure calculations were carried out
a few decades ago; Peters (1949) derived an integral equation
for the vertical component of the magnetic field in terms of
the topography of the basement. However, there was an error
in his analysis, which does not seem to have been corrected
in the literature.

More recent research has been devoted to this problem again,
but most of these efforts are concerned with specific
geometries and are often stated in terms of magnetic potential
as the latter simplifies the mathematical analysis.
Unfortunately, the potential is not measured directly, which
poses the question of how to apply such an analysis to real
magnetic data.

In contrast to these efforts, we are interested in the general
three-dimensional inverse problem of recovering the relief of

basement from measurements of the magnetic field. As a first
step towards this goal, we present a formulation of the general
3-D problem that has to be solved in realistic situations. We
also discuss possible approximations to the 3-D problem in
order to obtain numerically more tractable solutions to the
relief equation.

The Relief Equation

We are interested in variations in magnetic field which result
from the topography of crystalline basement. For most
basement rocks the magnetization | can be regarded to be
uniform and parallel to the inducing field. Under these
assumptions, a relationship between the magnetic field and
the relief function describing the topography of crystalline
rocks, can be represented by the following equation (see Fig.
1 for notation and a description of co-ordinate system):

H(Q?,y,O) = _/(Iafa +Iﬁfﬂ - I‘Y)

(‘1" -,y — Ba _(h + f(a’ﬁ)))dadﬁ
[(z - )2+ (y = B)? + (h+ f(a, B))?]3/2

(1)

where:
H(z,y,0) - magnetic field at point (z,y,0),
(Ia,1s,1,) - components of the magnetisation

vector at point (o, 3,7),
h - the average depth from the plane
Z = 0 to the basement,
- the deviation of the relief func-
tion from h,
fa = gaﬁ, fs= %é - partial derivatives of f,
o - the surface described by the equ-
ation y(a, 8) = h + f(a, ).

In this form, one can see that the magnetic field depends
nonlinearly on the relief function f.
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FIGURE 1
Description of basement rocks in 3-D.
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The Two-dimensional Field Equation

Under the assumption that the magnetization in the y-
direction is constant, the 2-D restriction of the relief equation
becomes:

H(z,0) = —2/(Iaf’(a) -, (¢ — ,h + f(a))da

g —a)? + (h+ f(@))?
(2)

However, for the 2-D case there is also an alternative
derivation of the above equation which can be obtained by
looking at the geometry of the problem (see Fig. 2).

If H denotes the contribution of aline element d/ of the curve
fie) to the magnetic field, then dH is given by:
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FIGURE 2
Geometrical representation of 2-D structure.

This is the approach which was adopted by Peters (1949).
However, an inspection of Peters’ formulation (see his equation
(3) shows that his derivation is invalid. The mistake in Peters’
analysis does not seem to have been corrected in the
literature.

The Linear Relief Equation

Since the relief equation (1) is nonlinear, a solution will have
to be found iteratively. This process is often difficult and
expensive. For this reason, it is advantageous to derive a linear
relief equation which approximates the original nonlinear
equation and which is easier to solve.

A good approximation can be obtained if we assume that
|f(a, B)] < h. In this case we obtain the linear relief
equation:

H(z,y,0) = /(Iafa i e A 3

(z — a,y — B, —h)dadB
X [(;1; - a)? e (y = ﬁ)2 +h2]3/2 ( )

In many applications it is assumed the top surface of the
magnetic rocks is flat and the underlying assumption is that
changes in the magnetization cause the variations in the field.

In this case the general 3-D relief equation reduces to the

equation:
— (z — o,y — B3, —h)dadf3
H(z,y,0) = /617 (z—a)2+(y-B)2+ h2]3/2

If we recall that the magnetization | can be related to the
inducing field by I(c, 3,7) = kH(a, 8,7), where k denotes
the magnetic susceptibility and is assumed to be constant
in the area of interest, we obtain well known equation of the
downward continuation of the magnetic field.

()

Discussion

We have noticed the relief equation is nonlinear in f. The
inverse problem of calculating the relief function from the
discrete measurements of the magnetic field H is therefore
not straightward. Even the linearised field equation is unstable
and ill-posed.

Finding a solution to the downward continuation problem has
become an area of active research and many different
techniques are being applied. These include Wiener fittering
(see Chittineni (1984), matrix perturbation methods (see Silva
and Hohmann (1984)), Gilbert — Backus techniques (see
Huestis and Parker (1979)) and direct surface smoothing
techniques (see Koch and Anderssen (1984)).

Because of the mathematical similarity between the downward
continuation problem and the linear relief equation it is hoped
that any method which achieves good results for downward
continuation of the magnetic field will also produce good
approximations to the gradients fx and f; of the relief function.
For some applications this information about the relief function
suffices. In other cases, the relief function can be found from
a knowledge of the average depth h and the gradients fo and
fes

Summing up, the explicit formulation of the magnetic rélief
problem presented here represents a new approach to depth
estimation from magnetic observations. Future work which
provides numerical solutions should prove of great value to
mineral and oil exploration.
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A SYSTEMATIC VISUAL APPROACH TO
INTERPRETATION OF AEROMAGNETIC
TOTAL INTENSITY ANOMALY PIXEL MAPS
AT 1:1 000 000 SCALE

D. H. Tucker and G. W. D’Addario

Introduction

Although aeromagnetic surveys continue to play a prominent
role in mineral exploration, the interpretation of aeromagnetic
data (Paterson & Reeves, 1985) has been influenced by the
geology and the ore occurrences of a given region. Magnetic
interpretation maps should not be constrained to resemble
maps of the existing geology (Grant 1984/85a, Chandler,
1985).

A considerable amount of regional aeromagnetic data has
been accumulated in Australia by government agencies and
exploration companies. The survey data have not been
adequately and systematically processed and analysed and
subdued magnetic variations have mostly been neglected.

Following the lead of the Geological Survey of Canada (Teskey
et al. 1982), the Bureau of Mineral Resources (BMR) has
engaged in the time consuming and costly process of
assembling very large area high quality pixel maps, the most
advanced elaboration of aeromagnetic data to date, on a
regional scale (Tucker et al. 1985a). While laboratory study
of magnetic properties of rocks is proceeding to unravel
magnetic processes as summarised by Mclntyre (1980) and
Grant (1984/85b), a non selective systematic analysis of all
magnetic data was undertaken with specific careful reference
to the subdued magnetic features independently and
uncontaminated by premature speculative geological
constraints.

Magnetic anomalies in between the obvious features
correlated with known geology were carefully studied to gather
new information taking maximum advantage of the TMI pixel
map presentation and at the same time devising a suitable
way to display it.

A region can be subdivided and regional features of interest
can be identified and presented in a map form with a very
flexible standard legend, which incorporates relevant
characteristics in set combinations and permutations.

Magnetic Domains Model Procedure

The aeromagnetic total intensity anomaly grey-scaled pixel
maps display the dynamic range of magnetic data and use
the ability of the eye to recognise subtle patterns.

A representative model has been devised with a flexible
legend suitable for analysis of these pixel maps. A minor
modification will be needed to accommodate gradient and
colour pixel maps. The example used in this paper is the
Albany 1:1000 000 sheet (Tucker and D’Addario 1986;
D’Addario and Tucker 1986).

The Albany grey-scaled pixel map (Tucker et al. 1985) was
analysed at 1:1 000 000 scale on its own merit, without any
input from the available literature, and without geological
control, trying to avoid any possible bias (Fig. 1).

The approach is visual and the map was observed and studied
to focus and detect peculiar specific patterns. These patterns
were identified as textural characteristics. They have a certain
range of anomaly width and are unevenly distributed
throughout the map.

The map area was broadly subdivided with each division
bounding prevailing highs and lows or combinations of both.
Using a rectangular window, the size of one degree of latitude
by 1.5 degrees of longitude (arbitrarily chosen and equivalent
to a standard 1:250 000 sheet area), the dominant textural
characteristics were assessed and classified as diagnostic
if they occupy between 20 and 100 percent of the window
area. Any other textural characteristic just under 20 percent
of the area was also noted but classified non diagnostic.
During this stage of the interpretation, by moving the window
in all directions, the boundaries of the major subdivisions were
reviewed and classified as definite, not clearly defined, or
transitional and the areas enclosed by those boundaries were
called domains (Fig. 2).

In the Albany region linear/cross cutting features occur
throughout the region and their visual impact tends to
overshadow the other features, although they do not occupy
20 percent of any particular area. Circular/elliptical closed
areas are noted in five of the eight domains but they do not
define any domain and therefore, like linear/cross cutting, are
considered non diagnostic by definition.

The legend was constructed in the form of a table where
domains are defined by their main textural characteristics
(Fig. 3).

Some non-diagnostic textures, including those widespread
but less than 20 percent of each area, could be quite relevant
to the determination of specific targets, e.g. for regional
exploration, detailed exploration or drilling. It is significant that,
by excluding two features so important to exploration, namely
the circular/elliptical closed areas and linear/cross cutting the
emphasis is mainly shifted towards other features and these
are the features which define each domain in the model.

Textural characteristics have tentatively and individually been
associated with specific geological and structural features
according to conventional geophysical interpretation only after
the legend was completed.





